JPH0486332A - Underwater air pressure accumulation tank and laying method thereof - Google Patents

Underwater air pressure accumulation tank and laying method thereof

Info

Publication number
JPH0486332A
JPH0486332A JP19930490A JP19930490A JPH0486332A JP H0486332 A JPH0486332 A JP H0486332A JP 19930490 A JP19930490 A JP 19930490A JP 19930490 A JP19930490 A JP 19930490A JP H0486332 A JPH0486332 A JP H0486332A
Authority
JP
Japan
Prior art keywords
air
water
air bag
air pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19930490A
Other languages
Japanese (ja)
Inventor
Tadao Tani
質生 谷
Hidehisa Miyazaki
宮崎 秀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
NOF Corp
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Nippon Oil and Fats Co Ltd filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP19930490A priority Critical patent/JPH0486332A/en
Publication of JPH0486332A publication Critical patent/JPH0486332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To facilitate manufacture and laying of a pressure accumulation tank by arranging one or plural number of air pressure accumulation tanks to be coupled each other at the bottom of water, which consists of a container housing a flexible air bag and provided with small openings through which water goes in/out of the air bag, and connecting the air bag to an air sending and receiving device on land through an air duct with a closing valve. CONSTITUTION:An underwater air pressure accumulation tank is composed of a plurality of air pressure accumulation tanks 1, 11, 12... connected each other by a support member 12. Respective air pressure accumulation tanks 1, 11 and 12 are provided with an air bag 3 cylindrically formed inside a container 2 having a cylindrical shape and airtightly connected to a compressor or a combustion chamber in a gas turbine electric power plant on land through an air duct 5 with a closing valve 4, respectively. The air bag 3 touches a container 2 internally in such a manner that its end portion is fixed to one end of the container 2, and is capable of extending retractably in the longitudinal direction by air going in and out. The container 2 is provided with a plural number of small openings 7 through which water 9 is allowed to move in and out of the air bag 3 on other end thereof, and is provided with a lubricating tank 11 made of synthetic resin affixed on an inner peripheral surface thereof.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えばガスタービン発電に使用する圧縮空気
を海や湖沼などの水中、好ましくは水底に貯蔵する空気
蓄圧槽およびその敷設方法に関する。
The present invention relates to an air pressure storage tank for storing compressed air used, for example, in gas turbine power generation underwater in the sea, lakes, and marshes, preferably at the bottom of the water, and a method for installing the same.

【従来の技術】[Conventional technology]

近年、大気中の二酸化炭素増加に伴う温室効果により地
球の温暖化が指摘されており、二酸化炭素の放出両削減
や省エネルギの観点から、より燃料効率の高い発電シス
テムが求められている。 例えば、燃料にLNG (液化天然ガス)を用いたガス
タービン発電の二酸化炭素発生量は、同じ発電量の石油
火力発電に比較して約騒であり、大気中への二酸化炭素
放出を大幅に削減できる。ところがガスタービン発電は
発電効率が悪い。発電機とともにコンプレッサを同時に
駆動して高圧空気を作り、この空気により燃料を燃焼し
て発電を行なうためである。コンプレッサに必要な動力
はタービン出力の坏〜%にも達する。 そこで、ガスタービン発電の発電効率を高めるために圧
縮空気利用システムが考えられた。これは、電力需要が
少ない時間帯にいわゆる深夜電力を利用してコンプレツ
サを駆動し、蓄圧槽に高圧空気を貯蔵して需要の多い時
間帯のガスタービン発電にその高圧空気を使用するシス
テムである。 このシステムによればコンプレツサを駆動する必要がな
く、ガスタービンで発電された電力は全て需要者に供給
可能になる。空気の圧縮に用いる深夜の電力はベースロ
ードである原子力発電への依存度が高いため、二酸化炭
素の放出量が増加することもない。 通常のガスタービン発電で用いる圧縮空気の圧力は10
〜40kg/cm2であり、貯蔵には圧力容器が必要に
なる。現在のところ、圧縮空気を利用した数十万kW規
模の発電所が建設されているが、それらは何れも空気蓄
圧槽を陸地に設けたものである。 蓄圧槽を水底に設ければ水圧を利用した容器の設計が可
能になるため、第4図や第5図に示す水中空気蓄圧槽が
計画された。しかし、これらの水中空気蓄圧槽には槽の
構造、組立方法、設置法および安全性など未解決の問題
が多い。 第4図の水中空気蓄圧槽30は大容量(5万〜lO万ゴ
程度)の直方体状の中空容器である。その」二部には陸
上の送排気装置に接続する送気管31が設けられ、下部
には水が出入する注排水口32が設けられている。しか
しこの装置30は、構造面、実用面、安全性の面で幾つ
かの問題を有している。 構造面において、水中空気蓄圧槽30は空気を入れると
大きな浮力が発生するため、水底に固定するにはかなり
の重量が必要になる。このような巨大な重量物は陸上で
の製造が難しく運搬や敷設も困難である。また、容器自
体の気密性を確保するため、内壁を鉄板あるいは水に強
い樹脂等のコーティングにより保護する必要がある。実
用面では、装置内部で空気8と水9とが接しているため
、陸上に取り出した空気8に水9が混入し、いわゆるシ
ャンペン現象が発生してタービン等が損傷したり腐食す
る恐れがある。安全性の面では、水底に敷設した容器3
0が破壊した場合、−度に放出された空気8が水面上で
数十倍の容積に膨張し、大波が発生して船舶が転覆する
おそれがある。 第5図の水中空気蓄圧槽40は、空気室43とバラスト
室44とを一体化した蓄圧槽45を複数個連結したもの
である。この水中空気蓄圧槽40は陸上で別個に作製し
た複数の蓄圧槽45を連結して製造される。空気室43
とバラスト室44とに空気を充満させて敷設場所へ曳航
し、空気室43とバラスト室44とに水を注入して水底
に沈下させて敷設する。この敷設作業は第4図に示した
水中空気蓄圧槽30よりは容易であるが、容器自体の気
密性確保が難しい他、空気8と水9とが分離されていな
いためにシャンペン現象による水の吹き出しは解決され
ない。
In recent years, it has been pointed out that global warming is caused by the greenhouse effect caused by the increase in carbon dioxide in the atmosphere, and there is a need for power generation systems with higher fuel efficiency from the viewpoints of reducing carbon dioxide emissions and saving energy. For example, the amount of carbon dioxide generated by gas turbine power generation using LNG (liquefied natural gas) as fuel is approximately noisier than oil-fired power generation with the same amount of power generation, which significantly reduces carbon dioxide emissions into the atmosphere. can. However, gas turbine power generation has poor power generation efficiency. This is because the generator and compressor are driven at the same time to create high-pressure air, and this air is used to burn fuel and generate electricity. The power required for the compressor amounts to 10% of the turbine output. Therefore, a compressed air utilization system was devised to increase the power generation efficiency of gas turbine power generation. This system uses so-called late-night electricity to drive a compressor during times when electricity demand is low, stores high-pressure air in a pressure storage tank, and uses that high-pressure air for gas turbine power generation during times when demand is high. . According to this system, there is no need to drive a compressor, and all the electric power generated by the gas turbine can be supplied to customers. The late-night electricity used to compress the air is highly dependent on base-load nuclear power generation, so there is no increase in carbon dioxide emissions. The pressure of compressed air used in normal gas turbine power generation is 10
~40 kg/cm2, requiring a pressure vessel for storage. At present, several hundred thousand kilowatt-scale power plants using compressed air are being constructed, but all of them have air pressure storage tanks installed on land. If a pressure storage tank is installed at the bottom of the water, it becomes possible to design a container that utilizes water pressure, so the underwater air pressure storage tank shown in Figures 4 and 5 was planned. However, these underwater air pressure storage tanks have many unresolved problems such as tank structure, assembly method, installation method, and safety. The underwater air pressure storage tank 30 shown in FIG. 4 is a rectangular parallelepiped hollow container with a large capacity (approximately 50,000 to 10,000 g). The second part is provided with an air pipe 31 that connects to a land-based air supply and exhaust system, and the lower part is provided with an inlet and outlet port 32 through which water enters and exits. However, this device 30 has several structural, practical, and safety problems. In terms of structure, the underwater air pressure storage tank 30 generates a large buoyant force when filled with air, so it requires a considerable weight to be fixed to the bottom of the water. Such huge heavy objects are difficult to manufacture on land, and difficult to transport and install. Furthermore, in order to ensure the airtightness of the container itself, it is necessary to protect the inner wall with an iron plate or a water-resistant resin coating. In practical terms, since air 8 and water 9 are in contact inside the device, water 9 may mix with the air 8 taken out to land, causing the so-called champagne phenomenon, which may damage or corrode the turbine, etc. . In terms of safety, containers placed at the bottom of the water3
If the vessel is destroyed, the air 8 released at -degrees will expand to several tens of times its volume on the water surface, generating large waves and potentially capsizing the vessel. The underwater air pressure storage tank 40 shown in FIG. 5 is a combination of a plurality of pressure storage tanks 45 in which an air chamber 43 and a ballast chamber 44 are integrated. This underwater air pressure storage tank 40 is manufactured by connecting a plurality of pressure storage tanks 45 separately manufactured on land. Air chamber 43
The ballast chamber 44 and the ballast chamber 44 are filled with air and then towed to the installation site, water is injected into the air chamber 43 and the ballast chamber 44, and the ballast chamber 44 is sunk to the bottom of the water. Although this installation work is easier than that of the underwater air pressure storage tank 30 shown in Figure 4, it is difficult to ensure the airtightness of the container itself, and because the air 8 and water 9 are not separated, water is caused by the champagne phenomenon. The speech bubble is not resolved.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は前記の課題を解決するためなされたもので、製
造や敷設が容易で空気のみを取り出すことが出来、安全
性が高い水中空気蓄圧槽およびその敷設方法を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an underwater air pressure storage tank that is easy to manufacture and install, allows only air to be taken out, and is highly safe, and a method for installing the same.

【課題を解決するだめの手段】[Means to solve the problem]

前記の課題を解決するためなされた本発明の水中空気蓄
圧槽および水中空気蓄圧槽の敷設方法を実施例に対応す
る第1図〜第3図を用いて説明する。 本発明の水中空気蓄圧槽は、空気8の出入により伸縮可
能な空気袋3と、その空気袋3を内蔵し水9が出入可能
な小孔7を設けた容器2とからなる空気蓄圧槽1・1.
・12・・・が−個または複数個連結されて水底に配置
されている。空気袋3は開閉バルブ4付の送気管5を介
して陸上の送受電装置6に気密に接続されている。 また、本発明の水中空気蓄圧槽の敷設方法は、空気の出
入により伸縮可能な空気袋3と、前記空気袋3を内蔵し
水9が出入可能な小孔7を設けた容器2とからなる複数
個の空気蓄圧槽l・1.・1□−・・の空気袋3に空気
8を充填し、水面に浮上させて敷設位置の水面へ曳航し
た後、空気蓄圧槽■・11・1□・・・同士を水面にて
連結し、各空気袋の開閉バルブ4と陸上の送受気装置6
とを送気管5を介して気密に接続した後、空気袋3の空
気8を排出し、空気袋3を収縮させて容器2に水9を充
填し、複数の空気蓄圧槽1・11・12・・・が連結さ
れた水中空気蓄圧槽を水中に沈降させている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An underwater air pressure storage tank and a method for installing the underwater air pressure storage tank according to the present invention, which have been made to solve the above-mentioned problems, will be explained using FIGS. 1 to 3, which correspond to embodiments. The underwater air pressure accumulator tank 1 of the present invention comprises an air bag 3 that can be expanded and contracted by letting air 8 in and out, and a container 2 that houses the air bag 3 and is provided with a small hole 7 through which water 9 can go in and out.・1.
・12... are connected to each other and placed on the bottom of the water. The air bag 3 is airtightly connected to a land-based power transmitting/receiving device 6 via an air pipe 5 equipped with an on-off valve 4. Furthermore, the method for installing an underwater air pressure storage tank according to the present invention includes an air bag 3 that can be expanded and contracted by letting air in and out, and a container 2 that has the air bag 3 built therein and is provided with a small hole 7 through which water 9 can go in and out. Multiple air pressure storage tanks 1.・After filling the air bag 3 of 1□-... with air 8, floating it to the water surface and towing it to the water surface at the installation position, connect the air pressure tanks ■, 11, 1□... with each other on the water surface. , an on-off valve 4 for each air bag and a land-based air sending/receiving device 6
After the air bags 3 are airtightly connected via the air pipe 5, the air 8 in the air bag 3 is discharged, the air bag 3 is deflated, and the container 2 is filled with water 9, and the plurality of air pressure storage tanks 1, 11, 12 are ... is connected to the underwater air pressure storage tank, which is lowered into the water.

【作用】[Effect]

陸上の送受気装置6を稼動し、送気管5および開閉バル
ブ4を通して空気袋3に空気8を送ると空気袋3は容器
2内の水9を小孔7より外部に排出しながら膨張する。 空気袋3には水圧に略等しい圧縮空気8が貯蔵される。 圧縮空気8を使用するときは送気管5を通して圧縮空気
8を陸上に戻す。空気袋3内の空気8が減少すると容器
2に小孔7より水9が浸入し、空気袋3が収縮してゆ(
。そのため陸上では常に水圧に略等しい圧縮空気8が得
られる。 電力需要の少ない夜間の電力を用いて空気袋3に圧縮空
気を貯蔵し、電力需要の多い昼間に取り出してガスター
ビン発電に使用すれば、大電力を消費するコンプレッサ
を駆動する必要がな(なる。 また、仮に空気袋3が破裂した場合でも、空気の大部分
は容器2の内部に留まって小孔7から徐々に放出される
ため、大量の空気が一度に上昇することがなく、水面で
の大波発生による船舶の転覆事故が回避できる。 【実施例] 以下、本発明の実施例を詳細に説明する。 第1図は本発明の水中空気蓄圧槽の部分断面側面図、第
2図はその正面図、第3図は敷設状態を示す説明図であ
る。 本発明の水中空気蓄圧槽は、第1図および第2図に示す
ように複数個の空気蓄圧槽1・11・12・・・を支持
部材12で連結して構成される。空気蓄圧槽1・]、I
”12・・・は、円筒形の容器2の内部に筒状に形成さ
れた空気袋3を設けたものである。この水中空気蓄圧槽
は水底に配置され、その空気袋3は開閉バルブ付4の送
気管5を介してガスタービン発電所6のコンプレッサノ
゛や燃焼室と気密に接続されている(第3図参照)。空
気袋3は端部が容器2の一端に固定された状態で容器2
に内接しており、空気の出入により長手方向に伸縮可能
である。容器2のもう一端には水9が出入可能な複数の
小孔7が設けられている。容器2の内周面には合成樹脂
の潤滑層11が貼り付けである。 容器2はコンクリート製である。小孔7より水が出入り
する構造のために気密性や耐圧性を確保する必要はない
が、空気袋3に空気が充填されたときの浮力を抑えるた
めの、ある程度の重量が必要である。 空気袋3には蓄圧、排気に応じて伸縮可能な合成樹脂製
の不織布やゴムを用いている。貯蔵する空気圧力と水圧
力を平衡状態に保つため大きな耐圧強度は必要としない
。 空気袋3と送気管5は開閉バルブ4を介して接続される
が、複数個の空気蓄圧槽1・l、・1□・・−と陸上の
送受気装置6とを連結するために送気管5はフレキシブ
ルで高強度なものを使用する。 この水中空気蓄圧槽は以下のようにして敷設する。 別々に製造した空気蓄圧槽1−11・1□・・・の空気
袋3に空気を充填し、開閉バルブ4を閉じて水面に浮か
べ、第3図に示すように敷設場所まで船15で曳航して
ゆ(。各空気蓄圧槽1・11・12−・・は船15で容
易に曳航できる大きさである。敷設場所の水面に各空気
蓄圧槽1−11・1□・・−を浮かべ、各空気蓄圧槽1
・1.・1□・・・を支持部材12で連結して組み立て
る。積み重ねは小規模なりレーン16で十分可能である
。 所定個数の空気蓄圧槽1・1.−12・・−の連結が完
了した段階で各開閉バルブ4に送気管5(鎖線示)を接
続し、空気袋3内の空気8を排出する。 すると空気袋3が収縮して小孔7から容器2内部に水9
が浸入する。容器2内部に水9が充填されると、水中空
気蓄圧槽は浮力を失って徐々に水中に沈み、水底に固定
される。 このように、本発明の水中空気蓄圧槽は製造や運搬が容
易であるとともに、浮力を利用して水上で組み立てるこ
とができる。クレーン16の耐荷重も小さ(て済む。 この水中空気蓄圧槽は以下のように作用する。 電力使用量の少ない夜間の電力を用いてコンプレッサを
駆動し、送気管5を通して空気袋3に送気する。空気袋
3の空気圧が水圧より高くなると空気袋3は鎖線示のよ
うに膨張し、容器2内の水9が小孔7から排出される。 空気袋3が容器2の容積いっばいに膨張して空気圧が上
昇し始めたらコンプレッサからの送気を停止さぜる。空
気圧が水圧よりも1 kgf/cm2高くなった時点で
送気が自動停止するように設定しておけば良い。このと
き、コンプレッサを駆動する電力はベースロードである
原子力発電への依存度が高いため、化石燃料の燃焼によ
る二酸化炭素の放出は抑えられている。 電力需要の多い昼間には、蓄圧した空気8を送気管5を
通して陸−ヒに戻し、ガスタービン発電に利用する。空
気袋3は空気8の使用とともに収縮してゆくが、円筒形
容器2の内部には小孔7から水が自由に出入できるため
、陸上では常に水圧と同じ空気圧を得ることができる。 」1記のように本発明の水中空気蓄圧槽は、電力需要の
少ない時間帯の電力を圧縮空気として蓄え、その圧縮空
気を電力需要の多い時間帯のガスタービン発電に提供す
ることが出来る。そのため、ガスタービン発電の際にコ
ンプレッサを駆動する必要がなく、発電された電力は全
て需要者に供給され、省エネルギに大いに貢献できる。 また、取り出した圧縮空気8は空気袋3により水と分離
されているため、湿気を含んだりシャンペン現象による
水の吹き出しがなく、タービン等が腐食することはない
。 なお、この水中空気蓄圧槽は独立した複数の空気蓄圧槽
1−1.・1□・・・を支持部材12で連結した構造で
あるため、各空気蓄圧槽1−1.・1゜・・・の間の空
間を漁礁して利用することも可能である。 また前述の実施例では円筒形の容器2と空気袋3とを使
用しているが、それらの形状は任意である。 【発明の効果] 以上詳細に説明したように、本発明の水中空気蓄圧槽は
複数個の空気蓄圧槽の連結体であり、製造や運搬、敷設
が容易である。圧縮空気は空気袋に蓄えられるために気
密性が容易に保たれ、空気と水が直接接していないので
、乾燥した空気のみを取り出すことができる。万一、空
気袋が破裂した場合でも空気が徐々に排出されるため安
全性が高い。 また本発明の水中空気蓄圧槽の敷設方法によれば、水中
空気蓄圧槽を水上で組立てて容易に敷設することが可能
である。
When the air sending and receiving device 6 on land is operated and air 8 is sent to the air bag 3 through the air pipe 5 and the opening/closing valve 4, the air bag 3 expands while discharging water 9 in the container 2 to the outside through the small hole 7. Compressed air 8 having approximately the same pressure as water is stored in the air bag 3 . When using the compressed air 8, the compressed air 8 is returned to land through the air pipe 5. When the air 8 in the air bag 3 decreases, water 9 enters the container 2 through the small hole 7, causing the air bag 3 to contract.
. Therefore, on land, compressed air 8 that is approximately equal to the water pressure is always obtained. By storing compressed air in the air bag 3 using electricity at night when electricity demand is low, and then taking it out during the day when electricity demand is high and using it for gas turbine power generation, there is no need to drive a compressor that consumes a large amount of electricity. Furthermore, even if the air bag 3 ruptures, most of the air remains inside the container 2 and is gradually released from the small hole 7, so that a large amount of air does not rise all at once and reaches the water surface. Capsizing accidents of ships due to the occurrence of large waves can be avoided. [Examples] Examples of the present invention will be described in detail below. Fig. 1 is a partial cross-sectional side view of the underwater air pressure storage tank of the present invention, and Fig. 2 is a side view of the submersible air pressure tank of the present invention. The front view and FIG. 3 are explanatory diagrams showing the installed state.The underwater air pressure storage tank of the present invention has a plurality of air pressure storage tanks 1, 11, 12, . . . as shown in FIGS. 1 and 2.・is connected by a support member 12.Air pressure storage tank 1・], I
12... is a cylindrical container 2 in which an air bag 3 formed in a cylindrical shape is provided. The air bag 3 is airtightly connected to the compressor and combustion chamber of the gas turbine power plant 6 via the air pipe 5 of the air bag 4 (see Fig. 3).The end of the air bag 3 is fixed to one end of the container 2. In container 2
It is inscribed in the body and can be expanded and contracted in the longitudinal direction by the inflow and outflow of air. The other end of the container 2 is provided with a plurality of small holes 7 through which water 9 can enter and exit. A lubricating layer 11 made of synthetic resin is pasted on the inner peripheral surface of the container 2 . Container 2 is made of concrete. Since the structure allows water to enter and exit through the small holes 7, it is not necessary to ensure airtightness or pressure resistance, but a certain amount of weight is required to suppress buoyancy when the air bag 3 is filled with air. The air bag 3 is made of synthetic resin nonwoven fabric or rubber that can expand and contract according to pressure accumulation and exhaust. Large pressure resistance is not required to keep the stored air pressure and water pressure in equilibrium. The air bag 3 and the air supply pipe 5 are connected via an on-off valve 4, and the air supply pipe is used to connect the plurality of air pressure storage tanks 1, 1, . 5 uses a flexible and high-strength material. This underwater air pressure storage tank is installed as follows. The air bags 3 of the air pressure storage tanks 1-11, 1□, etc. manufactured separately are filled with air, the on-off valves 4 are closed, the tanks are floated on the water surface, and the tanks are towed by a ship 15 to the installation site as shown in Fig. 3. Each air pressure storage tank 1, 11, 12, etc. is of a size that can be easily towed by a ship 15. Float each air pressure storage tank 1-11, 1□, ... on the water surface at the installation location. , each air pressure storage tank 1
・1.・1□... are connected and assembled using the support member 12. Stacking can be done on a small scale with only 16 lanes. Predetermined number of air pressure storage tanks 1.1. -12...- is completed, an air supply pipe 5 (shown by a chain line) is connected to each opening/closing valve 4, and the air 8 in the air bag 3 is discharged. Then, the air bag 3 contracts and water 9 flows into the container 2 from the small hole 7.
is infiltrated. When the inside of the container 2 is filled with water 9, the underwater air pressure storage tank loses its buoyancy and gradually sinks into the water, and is fixed to the bottom of the water. As described above, the underwater air pressure accumulator of the present invention is easy to manufacture and transport, and can be assembled on water using buoyancy. The load capacity of the crane 16 is also small. This underwater air pressure storage tank works as follows. The compressor is driven using electricity at night when electricity consumption is low, and air is sent to the air bag 3 through the air pipe 5. When the air pressure in the air bag 3 becomes higher than the water pressure, the air bag 3 expands as shown by the chain line, and the water 9 in the container 2 is discharged from the small hole 7.The air bag 3 fills up the volume of the container 2. When it expands and the air pressure starts to rise, stop the air supply from the compressor.You can set it to automatically stop the air supply when the air pressure becomes 1 kgf/cm2 higher than the water pressure. During the day, the electricity used to drive the compressor relies heavily on nuclear power generation, which is the base load, so carbon dioxide emissions from burning fossil fuels are suppressed.During the daytime, when electricity demand is high, pressurized air8 It is returned to land through the air pipe 5 and used for gas turbine power generation.The air bag 3 contracts as the air 8 is used, but water can freely enter and exit from the small hole 7 inside the cylindrical container 2. Therefore, the same air pressure as water pressure can always be obtained on land.''As described in 1., the underwater air pressure tank of the present invention stores electric power during periods of low electric power demand as compressed air, and uses the compressed air to meet the electric power demand. Therefore, there is no need to drive a compressor during gas turbine power generation, and all the generated power is supplied to customers, greatly contributing to energy savings. In addition, since the compressed air 8 taken out is separated from water by the air bag 3, there is no moisture content or water blowing out due to the champagne phenomenon, and the turbine etc. will not be corroded. Since it has a structure in which a plurality of independent air pressure storage tanks 1-1., 1□... are connected by a support member 12, the space between each air pressure storage tank 1-1., 1゜... can be reefed. In addition, although the cylindrical container 2 and the air bag 3 are used in the above-mentioned embodiment, their shapes can be arbitrary. [Effects of the Invention] The above-described in detail As such, the underwater air pressure storage tank of the present invention is a combination of a plurality of air pressure storage tanks, and is easy to manufacture, transport, and install.Since the compressed air is stored in the air bag, airtightness is easily maintained. Since air and water are not in direct contact, only dry air can be taken out.Even if the air bag ruptures, the air is gradually exhausted, making it highly safe.In addition, the underwater air of the present invention According to the pressure accumulator installation method, it is possible to assemble the underwater air pressure accumulator on the water and easily install it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の水中空気蓄圧槽の一実施例を示す部分
断面側面図、第2図はその正面図、第3図はその敷設状
態および敷設方法を示す概略説明図、第4図および第5
図は従来の水中空気蓄圧槽の概略断面図である。 l・・・空気蓄圧槽   2・・・容器3・・・空気袋
     4・・・開閉バルブ5・・・送気管 7・−・小孔 9・・・水 12・・・支持部材 16・・・クレーン
Fig. 1 is a partially sectional side view showing an embodiment of the underwater air pressure accumulator tank of the present invention, Fig. 2 is a front view thereof, Fig. 3 is a schematic explanatory drawing showing its installation state and method, Figs. Fifth
The figure is a schematic cross-sectional view of a conventional underwater air pressure storage tank. l...Air pressure storage tank 2...Container 3...Air bag 4...Opening/closing valve 5...Air pipe 7...Small hole 9...Water 12...Support member 16... ·crane

Claims (1)

【特許請求の範囲】 1、空気の出入により伸縮可能な空気袋と、前記空気袋
を内蔵し水が出入可能な小孔を設けた容器とからなる空
気蓄圧槽が一個または複数個連結されて水底に配置され
、該空気袋が開閉バルブ付の送気管を介して陸上の送受
気装置に気密に接続されていることを特徴とする水中空
気蓄圧槽。 2、空気の出入により伸縮可能な空気袋と、前記空気袋
を内蔵し水が出入可能な小孔を設けた容器とからなる複
数個の空気蓄圧槽の空気袋に空気を充填し、海面に浮上
させて敷設位置の水面へ曳航した後、空気蓄圧槽同士を
水面にて連結し、各空気袋の開閉バルブと陸上の送受気
装置とを送気管を介して気密に接続した後、空気袋の空
気を排出し、空気袋を収縮させて該容器に水を充填し、
複数の空気蓄圧槽が連結された水中空気蓄圧槽を水中に
沈降させることを特徴とする水中空気蓄圧槽の敷設方法
[Scope of Claims] 1. One or more air pressure tanks are connected together, each consisting of an air bag that can be expanded and contracted by letting air in and out, and a container that houses the air bag and has a small hole through which water can go in and out. 1. An underwater air pressure accumulator, which is placed on the bottom of the water, and the air bag is airtightly connected to an air supply and reception device on land via an air supply pipe with an on-off valve. 2. Fill the air bags of a plurality of air pressure storage tanks with air, which are made up of an air bag that can be expanded and contracted by letting air in and out, and a container that houses the air bag and has small holes that allow water to go in and out, and After being floated and towed to the water surface at the installation location, the air pressure storage tanks are connected to each other at the water surface, and the on-off valve of each air bag and the air supply/reception device on land are airtightly connected via air pipes. expel the air, deflate the air bag and fill the container with water,
A method for installing an underwater air pressure storage tank, which comprises submerging an underwater air pressure storage tank in which a plurality of air pressure storage tanks are connected.
JP19930490A 1990-07-30 1990-07-30 Underwater air pressure accumulation tank and laying method thereof Pending JPH0486332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19930490A JPH0486332A (en) 1990-07-30 1990-07-30 Underwater air pressure accumulation tank and laying method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19930490A JPH0486332A (en) 1990-07-30 1990-07-30 Underwater air pressure accumulation tank and laying method thereof

Publications (1)

Publication Number Publication Date
JPH0486332A true JPH0486332A (en) 1992-03-18

Family

ID=16405576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19930490A Pending JPH0486332A (en) 1990-07-30 1990-07-30 Underwater air pressure accumulation tank and laying method thereof

Country Status (1)

Country Link
JP (1) JPH0486332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801332B2 (en) 2010-02-15 2014-08-12 Arothron Ltd. Underwater energy storage system and power station powered therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801332B2 (en) 2010-02-15 2014-08-12 Arothron Ltd. Underwater energy storage system and power station powered therewith
US9309046B2 (en) 2010-02-15 2016-04-12 Arothron Ltd. Underwater energy storage system and power station powered therewith
EP2536934B1 (en) * 2010-02-15 2019-06-19 Arothron Ltd Underwater energy storage system and power station powered therewith
US10894660B2 (en) 2010-02-15 2021-01-19 Yehuda Kahane Ltd Underwater energy storage system and power station powered therewith

Similar Documents

Publication Publication Date Title
Slocum et al. Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept
US6863474B2 (en) Compressed gas utilization system and method with sub-sea gas storage
US7743609B1 (en) Power plant with energy storage deep water tank
JP2018132068A (en) Pumped-storage power station
Pimm et al. Underwater compressed air energy storage
US10364938B2 (en) Underwater energy storage using compressed fluid
JP2014507598A (en) Pumped storage power plant
US20060228960A1 (en) Integrated marine vessel hull for energy storage
CN102124210B (en) An energy storage system
JP5960422B2 (en) Distributed compressed air storage power generation system
CN111911389A (en) Self-balancing underwater compressed air electric energy storage system based on flexible gas storage device
CN207737455U (en) A kind of Floating Liquefied Natural Gas storage and regasification terminal suitable for islands and reefs
JPH0486332A (en) Underwater air pressure accumulation tank and laying method thereof
JPS63239320A (en) Underwater energy storage device
JPS63239319A (en) Underwater energy storage device
KR20160146253A (en) Floating Concrete Structure for Supplying Gas or Electric Power
CN101302751B (en) Large power underwater constant pressure storage plant
KR101202945B1 (en) Apparatus for storing air pressure energy by using hydraulic pressure
KR101716487B1 (en) Double-tube structure of the airship and electrical energy supply and transport systems using the same
US20240133518A1 (en) Combined high pressure receptacles
CN219867390U (en) Underwater flexible compressed air storage device
CN213892827U (en) Ocean wind-dispelling anti-shaking platform
CN103101608A (en) Auxiliary quick floating device of water surface floating building and application method thereof
JPS63270999A (en) Ocean storage device for compressed air and its manufacture
RU114064U1 (en) HYDROCOMPLEX