JPH048523B2 - - Google Patents

Info

Publication number
JPH048523B2
JPH048523B2 JP59027326A JP2732684A JPH048523B2 JP H048523 B2 JPH048523 B2 JP H048523B2 JP 59027326 A JP59027326 A JP 59027326A JP 2732684 A JP2732684 A JP 2732684A JP H048523 B2 JPH048523 B2 JP H048523B2
Authority
JP
Japan
Prior art keywords
fiber layer
carbon fiber
activation
perforated plate
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59027326A
Other languages
Japanese (ja)
Other versions
JPS60173118A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2732684A priority Critical patent/JPS60173118A/en
Publication of JPS60173118A publication Critical patent/JPS60173118A/en
Publication of JPH048523B2 publication Critical patent/JPH048523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は炭素繊維の賦活処理に関する。更に詳
しくは連続して供給される炭素繊維層に対して均
一な賦活処理を可能にする方法並びに装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to activation treatment of carbon fibers. More specifically, the present invention relates to a method and apparatus that enable uniform activation treatment to continuously supplied carbon fiber layers.

従来技術 たとえば溶融したピツチ原料を紡糸ノズルから
吐出して得られたピツチ系繊維などの炭素繊維を
空気清浄器などに用いられる活性炭素繊維となす
ためには、不融化処理を施こした繊維に対してバ
ーナから噴出する燃焼ガス中の水蒸気を作用せし
め、繊維中の炭素の一部を炭素ガス、一酸化炭
素、水素などのガスとして放出して多孔質とな
し、比表面積の増大を図つている。この賦活処理
の際、処理炉の雰囲気中に酸素が混在していると
前述の反応が急激に進行し、必要以上に繊維部分
がガス化して収率が低下したり、被処理繊維層の
表面と中心部の繊維においてその反応に差を生じ
て、得られた活性炭素繊維の比表面積の大きなバ
ラツキをもたらしたりする。これを防止するため
に従来から処理炉の入口、出口に隣接して外気を
隔離する予備室を設けることが行なわれている
が、それでもなお若干の外気の混入は避けられ
ず、しかもその他にも燃焼ガスを生成するための
空気と燃料との混合比を厳密に管理することが不
可欠であつた。
Prior Art For example, in order to make carbon fibers such as pitch fibers obtained by discharging molten pitch raw materials from a spinning nozzle into activated carbon fibers used in air purifiers, fibers that have been subjected to infusibility treatment are required. Water vapor in the combustion gas ejected from the burner is applied to the fibers, and some of the carbon in the fibers is released as carbon gas, carbon monoxide, hydrogen, etc., making them porous and increasing the specific surface area. There is. During this activation treatment, if oxygen is mixed in the atmosphere of the treatment furnace, the above-mentioned reaction will proceed rapidly, causing the fiber portion to gasify more than necessary, resulting in a decrease in yield, and the surface of the fiber layer being treated. This causes a difference in the reaction between the activated carbon fibers and the fibers in the center, resulting in large variations in the specific surface area of the obtained activated carbon fibers. To prevent this, it has been conventional practice to provide preliminary chambers adjacent to the inlet and outlet of the processing furnace to isolate the outside air, but even so, some amount of outside air cannot be avoided, and there are other problems as well. It has been essential to closely control the mixture ratio of air and fuel to produce the combustion gases.

発明の目的及び構成 本発明はかかる従来技術の欠点に鑑みなされた
ものであり、多少の外気の混入にもかかわらず、
収率の高い且つ層間の繊維品質のバラツキのない
炭素繊維の賦活処理方法並びに装置を提案するこ
とを目的とする。
Object and Structure of the Invention The present invention has been made in view of the drawbacks of the prior art, and despite the mixing of some outside air,
The purpose of the present invention is to propose a method and apparatus for activating carbon fibers with high yield and without variation in fiber quality between layers.

即ち本発明は被処理繊維層を連続的に処理炉内
に進行せしめつつ、賦活ガス中の水蒸気に接触せ
しめて賦活化する炭素繊維の賦活処理方法であつ
て、処理炉内を進行中の前記繊維層の上面を全面
穿孔された多孔板で被覆し、以つて賦活ガス流が
直接に繊維層上面に沿つて流動することを防止し
つつ処理することを特徴とする炭素繊維の賦活処
理方法であり、又この方法を実施するのに好適
な、入口から出口へ向つて走行するネツトコンベ
アと、該入口及び出口が実質的に気密にシールさ
れ、且つ炉内に賦活ガスを噴射するバーナを具え
た処理炉とからなる炭素繊維の賦活のための連続
処理装置であつて、前記ネツトコンベアの走行経
路の上方に全面に穿孔された多孔板を設けて前記
処理炉内の上下に区分したことを特徴とする炭素
繊維の賦活処理装置である。
That is, the present invention is a method for activating carbon fibers, in which the fiber layer to be treated is activated by contacting with water vapor in an activation gas while the fiber layer to be treated is continuously advanced into a treatment furnace. An activation treatment method for carbon fibers, characterized in that the upper surface of the fiber layer is covered with a perforated plate that is perforated over the entire surface, and the treatment is performed while preventing the activation gas flow from directly flowing along the upper surface of the fiber layer. A net conveyor running from an inlet to an outlet, the inlet and the outlet being substantially hermetically sealed, and a burner for injecting activating gas into the furnace, suitable for carrying out this method. A continuous processing device for activating carbon fibers, which comprises a processing furnace and a processing furnace, in which a perforated plate is provided over the entire surface above the running path of the net conveyor to divide the inside of the processing furnace into upper and lower parts. This is a characteristic carbon fiber activation processing device.

実施例 以下図面に示す実施例に基いて本発明を更に詳
細に説明する。
EXAMPLES The present invention will be described in more detail below based on examples shown in the drawings.

第1図には本発明の処理装置の概略側断面図が
示されている。この装置においては、処理炉1中
にその中央部を貫通してネツトコンベア2が張設
されており、その入口3、出口4に夫々一対のロ
ーラ3a,4aがコンベア2を挟持するように設
けられている。このローラ3a,4aによつて処
理炉1の内部は実質的に外気からシールされてい
る。
FIG. 1 shows a schematic side sectional view of the processing apparatus of the present invention. In this device, a net conveyor 2 is installed extending through the center of a processing furnace 1, and a pair of rollers 3a and 4a are provided at an inlet 3 and an outlet 4, respectively, to sandwich the conveyor 2. It is being The interior of the processing furnace 1 is substantially sealed from the outside air by these rollers 3a, 4a.

処理炉1の出口側の壁面にはバーナ5が設けら
れ、炉内に賦活ガスとして水蒸気を含む灯油又は
プロパンガスの燃焼ガスを噴射する。6はガスの
排出孔である。
A burner 5 is provided on the wall on the exit side of the processing furnace 1, and injects combustion gas such as kerosene or propane gas containing water vapor into the furnace as an activating gas. 6 is a gas discharge hole.

賦活処理される繊維はネツトコンベア2上に適
当な厚さの層7をなすように積載された状態で入
口3から処理炉1内に連続して供給される。
The fibers to be activated are continuously fed into the processing furnace 1 from an inlet 3 while being stacked on a net conveyor 2 so as to form a layer 7 of an appropriate thickness.

本発明装置の特徴とする所は炉内のネツトコン
ベア2の走行経路の上方に繊維層7の上面と若干
の間隙をあけて、全面に多数の開口9を穿たれた
多孔板8を設けて繊維層上の炉内空間を上下両部
A,Bに区分したことにある。
The feature of the device of the present invention is that a perforated plate 8 with a large number of openings 9 formed on its entire surface is provided above the running path of the net conveyor 2 in the furnace with a slight gap from the upper surface of the fiber layer 7. The reason is that the furnace space above the fiber layer is divided into upper and lower parts A and B.

この多孔板8が設けられていない従来装置の場
合にはバーナ5から噴射した燃焼ガスは炉内を出
口側から入口側に向つて流動し、その途中繊維層
7の上面に露出している繊維と接触して、該繊維
中の炭素をガス中の水蒸気によつて一酸化炭素又
は炭酸ガスに変化して気化せしめ、多孔質構造に
なす。この表面繊維に接触する燃焼ガス中にはシ
ール部から漏洩した空気が混じていることが多
く、又対流によつて常に新鮮なものと入れ替わる
ため前記反応は急激に進行し、必要以上の炭素が
気化する。一方、繊維層7の中心部の繊維に対し
ては表面繊維に捕捉された燃焼ガスが拡散によつ
て徐徐に侵透したもののみが到達して反応を起す
のでその作用は表面繊維の場合に比し緩慢なもの
となる。このため層の表面と中心部とで燃焼ガス
との反応によつてもたらされる繊維中の微細孔の
数及び孔径に大きな差が生じ、得られた活性炭素
繊維の品質に変動を生ずる。
In the case of a conventional device in which this perforated plate 8 is not provided, the combustion gas injected from the burner 5 flows inside the furnace from the outlet side to the inlet side, and the fibers exposed on the upper surface of the fiber layer 7 along the way flow. The carbon in the fibers is changed into carbon monoxide or carbon dioxide by the water vapor in the gas and vaporized, forming a porous structure. The combustion gas that comes into contact with these surface fibers is often mixed with air leaked from the seal, and is constantly replaced with fresh air due to convection, so the reaction proceeds rapidly and more carbon than necessary is produced. Vaporize. On the other hand, only the combustion gases captured by the surface fibers that gradually permeate through the fibers reach the fibers in the center of the fiber layer 7 and cause a reaction. It will be relatively slow. Therefore, there is a large difference in the number and diameter of micropores in the fibers caused by the reaction with combustion gas between the surface and center of the layer, resulting in variations in the quality of the obtained activated carbon fibers.

本発明においてはこの繊維層7の上方に若干の
空間Bを距てて多孔板8を設置したのでバーナ5
から噴射されたガス流は直接に繊維層7の表面に
接触して層流を形成することなく、多孔板8の開
口9から減速されて空間Bに流入し緩やかに表面
繊維と反応する。この流入ガスは次いで繊維層7
の中心部に拡散して内部繊維と反応するが、前述
のように表層において既に減速されているため従
来装置の場合よりも拡散が容易である。
In the present invention, since the perforated plate 8 is installed above this fiber layer 7 with a slight space B, the burner 5
The gas flow injected from the fiber layer 7 does not directly contact the surface of the fiber layer 7 to form a laminar flow, but is decelerated through the openings 9 of the porous plate 8 and flows into the space B, where it gently reacts with the surface fibers. This inflow gas then flows into the fiber layer 7
It diffuses into the center of the fiber and reacts with the internal fibers, but as mentioned above, the speed is already slowed down at the surface layer, so diffusion is easier than in the case of conventional devices.

この賦活化反応によつて繊維からは一酸化炭
素、水素等のガスが放出されるがこれらの放出ガ
スは多孔板8によつて区切られた空間B内に滞留
し、炉1の出入口3,4のシールを洩れて必然的
に該空間Bに侵入する微量の空気中の酸素と反応
してこれが繊維と接触する前にこれを除去する。
従つて賦活化反応は酸素の存在しない雰囲気下で
行なわれることとなり、前述のような急激な反応
の進行が避けられる。
Due to this activation reaction, gases such as carbon monoxide and hydrogen are released from the fibers, but these released gases remain in the space B separated by the perforated plate 8 and are passed through the entrance and exit port 3 of the furnace 1. It reacts with a trace amount of oxygen in the air that leaks through the seal 4 and inevitably enters the space B, and removes it before it comes into contact with the fibers.
Therefore, the activation reaction is carried out in an oxygen-free atmosphere, and the rapid progress of the reaction as described above can be avoided.

これら一連の効果によつて繊維層の各部におい
てむらのない賦活処理が可能となり、均質な活性
炭繊維が得られる。
A series of these effects makes it possible to perform the activation treatment evenly in each part of the fiber layer, resulting in homogeneous activated carbon fibers.

多孔板8の材質としては当然のことながら燃焼
ガスの温度及び化学作用に耐えることを要するの
でステンレススチール等の耐蝕金属又はコージエ
ライト等の鉱物材料で作られることが好ましい。
As a matter of course, the material of the perforated plate 8 must be made of a corrosion-resistant metal such as stainless steel or a mineral material such as cordierite, since it is required to withstand the temperature and chemical action of combustion gas.

又多孔板8の設置高さは繊維層の上面から0.5
mm〜200mmの範囲が好ましい。
Also, the installation height of the perforated plate 8 is 0.5 from the top surface of the fiber layer.
A range of mm to 200 mm is preferred.

以下本発明の効果を次に示す実施例によつて明
らかにする。
The effects of the present invention will be clarified by the following examples.

実施例 1 第1図に示す装置において、巾2m50cm、長さ
12m、高さ60cmの処理炉1中にSUS310のステン
レススチール(巾2m10cm、長さ10m、厚さ3
mm)に50メツシユの孔を具えたパンチングメタル
板からなる多孔板8を設けた。溶融ピツチ原料を
回転紡糸して繊維化した後、不融化処理した炭素
繊維を20mmの繊維層7としてネツトコンベア2上
に積載し、3m/時の速度でこの装置に供給し
た。バーナ5から二酸化炭素と水蒸気とを含む燃
焼ガスを噴射し、炉の中央部におけるガスの流速
が線速度で60cm/分、有効加熱温度が900℃とな
るように設定した。廃ガスは排出孔6から系外に
排出された。なお多孔板8と繊維層7の上面との
空間Bの間隔は20mmであつた。
Example 1 In the device shown in Figure 1, the width is 2m50cm and the length is
SUS310 stainless steel (width 2 m 10 cm, length 10 m, thickness 3
A perforated plate 8 made of a punched metal plate with 50 mesh holes (mm) was provided. After the molten pitch raw material was rotary spun into fibers, the infusible carbon fibers were loaded on the net conveyor 2 as a 20 mm fiber layer 7 and fed to this device at a speed of 3 m/hour. Combustion gas containing carbon dioxide and water vapor was injected from burner 5, and the linear velocity of the gas in the center of the furnace was set to 60 cm/min, and the effective heating temperature was set to 900°C. The waste gas was discharged from the system through the discharge hole 6. Note that the distance between the space B between the perforated plate 8 and the upper surface of the fiber layer 7 was 20 mm.

得られた活性炭素繊維の収率は47%であり、又
比表面積は800〜900m2/gと均一であり、ベンゼ
ン吸着量は30重量%に達した。
The yield of the obtained activated carbon fibers was 47%, the specific surface area was uniform at 800 to 900 m 2 /g, and the amount of benzene adsorbed reached 30% by weight.

比較例 1 第1実施例において使用した装置の多孔板8を
取外した以外は全く同じ条件で賦活処理を行なつ
た。得られた活性炭素繊維の比表面積は700m2
g〜1000m2/gと変動し、そのベンゼン吸着量は
28重量%であつた。またその収率は32%と低かつ
た。
Comparative Example 1 Activation treatment was carried out under exactly the same conditions as in the first example, except that the perforated plate 8 of the apparatus was removed. The specific surface area of the obtained activated carbon fiber is 700m 2 /
The amount of benzene adsorbed varies from g to 1000m 2 /g.
It was 28% by weight. Moreover, the yield was as low as 32%.

実施例 2 第1実施例において使用した装置のステンレス
の多孔板8を100メツシユの孔を具えたハニカム
形状のコージエライト板(巾2m10cm、長さ10
m、厚さ5cm)に置換えて同じような賦活処理を
行なつた。但し燃焼ガスの流速は線速度で167
cm/分であつた。
Example 2 The stainless steel perforated plate 8 of the device used in the first example was replaced with a honeycomb-shaped cordierite plate (width 2 m 10 cm, length 10
The same activation treatment was carried out by replacing it with 5 cm (m, thickness: 5 cm). However, the flow velocity of combustion gas is linear velocity of 167
cm/min.

得られた活性炭素繊維の比表面積は900m2/g
〜1000m2/gと均一であり、ベンゼン吸着量は35
重量%に達した。またその収率は35%であつた。
The specific surface area of the obtained activated carbon fiber is 900m 2 /g
It is uniform at ~1000m 2 /g, and the benzene adsorption amount is 35
% by weight was reached. Moreover, the yield was 35%.

以上の実施例においては賦活用媒体として、燃
焼ガスを用いたものを示したが、これに更に水蒸
気を追加したものや、又は水蒸気のみでも同様の
効果が得られる。また反応温度も800℃から950℃
までの間で目的とする活性炭素繊維の比表面積に
合わせて調節することができる。
In the above embodiments, combustion gas is used as the utilization medium, but the same effect can be obtained by adding water vapor to the combustion gas or using only water vapor. Also, the reaction temperature is from 800℃ to 950℃
It is possible to adjust the specific surface area of the activated carbon fiber to suit the target specific surface area of the activated carbon fiber.

本発明はピツチ系炭素繊維のみならず、再生繊
維素繊維、アクリル系繊維を原料とする炭素繊維
に対しても適用することができる。
The present invention can be applied not only to pitch carbon fibers but also to carbon fibers made from recycled cellulose fibers and acrylic fibers.

発明の効果 以上詳述した通り、本発明によれば処理炉内に
被処理繊維層の走行経路の上方に多孔板を設置し
て、賦活ガスが繊維層の表面に沿つて層流をなし
て流動しないようにすることによつて層内へのガ
スの拡散を補助し、且つ賦活化反応によつて繊維
層から発生する揮発性ガス、一酸化炭素、水素等
を繊維層の表面近傍に滞留させることによつて、
侵入して来る空気中の酸素をこれと反応させて除
去するようになしたので、繊維層の表面と中心部
との繊維の間の賦活反応の程度の差が減少し、均
質な製品を得ることが可能である。
Effects of the Invention As detailed above, according to the present invention, a perforated plate is installed above the running path of the fiber layer to be treated in the processing furnace, and the activation gas forms a laminar flow along the surface of the fiber layer. By preventing it from flowing, it assists the diffusion of gas into the layer, and also allows volatile gases, carbon monoxide, hydrogen, etc. generated from the fiber layer due to the activation reaction to remain near the surface of the fiber layer. By letting
Since the invading oxygen in the air is removed by reacting with it, the difference in the degree of activation reaction between the fibers on the surface and the center of the fiber layer is reduced, resulting in a homogeneous product. Is possible.

又たとえ処理炉内に多少の空気が侵入しても前
述の如く空気中の酸素は繊維に到達する以前に発
生ガスと反応して除去されて障害とならないので
シールに関して装置の設計は容易となり、又バー
ナにおける空気と燃料との比の厳密な設定条件も
緩和される利点がある。
Furthermore, even if some air enters the processing furnace, as mentioned above, the oxygen in the air will react with the generated gas and be removed before it reaches the fibers, so it will not become a hindrance, making it easier to design the equipment with regard to sealing. There is also the advantage that strict conditions for setting the ratio of air to fuel in the burner are relaxed.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明装置の一実施例を示す側断面図であ
る。 1……処理炉、2……ネツトコンベア、3……
入口、4……出口、3a,4a……ローラ、5…
…バーナ、6……排出孔、7……繊維層、8……
多孔板、9……開口。
The figure is a side sectional view showing an embodiment of the device of the present invention. 1... Processing furnace, 2... Net conveyor, 3...
Entrance, 4...Exit, 3a, 4a...Roller, 5...
... Burner, 6... Discharge hole, 7... Fiber layer, 8...
Perforated plate, 9...opening.

Claims (1)

【特許請求の範囲】 1 被処理繊維層を連続的に処理炉内に進行せし
めつつ、賦活ガス中の水蒸気に接触せしめて賦活
化する炭素繊維の賦活処理方法であつて、処理炉
内を進行中の前記繊維層の上面を全面的に穿孔さ
れた多孔板で空間を隔てて被覆し、以て賦活ガス
が直接に該繊維層上面に達してこれに沿つて流動
することを防止し、代わりに賦活ガスが前記多孔
板の孔のみを進入路として前記空間に入つて前記
繊維層上面に暫時滞留するようになすことを特徴
とする炭素繊維の賦活処理方法。 2 前記炭素繊維がピツチ系炭素繊維である特許
請求の範囲第1項に記載された方法。 3 処理炉の入口から出口に向かつて走行するネ
ツトコンベアと、該入口及び出口が実質的に気密
にシールされ、且つ炉内に賦活ガスを噴射するバ
ーナを具えた処理炉とからなる炭素繊維の賦活の
ための連続処理装置であつて、前記ネツトコンベ
アの走行経路の上方に全面に穿孔された多孔板を
配置して、前記ネツトコンベア上に積載される炭
素繊維層の上面と該多孔板との間に所定の空間を
維持するようになし、前記賦活ガスが前記多孔板
の孔のみを経て前記空間内に進入し、炭素繊維層
の上面に暫時滞留するように構成したことを特徴
とする炭素繊維の賦活処理装置。
[Scope of Claims] 1. A carbon fiber activation treatment method in which a fiber layer to be treated is continuously advanced into a treatment furnace and activated by contacting with water vapor in an activation gas, the method comprising: The upper surface of the fiber layer in the middle is covered with a perforated plate with a space in between, thereby preventing the activation gas from directly reaching the upper surface of the fiber layer and flowing along it. A method for activating carbon fibers, characterized in that the activation gas enters the space using only the holes in the perforated plate as an entry path, and remains for a while on the upper surface of the fiber layer. 2. The method according to claim 1, wherein the carbon fiber is a pitch carbon fiber. 3. A carbon fiber processing furnace consisting of a net conveyor that runs from the inlet to the outlet of the processing furnace, and a processing furnace in which the inlet and outlet are substantially airtightly sealed and is equipped with a burner that injects activating gas into the furnace. A continuous processing device for activation, in which a perforated plate with perforations on the entire surface is arranged above the running path of the net conveyor, and the upper surface of the carbon fiber layer stacked on the net conveyor and the perforated plate are arranged. A predetermined space is maintained between the carbon fiber layers, and the activation gas enters the space only through the holes in the perforated plate and remains on the upper surface of the carbon fiber layer for a while. Carbon fiber activation processing equipment.
JP2732684A 1984-02-17 1984-02-17 Activation treatment and device of carbon yarn therefor Granted JPS60173118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2732684A JPS60173118A (en) 1984-02-17 1984-02-17 Activation treatment and device of carbon yarn therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2732684A JPS60173118A (en) 1984-02-17 1984-02-17 Activation treatment and device of carbon yarn therefor

Publications (2)

Publication Number Publication Date
JPS60173118A JPS60173118A (en) 1985-09-06
JPH048523B2 true JPH048523B2 (en) 1992-02-17

Family

ID=12217946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2732684A Granted JPS60173118A (en) 1984-02-17 1984-02-17 Activation treatment and device of carbon yarn therefor

Country Status (1)

Country Link
JP (1) JPS60173118A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674124B2 (en) * 1985-12-27 1994-09-21 松下電器産業株式会社 Activation furnace and activation method
JPH0296603U (en) * 1989-01-21 1990-08-01
FR2741363B1 (en) * 1995-11-17 1998-02-20 Carbone Ind METHOD AND OVEN FOR ACTIVATION OF A WOVEN OR NON-WOVEN TEXTILE TABLECLOTH BASED ON CONTINUOUS YARNS OR CARBON FIBER YARNS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027476A (en) * 1973-07-10 1975-03-20
JPS5111036A (en) * 1974-07-16 1976-01-28 Reirooru Paasunzu Ltd FUKATSUSEIGASUYOSETSUSOCHITOHOHO
JPS52100395A (en) * 1976-02-20 1977-08-23 Kobayashi Kk Manufacture of active carbon
JPS53105510A (en) * 1977-02-25 1978-09-13 Toyo Boseki Burning apparatus in which moldings take straight path
JPS57116098A (en) * 1980-11-21 1982-07-19 Roussel Uclaf Novel 3-aminosteroid derivative, salt, manufacture, intermediate, use as drug and composition containing same
JPS57210017A (en) * 1981-06-17 1982-12-23 Nippon Soken Inc Preparation of active carbon fiber
JPS5869709A (en) * 1981-10-08 1983-04-26 デグ−サ・アクチエンゲゼルシヤフト Method and apparatus for activating and reactivating particularly active carbon for carrying out gas/solid reaction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027476A (en) * 1973-07-10 1975-03-20
JPS5111036A (en) * 1974-07-16 1976-01-28 Reirooru Paasunzu Ltd FUKATSUSEIGASUYOSETSUSOCHITOHOHO
JPS52100395A (en) * 1976-02-20 1977-08-23 Kobayashi Kk Manufacture of active carbon
JPS53105510A (en) * 1977-02-25 1978-09-13 Toyo Boseki Burning apparatus in which moldings take straight path
JPS57116098A (en) * 1980-11-21 1982-07-19 Roussel Uclaf Novel 3-aminosteroid derivative, salt, manufacture, intermediate, use as drug and composition containing same
JPS57210017A (en) * 1981-06-17 1982-12-23 Nippon Soken Inc Preparation of active carbon fiber
JPS5869709A (en) * 1981-10-08 1983-04-26 デグ−サ・アクチエンゲゼルシヤフト Method and apparatus for activating and reactivating particularly active carbon for carrying out gas/solid reaction

Also Published As

Publication number Publication date
JPS60173118A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
US4073870A (en) Process for producing carbon fibers
CN1681963A (en) Continuous chemical vapor deposition process and process furnace
WO2002071153A3 (en) Method for uniformly coating a substrate
EP0161355B1 (en) Apparatus for producing oxidized filaments
US3847664A (en) Fiberglass reclaiming
JP3948637B2 (en) Method and furnace for activating woven or non-woven textile sheets based on continuous carbonized filaments or spun carbonized yarn
JPH048523B2 (en)
JPH04295033A (en) Method and apparatus for making carbon-clad optical fiber
KR940018128A (en) Saturation and Humidification Method for Pollutant Removal of Flue Gas
KR840008211A (en) Semiconductor layer deposition apparatus
US3231409A (en) Method of heat treating an inorganic fibrous body for moisture transfer and/or heat
CN218890375U (en) Flue gas desulfurization and denitrification device
EP0928631B1 (en) Apparatus for treating exhaust gases containing hydrogen
US2459550A (en) Destructive distillation of solids in a liquid bath
US1826209A (en) Apparatus for the production of activated carbon
US7296440B2 (en) Device and method for melting glass
JPH05200272A (en) Moving bed type reaction tank
RU2171430C1 (en) Device for thermocatalytic cleaning of ventilation effluents from painting chambers
JPH0849155A (en) Continuous heat treatment of shrinkable fiber web and apparatus therefor
US1097870A (en) Apparatus for treating gases or vapors with liquids.
SU433715A1 (en) Gas distribution grid
US4341536A (en) Method for continuously removing fine dust particles from gases
RU2249623C2 (en) Apparatus for producing of iron carbide by direct reduction of metal iron
KR0138238Y1 (en) Ultrasonic dispersion tray for exhaust purifying device
KR0160938B1 (en) Method of manufacturing the coating for c/c composition and processing method thereof