JPH05200272A - Moving bed type reaction tank - Google Patents

Moving bed type reaction tank

Info

Publication number
JPH05200272A
JPH05200272A JP4194045A JP19404592A JPH05200272A JP H05200272 A JPH05200272 A JP H05200272A JP 4194045 A JP4194045 A JP 4194045A JP 19404592 A JP19404592 A JP 19404592A JP H05200272 A JPH05200272 A JP H05200272A
Authority
JP
Japan
Prior art keywords
louver
louvers
partition plate
reaction tank
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4194045A
Other languages
Japanese (ja)
Other versions
JP3310334B2 (en
Inventor
Kuninori Furuyama
邦則 古山
Kazuhiko Tsuji
和比古 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP19404592A priority Critical patent/JP3310334B2/en
Publication of JPH05200272A publication Critical patent/JPH05200272A/en
Application granted granted Critical
Publication of JP3310334B2 publication Critical patent/JP3310334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To achieve stable operation by dividing a passage of a granular substance into three beds, that is, the first bed between a main louver and a sub-louver, the second bed between the sub-louver and the partition plate on the downstream side of the sub-louver and the main reaction bed being the third bed on the downstream side of the partition plate and independently controlling the flow velocity and flow rate of granular particles flowing down through the respective beds. CONSTITUTION:Louvers are provided on the inlet and outlet sides of gas 6 and the louvers on the gas inlet side are set to main louvers 1 and a sub-louvers 2 each having a triangular cross section are provided inside the louvers 1 in one row in parallel to the louvers 1 in order to prevent the stagnation of a granular substance 7. Further, a partition plate 3 having vent holes is provided inside the sub-louvers 2 in a vertical direction in parallel to the louvers 1, 2. By this constitution, the flow of the substance 7 is divided into the first bed between the louvers 1 and the sub-louvers 2, the second bed between the sub-louvers 2 and the partition plate 3 and the third bed between the partition plate 3 and gas outlet louvers 1' and the flow velocities and flow rates of the substance 7 flowing down through the respective beds can be independently controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質吸着剤や触媒な
どの粒子状物質が上から下に移動する移動層に対し、S
Ox、NOx含有排ガスや反応成分含有ガスを直交流で
通過、接触させ、除塵や脱硫、脱硝のような吸着あるい
は各種反応等を行わせるための移動層型反応槽に関す
る。
The present invention relates to a moving bed in which particulate matter such as a carbonaceous adsorbent or a catalyst moves from the top to the bottom.
The present invention relates to a moving bed type reaction tank for passing and contacting Ox and NOx-containing exhaust gas and reaction component-containing gas in a cross-flow to perform adsorption such as dust removal, desulfurization, denitration, or various reactions.

【0002】[0002]

【従来の技術】図2は従来の移動層反応槽の1例の概略
を示す断面図である。従来この種の装置では、図に示す
ように垂直方向に一列に配置された入口側メインルーバ
ー1及び出口側ルーバー1′により充填保持され、断面
が三角形のサブルーバー2により仕切られた粒子状物質
7が、上から下に移動して移動層を形成し、ガス6は移
動層の側方からメインルーバー1を通って反応槽5に導
入され、移動層を貫通し、この間に除塵、反応等を行
い、出口側のルーバー1′から排出される。このような
断面が三角形のサブルーバーを設置した移動層反応槽
は、ルーバー上での粒子状物質の非移動部分の発生がな
く、しかもメインルーバーとサブルーバーとの間に形成
される移動層をダストや被吸着性物質などの圧損を上昇
させる原因となる物質や触媒被毒物質などの主反応層に
おける反応に支障を来すような物質を除去するためのダ
スト除去層とし、サブルーバーの後流側を主反応層とし
て両移動層の粒子状物質の流量を適当に制御することに
より、広範囲な条件に適応できる移動層反応槽である。
この場合、移動層内を流下する粒子状物質の流速は、ダ
スト除去層においてはガス中のダスト類を十分除去でき
る程度に速くし、主反応層においては粒子状物質の利用
効率が高くなるようできるだけ遅くするのが望ましい。
2. Description of the Related Art FIG. 2 is a sectional view schematically showing an example of a conventional moving bed reaction tank. Conventionally, in this type of device, as shown in the figure, the particulate matter is filled and held by an inlet side main louver 1 and an outlet side louver 1 ', which are vertically arranged in a line, and is partitioned by a sublouver 2 having a triangular cross section. 7 moves from top to bottom to form a moving bed, and the gas 6 is introduced into the reaction tank 5 from the side of the moving bed through the main louver 1 and penetrates the moving bed, during which dust, reaction, etc. And is discharged from the louver 1'on the outlet side. Such a moving bed reaction tank equipped with a sublouver having a triangular cross section does not generate a non-moving part of the particulate matter on the louver, and further, a moving bed formed between the main louver and the sublouver is used. As a dust removal layer for removing substances that cause pressure drop increase such as dust and adsorptive substances and substances that interfere with the reaction in the main reaction layer such as catalyst poisoning substances, after the sublouver This is a moving bed reaction tank that can be adapted to a wide range of conditions by appropriately controlling the flow rate of the particulate matter in both moving beds with the flow side as the main reaction bed.
In this case, the flow velocity of the particulate matter flowing down in the moving bed should be high enough to sufficiently remove the dusts in the gas in the dust removal layer, and the utilization efficiency of the particulate matter should be high in the main reaction layer. It is desirable to make it as late as possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな構造の反応槽を用いても、供給されるガス中のダス
トの濃度が高くなるとダスト除去層内においてダストを
完全に除去することができず、漏れ込んだダストが移動
速度の遅い主反応層のサブルーバー側に蓄積し、圧損の
上昇を招き、装置の運転に支障を来す場合がある。ま
た、装置の大型化、ガス量の増加に応じてメインルーバ
ーの間隔を大きくしようとすると図3に示すようにルー
バーABのB点と次のルーバーとの間隔が大きくなり過
ぎて図のX点付近における粒子状物質の流れが悪くなり
ダストや反応生成物の蓄積が生じ易い。そのため、装置
が大型化しても、その割りにはメインルーバー及びサブ
ルーバーを大きくすることはできないので、メインルー
バーとサブルーバーとの間の粒子状物質の層厚が不足
し、充分なダストの除去が行えない、また、ガス流量の
割にはサブルーバー間の間隔が狭いので、ガスの線速度
が大きくなり、一旦捕集したダストを後段に吹き飛ばし
てしまうなどの理由により、粒子状物質の移動速度が小
さい後段においてダストが蓄積し圧損が増大するなどの
問題があった。
However, even if the reaction tank having such a structure is used, if the dust concentration in the supplied gas becomes high, the dust cannot be completely removed in the dust removing layer. In some cases, the leaked dust accumulates on the sub-louver side of the main reaction layer having a slow moving speed, which causes an increase in pressure loss, which hinders the operation of the device. Further, if the distance between the main louvers is increased in accordance with the enlargement of the apparatus and the increase in the gas amount, the distance between the point B of the louver AB and the next louver becomes too large as shown in FIG. The flow of particulate matter in the vicinity deteriorates, and dust and reaction products tend to accumulate. Therefore, even if the device grows in size, the size of the main louver and sub louver cannot be increased, and the layer thickness of the particulate matter between the main louver and sub louver is insufficient, and sufficient dust removal is possible. In addition, because the distance between the sub-louvers is narrow for the gas flow rate, the linear velocity of the gas increases and the dust that has once been trapped is blown off to the subsequent stage. There was a problem that dust was accumulated and pressure loss increased in the latter stage where the speed was low.

【0004】本発明の目的は、このような問題点を解決
し、大型装置に適し、ダスト濃度の高いガスにも適用可
能な移動層型反応槽を提供することにある。
An object of the present invention is to solve the above problems and provide a moving bed type reaction tank suitable for a large-scale apparatus and applicable to a gas having a high dust concentration.

【0005】[0005]

【課題を解決するための手段】本発明は、粒子状物質を
通気性構造によって充填保持し、その粒子状物質を上か
ら下に移動させて移動層を形成し、横方向から通気性構
造を通ってくるガスと接触させる移動層型反応槽におい
て、ガス入口側及びガス出口側をルーバーで支持し、ガ
ス入口側のルーバーをメインルーバーとし、このメイン
ルーバーの内側に粒子状物質の滞留を防止するため、断
面が三角形のサブルーバーを、メインルーバーと平行に
一列に設け、さらにサブルーバーの内側に通気孔を有す
る区画板をメインルーバー及びサブルーバーとに平行に
垂直方向に設け、このように構成することによって粒子
状物質の流れをメインルーバーとサブルーバーとの間の
第1層、サブルーバーと区画板との間の第2層及び区画
板とガス出口側ルーバーとの間の第3層とに分け、それ
ぞれの層内を流下する粒子状物質の流速及び流量を独立
に制御できるようにしたことを特徴とする移動層型反応
槽である。
According to the present invention, a particulate matter is filled and held by a breathable structure, and the particulate matter is moved from top to bottom to form a moving layer. In a moving bed type reaction tank that comes into contact with the passing gas, the gas inlet side and the gas outlet side are supported by louvers, and the louver on the gas inlet side serves as the main louver, and the retention of particulate matter inside the main louver is prevented. In order to do so, sub louvers with a triangular cross section are provided in a row in parallel with the main louver, and a partition plate having ventilation holes inside the sub louver is provided in the vertical direction in parallel with the main louver and the sub louver. According to the configuration, the flow of the particulate matter is divided into the first layer between the main louver and the sublouver, the second layer between the sublouver and the partition plate, and the partition plate and the gas outlet side valve. Divided into a third layer between the bars, which is a moving bed type reaction vessel, characterized in that as the flow velocity and flow rate of the particulate material flowing down the respective layers can be controlled independently.

【0006】こゝで本発明の重要な特徴は、粒子状物質
の流れをメインルーバーとサブルーバーとの間の第1層
(図5及び6のU1 )、サブルーバーと区画板との間の
第2層(同じくU2 )、区画板とガス出口側ルーバーと
の間の第3層(同じくU3 )の三つに分けそれぞれの流
れを別々に制御することにより、移動層型反応槽の効率
的運転を可能とした点にある。これらの流れの制御をさ
らに容易にするため、それぞれの流路を流れる粒子状物
質の量及び流速を調整できるようにするのが好ましい。
すなわち、図1及び4に示すように、最下段のサブルー
バー又はその下側の流路調整板の下端及び区画板の下端
から、それぞれ移動層型反応槽のケーシング8の内壁に
沿って仕切板9、11を設け、その仕切板を移動層型反
応槽の粒子状物質排出ノズル内まで連続させる。仕切板
9、11の末端に、末端の辺と平行な軸を有する回転仕
切板10、12を設け、この回転仕切板10、12の角
度は外部から変更できるような構造とする。この回転仕
切板の角度を変更することにより、全体の抜出量を増加
させることなしに、槽内の粒子状物質の移動速度分布を
効果的なものにすることができる。
Here, the important feature of the present invention is that the flow of the particulate matter is caused by the first layer (U 1 in FIGS. 5 and 6) between the main louver and the sublouver, and between the sublouver and the partition plate. The second layer (also U 2 ), and the third layer (also U 3 ) between the partition plate and the gas outlet side louver are divided into three parts, and the respective flows are separately controlled, whereby a moving bed type reaction tank The point is that it enables efficient operation. In order to further facilitate the control of these flows, it is preferable to be able to adjust the amount and flow rate of the particulate matter flowing in each flow path.
That is, as shown in FIGS. 1 and 4, a partition plate is provided along the inner wall of the casing 8 of the moving bed type reaction tank from the lower end of the lowermost sublouver or the lower end of the flow path adjusting plate and the lower end of the partition plate. 9 and 11 are provided, and the partition plate is continuous to the inside of the particulate matter discharge nozzle of the moving bed type reaction tank. At the ends of the partition plates 9 and 11, rotary partition plates 10 and 12 having an axis parallel to the end sides are provided, and the angles of the rotary partition plates 10 and 12 are externally changeable. By changing the angle of the rotary partition plate, the moving velocity distribution of the particulate matter in the tank can be made effective without increasing the total amount of extraction.

【0007】メインルーバー1、サブルーバー2、区画
板3、流路調整板4の形状、大きさあるいは設置位置及
び粒子状物質の流れU1 、U2 及びU3 における粒子状
物質の流量、流速等は処理ガスの量及び含まれているダ
ストや沈着性物質など圧損増大の原因となる物質の量に
より前記範囲内において任意に設定すればよい。この場
合、メインルーバーとサブルーバーとの間隔はあまり大
きくすることはできないので、U1 の間を流れる粒子状
物質により充分除去できなかったダスト等をサブルーバ
ーの後流側に設けたU2 の部分でさらに除去するように
する。サブルーバーと区画板との間隔は、ダスト等の量
に合わせて比較的広い範囲で設定することができる。こ
のように反応槽のガス入口側に設けられたU1 及びU2
の粒子状物質の流れによりダストや触媒被毒物質等をほ
ぼ完全に取り除いたガスは、粒子状物質の主流部である
3 の中で、ダストや触媒被毒物質等により影響される
ことなく脱硝反応等の主反応を行わせることができる。
本発明の移動層型反応槽は、多量のダストを含む排ガス
を処理し、脱塵とともに脱硫脱硝あるいは脱硝を行う場
合のように一つの反応装置内で複数の処理、反応を行わ
せるための反応槽として特に好適である。
The shape, size or installation position of the main louver 1, the sub louver 2, the partition plate 3, and the flow path adjusting plate 4, and the flow rate and flow velocity of the particulate matter in the flow of particulate matter U 1 , U 2 and U 3 . And the like may be arbitrarily set within the above range depending on the amount of the processing gas and the amount of substances such as dust and depositable substances that cause an increase in pressure loss. In this case, the distance between the main louver and the sub louver cannot be made very large, so dust and the like that could not be sufficiently removed by the particulate matter flowing between U 1 of U 2 provided on the downstream side of the sub louver. Try to remove more in parts. The distance between the sub bar and the partition plate can be set in a relatively wide range according to the amount of dust and the like. Thus, U 1 and U 2 provided on the gas inlet side of the reaction tank
The gas, from which dust and catalyst poisoning substances have been almost completely removed by the particulate matter flow, is not affected by dust and catalyst poisoning substances in U 3 which is the main part of the particulate matter. A main reaction such as a denitration reaction can be performed.
The moving bed type reaction tank of the present invention treats an exhaust gas containing a large amount of dust, and carries out a plurality of treatments in one reactor as in the case of performing desulfurization denitration or denitration together with dedusting, a reaction for performing a reaction. It is particularly suitable as a tank.

【0008】以下、本発明の移動層型反応槽について図
面を参照して詳細に説明する。図1は本発明の移動層型
反応槽の一の実施態様を示す装置の断面図であり、また
図4は本発明の移動層型反応槽の他の実施態様を示す装
置の断面図である。図1の装置は通常の構造のメインル
ーバーを有するものであるが、図4の反応槽では、大量
のガスを処理するため、ルーバー間のピッチを大きくし
たものである。図4の装置においては、ピッチを大きく
したメインルーバー近傍での粒子の流れをよくするた
め、メインルーバー1の形状を図6に示すように断面が
折れ線ABCDとなるようにする。図3のような通常の
ルーバー構造においてABの長さを大きくするとB点と
次のルーバーABとの間隔が大きくなり過ぎ、X点付近
での粒子の流れが悪くなる。このため、ルーバーEHの
両端部をEF及びGHのようにほぼ垂直状とし、メイン
ルーバー全体の形状を断面が折れ線状となるようにする
ことによってメインルーバーとサブルーバーとの間の粒
子状物質の流路の幅がほぼ均一となるようにするのであ
る。断面折れ線状としたメインルーバー1の大きさ等は
図7において、a、b及びcの比率が約3〜5:4〜
6:1の範囲であり、角度θは65°〜75の範囲とす
るのが好ましい。
The moving bed type reaction tank of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of an apparatus showing one embodiment of the moving bed type reaction tank of the present invention, and FIG. 4 is a sectional view of an apparatus showing another embodiment of the moving bed type reaction tank of the present invention. .. The apparatus of FIG. 1 has a main louver of a usual structure, but the reaction tank of FIG. 4 has a large pitch between the louvers in order to process a large amount of gas. In the apparatus of FIG. 4, in order to improve the flow of particles in the vicinity of the main louver with a large pitch, the shape of the main louver 1 is made to have a polygonal line ABCD as shown in FIG. In the normal louver structure as shown in FIG. 3, if the length of AB is increased, the distance between the point B and the next louver AB becomes too large, and the flow of particles near the point X deteriorates. For this reason, both ends of the louver EH are made substantially vertical like EF and GH, and the overall shape of the main louver is made to have a polygonal cross section, whereby the particulate matter between the main louver and the sub louver is prevented. The width of the flow path is made substantially uniform. The size of the main louver 1 having a polygonal cross section in FIG. 7 is such that the ratio of a, b and c is about 3 to 5: 4.
It is preferably in the range of 6: 1 and the angle θ is preferably in the range of 65 ° to 75.

【0009】サブルーバー2は、その断面が、図5及び
6に示すようにCを頂点とし、Cを一端とする一方の辺
CDは頂点Cからメインルーバーの方向に下方に向かっ
て延び頂点Dを形成し、他方の辺CEは頂点Cから垂直
下方あるいは5°以内、好ましくは3°以内の角度で移
動層の内側方向に傾斜した構成とする。辺CEを内側に
傾斜させるのはメインルーバーとサブルーバー間を流下
する粒子状物質が移動層の内側へ漏れ込むのを防ぐため
であるが、後述するようにサブルーバー間に流路調節板
を設ける場合には特に傾ける必要はない。このサブルー
バーは、図1の装置においては、頂点Dがメインルーバ
ーの下端のBと次のメインルーバーの下端のBとのほぼ
中間にくるように設置されており、図4の装置において
は、頂点Dがメインルーバーの下端のGHと次のメイン
ルーバーの下端のGHとのほぼ中間にくるようように設
置されている。頂点Dがこれより左に寄りすぎると、メ
インルーバーとサブルーバーとの間の粒子状物質の流路
の幅が不均一となり、極端に狭い部分が生じ、また右に
寄りすぎるとサブルーバーとしての効果が得られない。
サブルーバーの形状は、サブルーバー近傍を流れる粒子
状物質の流速がメインルーバー近傍の流速よりもやや大
きめとなるようにするのが好ましい。この形状は装置の
大きさ、粒子状物質の大きさ等に基づいて適宜定められ
るが、角DCEが30°〜55°となるようにし、辺D
Eの傾き及び長さは角CEDが25°〜35°となるよ
うな範囲内でメインルーバーと辺DEとで形成される流
路が下にいくに従い広くなるようにするのがよい。サブ
ルーバーとサブルーバーとの間隔が大きくなりすぎると
サブルーバーの両側を流れる粒子状物質が互いに混ざり
合う恐れがあるので上のサブルーバーの下端Eと下のサ
ブルーバーの上端Cとの間に通気性を有する流路調整板
4を設け、両者の混合を防ぐようにする。この流路調整
板は、板の全面に多数の孔を有する多孔板あるいは細長
い板を一定の間隔を空けて配置したスリット板等で構成
すればよい。
As shown in FIGS. 5 and 6, the sub-louver 2 has a vertex C at one end, and one side CD whose one end is C extends downward from the vertex C toward the main louver D. And the other side CE is inclined downward from the vertex C vertically or within 5 °, preferably within 3 °, toward the inside of the moving layer. The reason that the side CE is inclined inward is to prevent the particulate matter flowing down between the main louver and the sub louver from leaking into the inside of the moving layer. When provided, it need not be tilted. This sub-louver is installed so that the apex D is approximately in the middle between the lower end B of the main louver and the lower end B of the next main louver in the device of FIG. 1, and in the device of FIG. The apex D is installed so as to be substantially in the middle between the lower end GH of the main louver and the lower end GH of the next main louver. If the apex D is too close to the left, the width of the flow path of the particulate matter between the main louver and the sub louver will be uneven, and an extremely narrow portion will be generated. No effect.
The shape of the sub-louver is preferably such that the flow velocity of the particulate matter flowing near the sub-louver is slightly higher than the flow velocity near the main louver. This shape is appropriately determined based on the size of the device, the size of the particulate matter, etc., but the angle DCE should be 30 ° to 55 °, and the side D
It is preferable that the inclination and length of E become wider within the range where the angle CED is 25 ° to 35 ° as the flow path formed by the main louver and the side DE goes downward. If the distance between the sub-louver and the sub-louver becomes too large, the particulate matter flowing on both sides of the sub-louver may be mixed with each other, so ventilation is performed between the lower end E of the upper sub-louver and the upper end C of the lower sub-louver. The flow path adjusting plate 4 having the property is provided to prevent the mixture of both. This flow path adjusting plate may be constituted by a porous plate having a large number of holes on the entire surface of the plate or a slit plate in which elongated plates are arranged at regular intervals.

【0010】本発明においては、前記サブルーバーの後
流側に通気孔を有する区画板3をサブルーバーに平行に
垂直方向に設けサブルーバーとその区画板との間に独立
した粒子状物質の流路を形成させる。この区画板は次の
三つの要件を満たすことが必要である。先ず第1に、十
分な通気性を有すること。第2には、区画板の両側を流
下する粒子状物質が互いに混ざり合う率をできるだけ少
なくすることであり、一方から他方への漏れ込みが1%
以下になるようにするのが好ましい。第3に、両側から
の粒子状物質の粉体圧及び流下する粒子状物質による摩
擦に耐える強度を有することである。これらの要求を満
足させる構造としては、板の全面に多数の孔を有し、適
宜補強材を併用した多孔板(パンチングプレート)ある
いは細長い板を一定の間隔を空けて配置したスリット板
あるいはフラットバー形式の構造で、30%以上の開口
率を有するものが好適に使用される。本反応槽のガス出
口側ルーバーは十分な通気性を有し、粒子状物質を支持
できるものであれば形状等に制限はなく、通常のルーバ
ー構造のほかに多孔板であってもよい。このように構成
することにより移動層反応槽の内部の粒子状物質の流れ
を図5及び6のU1 、U2 及びU3 の三つに分け、それ
ぞれの流れを別々に制御することにより、移動層反応槽
の効率的運転が可能となる。
In the present invention, a partition plate 3 having ventilation holes on the downstream side of the sublouver is provided in the vertical direction in parallel with the sublouver and an independent flow of particulate matter is provided between the sublouver and the partition plate. Form a path. This partition board is required to meet the following three requirements. First of all, it must have sufficient breathability. Secondly, the rate at which the particulate matter flowing down on both sides of the partition plate mixes with each other is as small as possible, and the leakage from one to the other is 1%.
The following is preferable. Thirdly, it has strength to withstand the powder pressure of the particulate matter from both sides and the friction caused by the flowing particulate matter. As a structure that satisfies these requirements, a perforated plate (punching plate) that has a large number of holes on the entire surface of the plate and appropriately uses a reinforcing material, or a slit plate or a flat bar in which elongated plates are arranged at regular intervals. A formal structure having an aperture ratio of 30% or more is preferably used. The gas outlet louver of this reaction tank is not limited in shape and the like as long as it has sufficient air permeability and can support the particulate matter, and may be a perforated plate in addition to the usual louver structure. With such a configuration, the flow of the particulate matter inside the moving bed reaction tank is divided into three of U 1 , U 2 and U 3 in FIGS. 5 and 6, and each flow is controlled separately, It enables efficient operation of the moving bed reactor.

【0011】図1又は4で示される本発明の移動層型反
応槽を乾式脱硫脱硝装置に適用した例では、ガス入口側
をメインルーバー1で保持し、その内側に設けたサブル
ーバーとの間に第1の脱塵・脱硫ゾーンを、さらにサブ
ルーバーの後流側に設けた区画板3とサブルーバーとの
間に第2の脱塵・脱硫ゾーンを形成し、区画板の後流側
を脱硝ゾーンとする。ダスト及びSOx、NOxを含む
排ガスを先ず第1の脱塵・脱硫ゾーンを通して脱塵、脱
硫を行わしめ、次いで第2の脱塵・脱硫ゾーンにおいて
第1のゾーンで除去できなかったダスト及びSOxを充
分に除去するようにする。第1及び第2の脱塵・脱硫ゾ
ーンを通過したガス中には圧損や触媒被毒の原因となる
ダストやSOxがほどんど含まれていないので、脱硝ゾ
ーンにおいては活性コークスの流速を遅くし、活性コー
クスの使用効率を充分高めることができる。すなわち、
移動層内の活性コークスの流れを三つに分け、各部分に
おける活性コークスの流量及び流速を、処理ガスの量や
含まれるダスト、SOx、NOxなどの濃度に応じて任
意に調整することができ、極めて効率的な運転が可能と
なる。
In the example in which the moving bed type reaction tank of the present invention shown in FIG. 1 or 4 is applied to a dry desulfurization and denitration apparatus, the gas inlet side is held by the main louver 1, and the main louver is installed between the main louver and the sublouver. A first dedusting / desulfurizing zone, and a second dedusting / desulfurizing zone between the partition plate 3 and the sublouver provided on the downstream side of the sublouver. Use as denitration zone. Exhaust gas containing dust and SOx and NOx is first subjected to dedusting and desulfurization through the first dedusting / desulfurization zone, and then dust and SOx that cannot be removed in the first zone in the second dedusting / desulfurization zone. Be sure to remove it sufficiently. The gas that has passed through the first and second dedusting / desulfurization zones contains almost no dust or SOx that causes pressure loss or catalyst poisoning. Therefore, in the denitration zone, the flow rate of activated coke should be slowed down. The use efficiency of the activated coke can be sufficiently increased. That is,
The flow of active coke in the moving bed can be divided into three, and the flow rate and flow velocity of active coke in each part can be arbitrarily adjusted according to the amount of processing gas and the concentration of dust, SOx, NOx, etc. contained. , Extremely efficient operation becomes possible.

【0012】[0012]

【実施例】【Example】

(実施例1)図1の装置において、平均粒径8mm程度
の活性コークス7が矢印の方向に従い、反応槽の上方に
設けたホッパー16から反応槽内に供給され、反応槽内
を上方から下方に移動し反応槽下部から抜き出される。
一方処理されるガス6は矢印に従い反応槽の側面からガ
ス入口側メインルーバー1を通って移動層内に供給さ
れ、活性コークス層を通って脱硫、脱硝、除塵が行われ
反対側の側面のガス出口側ルーバー1′から排出され
る。反応槽内の活性コークスは入口側のメインルーバー
1及び出口側ルーバー1′により保持されている。入口
側はメインルーバー1の次に、その間に流路調整板4を
配置したサブルーハー2、その後流側に区画板3が配置
され、さらに最下段の流路調整板及び区画板の下方に延
びる仕切板9、11、さらにその下方に続く回転仕切板
10、12よりなっている。全体の活性コークスの流量
は定量フィーダー15によって制御される。さらに活性
コークスの主流層の底部には整流体13が設けられてお
り、活性コークスの移動速度のコントロールは14のサ
イトグラスから活性コークスの降下速度を測定しながら
行う。図5は入口側ルーバー部の詳細図である。本実施
例に用いた装置では、メインルーバーの開口の大きさ、
すなわちB−B間の間隔を450mm、メインルーバー
とサブルーバーとの間隔(図5のa)及びサブルーバー
と区画板との間隔(図5のb)をそれぞれ100mm及
び300mmとし、区画板の後流側の第3層の厚みは1
400mmとした。サブルーバーの辺CEは垂直とし、
CEの長さは350mm、サブルーバーの間隔すなわち
図5のE点とその下のC点との間隔は70mmとし、そ
の間は多数の開口を有する多孔板で繋いだ構造とした。
また、区画板は巾100mmの板を100mmの間隔で
水平に並べたフラットバー構造とし、出口側ルーバー
1′は多孔板で代用した。この装置を使用し、第1、2
及び3層の脱硫脱硝用成形活性コークスの流下速度及び
滞留時間をそれぞれ、334mm/hrと32hr、1
34mm/hrと80hr及び57mm/hrと188
hrとして、200mg/Nm3 D.B.のダスト、S
Ox50ppm及びNOx250ppmを含有するガス
の処理試験を行った。その結果、全体の圧損は運転開始
時には約100mmAqで時間の経過とともに緩やかに
上昇したが、72時間経過以降は約150mmAqでほ
ぼ一定であり、安定した運転が可能であった。
(Example 1) In the apparatus shown in FIG. 1, activated coke 7 having an average particle size of about 8 mm was supplied into the reaction tank from a hopper 16 provided above the reaction tank in the direction of the arrow, and the inside of the reaction tank was moved downward from above. And is withdrawn from the lower part of the reaction tank.
On the other hand, the gas 6 to be treated is supplied from the side surface of the reaction tank through the gas inlet side main louver 1 into the moving bed according to the arrow, and desulfurization, denitration and dust removal are carried out through the active coke layer, and the gas on the other side surface. It is discharged from the outlet louver 1 '. The active coke in the reaction tank is held by the main louver 1 on the inlet side and the louver 1'on the outlet side. On the inlet side, next to the main louver 1, a sub-louher 2 in which a flow path adjusting plate 4 is arranged, a partition plate 3 is arranged on the downstream side, and a partition plate extending below the flow path adjusting plate and the partition plate in the lowermost stage. It is composed of plates 9 and 11, and further rotating partition plates 10 and 12 that follow therebelow. The flow rate of the whole active coke is controlled by the quantitative feeder 15. Further, a rectifying body 13 is provided at the bottom of the mainstream layer of the activated coke, and the moving speed of the activated coke is controlled by measuring the descending speed of the activated coke from 14 sight glasses. FIG. 5 is a detailed view of the louver portion on the entrance side. In the device used in this example, the size of the opening of the main louver,
That is, the distance between B and B is 450 mm, the distance between the main louver and the sub louver (a in FIG. 5) and the distance between the sub louver and the partition plate (b in FIG. 5) are 100 mm and 300 mm, respectively. The thickness of the third layer on the flow side is 1
It was 400 mm. The side CE of the sub bar is vertical,
The length of CE was 350 mm, the distance between the sub-louvers, that is, the distance between point E in FIG. 5 and point C below was 70 mm, and a structure in which a CE plate was connected with a multiplicity of apertures was used between them.
The partition plate has a flat bar structure in which plates having a width of 100 mm are arranged horizontally at intervals of 100 mm, and the exit side louver 1'is replaced by a perforated plate. Using this device,
And the flow rate and residence time of the three layers of desulfurized denitration molded activated coke were 334 mm / hr and 32 hr, respectively.
34 mm / hr and 80 hr and 57 mm / hr and 188
200 mg / Nm 3 D.h. B. Dust, S
A treatment test of a gas containing 50 ppm of Ox and 250 ppm of NOx was conducted. As a result, the total pressure loss was about 100 mmAq at the start of the operation and gradually increased with the passage of time, but after 72 hours, it was about 150 mmAq, which was almost constant, and stable operation was possible.

【0013】これに対し、区画板3を設けない以外は全
く同一の装置を使用し、第1及び2層の脱硫脱硝用成形
活性コークスの流下速度及び滞留時間をそれぞれ、44
0mm/hrと25hr及び63mm/hrと171h
rとして同様の試験を行ったところ、運転開始時には約
100mmAqであった圧損が徐々に増加し、約72時
間で250mmAqを越え、運転続行が困難となった。
On the other hand, the same apparatus was used except that the partition plate 3 was not provided, and the flow rate and the residence time of the first and second layers of desulfurized and denitrated molded active coke were 44 and 40, respectively.
0 mm / hr and 25 hr and 63 mm / hr and 171 h
When a similar test was carried out for r, the pressure loss, which was about 100 mmAq at the start of operation, gradually increased and exceeded 250 mmAq in about 72 hours, making it difficult to continue operation.

【0014】(実施例2)図4において、平均粒径8m
m程度の活性コークスが矢印7に従い、反応槽の上方に
設けたホッパー(図示せず)から反応槽内に供給され、
反応槽内を上方から下方に移動し反応槽下部から抜き出
される。一方処理されるガスは矢印6に従い反応槽の側
面から入り、ルーバー及び活性コークス層を通って脱
硫、脱硝、除塵が行われ反対側の側面から排出される。
反応槽内の活性コークスは入口側のメインルーバー1及
び出口側ルーバー1′により保持されている。入口側は
メインルーバー1の次に、その間に流路調整板4を配置
したサブルーハー2、その後流側に区画板3が配置さ
れ、さらに最下段の流路調整板及び区画板の下方に延び
る仕切板9、11、さらにその下方に続く回転仕切板1
0、12よりなっている。さらに活性コークスの主流層
の底部には整流体13が設けられており、活性コークス
の移動速度のコントロールは14のサイトグラスから活
性コークスの降下速度を測定しながら行う。
Example 2 In FIG. 4, the average particle size is 8 m.
About m of activated coke is supplied according to arrow 7 from a hopper (not shown) provided above the reaction tank into the reaction tank,
It moves from the upper part to the lower part in the reaction tank and is withdrawn from the lower part of the reaction tank. On the other hand, the gas to be treated enters from the side surface of the reaction tank according to arrow 6, passes through the louver and the activated coke layer, undergoes desulfurization, denitration and dust removal, and is discharged from the opposite side surface.
The active coke in the reaction tank is held by the main louver 1 on the inlet side and the louver 1'on the outlet side. On the inlet side, next to the main louver 1, a sub-louher 2 in which a flow path adjusting plate 4 is arranged, a partition plate 3 is arranged on the downstream side, and a partition plate extending below the flow path adjusting plate and the partition plate in the lowermost stage. Plates 9 and 11, and a rotary partition plate 1 further below
It consists of 0 and 12. Further, a rectifying body 13 is provided at the bottom of the mainstream layer of the activated coke, and the moving speed of the activated coke is controlled by measuring the descending speed of the activated coke from 14 sight glasses.

【0015】図7は入口側ルーバー部の詳細図である。
ここで、θは70°、αは40°、βは30°、aは4
30mm、bは470mm、cは100mm、dは17
6mm、eは684mm、fは140mm、gは200
mm、hは300mm、サブルーバーの長辺は垂直と
し、図示していないが、区画板3の後流側の活性コーク
スの主流層の厚みは1300mmとした試験装置を使用
し、ダスト濃度が200mg/Nm3 D.B.、SOx
50ppm、NOx250ppmのガスの処理試験を行
った。その結果、第1の脱塵・脱硫ゾーンにおける活性
コークスの流れはスムースで滞留部分を生じたり、ダス
トやSOx成分が付着した活性コークスが脱硝ゾーンへ
漏れてくることもなく、各ゾーンにおける活性コークス
の流量を適宜調整することにより、脱硫率100%、脱
硝率80%、脱塵率95%以上で円滑な運転が可能であ
った。
FIG. 7 is a detailed view of the louver portion on the inlet side.
Here, θ is 70 °, α is 40 °, β is 30 °, and a is 4
30mm, b is 470mm, c is 100mm, d is 17
6 mm, e is 684 mm, f is 140 mm, g is 200
mm and h are 300 mm, the long side of the sub-louver is vertical, and although not shown, the thickness of the mainstream layer of the activated coke on the downstream side of the partition plate 3 is 1300 mm. / Nm 3 D. B. , SOx
A gas treatment test of 50 ppm and NOx 250 ppm was conducted. As a result, the flow of the activated coke in the first dedusting / desulfurization zone does not smoothly generate a retention portion, and the activated coke with dust or SOx components does not leak to the denitration zone, and the active coke in each zone does not leak. By appropriately adjusting the flow rate of 1, the smooth operation was possible with a desulfurization rate of 100%, a denitration rate of 80%, and a dust removal rate of 95% or more.

【0016】[0016]

【発明の効果】本発明の移動層反応槽は、サブルーバー
の後流側に区画板を設置し、粒子状物質の流路をメイン
ルーバーとサブルーバーとの間の第1層、サブルーバー
とその後流の区画板との間の第2層及び区画板の後流の
第3層である主反応層の3つに分割して、それぞれの層
を流下する粒子状物質の流速、流量を独立に制御する事
ができるように構成されている。そのため、ダスト量や
圧損増加の原因となる物質を多量に含むガスを処理する
場合でも、第1及び第2の層で十分にダストや圧損増加
物質を除去することができるので、全体として、圧損の
上昇は少ない範囲で一定で抑えられるため、安定した装
置の運転が可能である。また、従来の構造の反応槽内に
区画板を設けるだけで十分な効果が得られるので、メイ
ンルーバー部の構造を変更するような大がかりな装置の
改良を必要としない利点がある。さらに、メインルーバ
ーの構造を断面折れ線状とすることにより、ルーバー間
のピッチを従来構造のルーバーに比較して著しく大きく
することができ、装置の大型化が可能である。
In the moving bed reaction tank of the present invention, a partition plate is installed on the downstream side of the sublouver, and the flow path of the particulate matter is the first layer between the main louver and the sublouver. The flow velocity and flow rate of the particulate matter flowing down into each of the two layers are divided into the main reaction layer, which is the second layer between the partition plate of the subsequent flow and the third layer of the downstream flow of the partition plate. It is configured so that it can be controlled. Therefore, even when treating a gas containing a large amount of a substance that causes an increase in dust amount or pressure loss, the dust and the pressure loss increasing substance can be sufficiently removed in the first and second layers, so that the pressure loss as a whole is reduced. Since the rise of is kept constant within a small range, stable operation of the device is possible. Further, since a sufficient effect can be obtained only by providing the partition plate in the reaction tank having the conventional structure, there is an advantage that a large-scale apparatus modification such as changing the structure of the main louver portion is not required. Furthermore, by making the structure of the main louver a broken line in cross section, the pitch between the louvers can be made significantly larger than that of the louvers of the conventional structure, and the size of the device can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の移動層型反応槽の一実施態様を示す装
置の断面図。
FIG. 1 is a cross-sectional view of an apparatus showing one embodiment of a moving bed type reaction tank of the present invention.

【図2】従来の移動層型反応槽の1例の概略を示す断面
図。
FIG. 2 is a sectional view showing an outline of an example of a conventional moving bed type reaction tank.

【図3】図2の移動層型反応槽のルーバー近傍図。FIG. 3 is a louver vicinity view of the moving bed type reaction tank of FIG.

【図4】本発明の移動層型反応槽の他の実施態様を示す
装置の断面図。
FIG. 4 is a cross-sectional view of an apparatus showing another embodiment of the moving bed type reaction tank of the present invention.

【図5】本発明のメインルーバー、サブルーバー、流路
調整板及び区画板の詳細説明図。
FIG. 5 is a detailed explanatory view of a main louver, a sub louver, a flow path adjusting plate and a partition plate of the present invention.

【図6】本発明のメインルーバー、サブルーバー、流路
調整板及び区画板の位置、構造を説明する図。
FIG. 6 is a diagram illustrating the positions and structures of a main louver, a sub louver, a flow path adjusting plate and a partition plate of the present invention.

【図7】本発明のメインルーバー、サブルーバー、流路
調整板及び区画板の角度、位置、を詳しく説明する図。
FIG. 7 is a diagram illustrating in detail the angles and positions of the main louver, the sub louver, the flow path adjusting plate, and the partition plate of the present invention.

【符号の説明】[Explanation of symbols]

1.メインルーバー 1′.出口側ルーバー 2.サブルーバー 3.区画板 4.流路調整板 5.反応槽 6.ガス 7.粒子状物質 8.ケーシング 9、11.仕切板 10、12.回転仕切板 13.整流体 14.サイトグラス 15.定量フィーダー 16.ホッパー 1. Main louver 1 '. Exit louver 2. Subroubar 3. Partition plate 4. Flow path adjusting plate 5. Reaction tank 6. Gas 7. Particulate matter 8. Casing 9,11. Partition plate 10, 12. Rotating partition plate 13. Rectifier 14. Sight glass 15. Quantitative feeder 16. hopper

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒子状物質を通気性構造によって充填保
持し、その粒子状物質を上から下に移動させて移動層を
形成し、横方向から通気性構造を通ってくるガスと接触
させる移動層型反応槽において、ガス入口側及びガス出
口側をルーバーで支持し、ガス入口側のルーバーをメイ
ンルーバーとし、このメインルーバーの内側に粒子状物
質の滞留を防止するため、断面が三角形のサブルーバー
を、メインルーバーと平行に一列に設け、さらにサブル
ーバーの内側に通気孔を有する区画板をメインルーバー
及びサブルーバーとに平行に垂直方向に設け、このよう
に構成することによって粒子状物質の流れをメインルー
バーとサブルーバーとの間の第1層、サブルーバーと区
画板との間の第2層及び区画板とガス出口側ルーバーと
の間の第3層とに分け、それぞれの層内を流下する粒子
状物質の流速及び流量を独立に制御できるようにしたこ
とを特徴とする移動層型反応槽。
1. A movement in which a particulate matter is filled and held by a breathable structure, the particulate matter is moved from top to bottom to form a transfer layer, and is brought into contact with a gas passing through the breathable structure from the lateral direction. In the layered reaction tank, the gas inlet side and the gas outlet side are supported by louvers, the louver on the gas inlet side is used as the main louver, and in order to prevent the accumulation of particulate matter inside the main louver, a subsection with a triangular cross section is used. The louvers are provided in a line in parallel with the main louver, and a partition plate having a vent hole inside the sub louvers is provided in the vertical direction in parallel with the main louvers and the sub louvers. The flow is divided into a first layer between the main louver and the sublouver, a second layer between the sublouver and the partition plate, and a third layer between the partition plate and the gas outlet side louver. A moving bed type reaction tank characterized in that the flow rate and flow rate of the particulate matter flowing down in each layer can be controlled independently.
【請求項2】 メインルーバーが断面折れ線状の形状を
有し垂直方向に一列に並んでいる請求項1に記載の移動
層型反応槽。
2. The moving bed type reaction tank according to claim 1, wherein the main louvers have a linear shape in cross section and are arranged in a line in the vertical direction.
【請求項3】 最下段のサブルーバー又はその下側に連
続して設けられた流路調整板の下端及び区画板の下端か
ら、それぞれ移動層型反応槽のケーシング内壁に沿って
仕切板を設け、その仕切板を移動層型反応槽の粒子状物
質排出ノズル内まで連続させ、前記第1〜第3層を流れ
る粒子状物質の流量を調整できるようにした請求項1又
は2に記載の移動層型反応槽。
3. A partition plate is provided along the inner wall of the casing of the moving bed type reaction tank from the lower end of the lowermost sublouver or the lower end of the flow path adjusting plate and the lower end of the partition plate that are continuously provided below the sublouver. The transfer according to claim 1 or 2, wherein the partition plate is continued to the inside of the particulate matter discharge nozzle of the moving bed type reaction tank so that the flow rate of the particulate matter flowing through the first to third layers can be adjusted. Layered reaction tank.
JP19404592A 1991-11-08 1992-07-21 Moving bed type reaction tank Expired - Fee Related JP3310334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19404592A JP3310334B2 (en) 1991-11-08 1992-07-21 Moving bed type reaction tank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-293219 1991-11-08
JP29321991 1991-11-08
JP19404592A JP3310334B2 (en) 1991-11-08 1992-07-21 Moving bed type reaction tank

Publications (2)

Publication Number Publication Date
JPH05200272A true JPH05200272A (en) 1993-08-10
JP3310334B2 JP3310334B2 (en) 2002-08-05

Family

ID=26508266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19404592A Expired - Fee Related JP3310334B2 (en) 1991-11-08 1992-07-21 Moving bed type reaction tank

Country Status (1)

Country Link
JP (1) JP3310334B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136445A (en) * 1993-11-18 1995-05-30 Sumitomo Heavy Ind Ltd Desulfurization-denitration column
EP0693312A1 (en) * 1994-07-22 1996-01-24 Institut Français du Pétrole Improvement in moving bed enclosures
WO1998015340A1 (en) * 1996-10-09 1998-04-16 Sumitomo Heavy Industries, Ltd. Exhaust gas processing method
JP2002282676A (en) * 2001-03-29 2002-10-02 Sumitomo Heavy Ind Ltd Waste gas treatment apparatus with improved dust removal capability
JP2006007005A (en) * 2004-06-22 2006-01-12 Nippon Steel Corp Exhaust gas treatment apparatus
JP2006104281A (en) * 2004-10-04 2006-04-20 Takuma Co Ltd Gasification system
KR100919269B1 (en) * 2007-05-03 2009-09-30 유오피 엘엘씨 Louver front faced inlet ducts
JP2010104940A (en) * 2008-10-31 2010-05-13 Chubu Electric Power Co Inc Gas treatment system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136445A (en) * 1993-11-18 1995-05-30 Sumitomo Heavy Ind Ltd Desulfurization-denitration column
JP2828193B2 (en) * 1993-11-18 1998-11-25 住友重機械工業株式会社 Desulfurization / denitration tower
EP0693312A1 (en) * 1994-07-22 1996-01-24 Institut Français du Pétrole Improvement in moving bed enclosures
WO1998015340A1 (en) * 1996-10-09 1998-04-16 Sumitomo Heavy Industries, Ltd. Exhaust gas processing method
JP2002282676A (en) * 2001-03-29 2002-10-02 Sumitomo Heavy Ind Ltd Waste gas treatment apparatus with improved dust removal capability
JP2006007005A (en) * 2004-06-22 2006-01-12 Nippon Steel Corp Exhaust gas treatment apparatus
JP4653423B2 (en) * 2004-06-22 2011-03-16 新日本製鐵株式会社 Exhaust gas treatment equipment
JP2006104281A (en) * 2004-10-04 2006-04-20 Takuma Co Ltd Gasification system
JP4563129B2 (en) * 2004-10-04 2010-10-13 株式会社タクマ Gasification system
KR100919269B1 (en) * 2007-05-03 2009-09-30 유오피 엘엘씨 Louver front faced inlet ducts
JP2010104940A (en) * 2008-10-31 2010-05-13 Chubu Electric Power Co Inc Gas treatment system

Also Published As

Publication number Publication date
JP3310334B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US3708981A (en) Adsorption method and apparatus for treating polluted gas streams
JP4695126B2 (en) Desulfurization denitration equipment for exhaust gas
US4451272A (en) Moving bed filter, especially an adsorption filter
JP2828193B2 (en) Desulfurization / denitration tower
JPH046415B2 (en)
SK443389A3 (en) Process and device for separating undesirable constituents from liquids
JPH05200272A (en) Moving bed type reaction tank
JPH02503291A (en) Moving bed reactor and its operating method
US4446112A (en) Apparatus for contacting fluid with particulate solid material
RU2746856C1 (en) Activated carbon adsorption column, exhaust gas purification process and desulfurization and denitrification system
US5932179A (en) Waste gas treatment apparatus
US2834119A (en) Contacting of granular materials with gases
US4012210A (en) Granular gas filter arrangement
JP3373467B2 (en) Exhaust gas treatment equipment
JPS6316020A (en) Device for holding and moving layer
JP4846930B2 (en) Exhaust gas treatment equipment
JPS63101B2 (en)
JPH0858782A (en) Improvement of container closed by movable bed
SU674270A1 (en) Granular filter
JPS6021768B2 (en) Cross flow type gas-solid contact device
CN207271004U (en) Star wheel type activated carbon discharge device
EP0654296B1 (en) Desulfurizing and denitrating tower
JPH11128684A (en) Moving-bed type waste gas treating device
JPH09150032A (en) Exhaust gas treatment moving bed and its operation method
JPH0220289B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees