JPH048464A - Processing method of silicone wafer - Google Patents
Processing method of silicone waferInfo
- Publication number
- JPH048464A JPH048464A JP10980190A JP10980190A JPH048464A JP H048464 A JPH048464 A JP H048464A JP 10980190 A JP10980190 A JP 10980190A JP 10980190 A JP10980190 A JP 10980190A JP H048464 A JPH048464 A JP H048464A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- surface roughness
- single crystal
- silicon single
- polished
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001296 polysiloxane Polymers 0.000 title abstract 4
- 238000003672 processing method Methods 0.000 title 1
- 238000005498 polishing Methods 0.000 claims abstract description 33
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 10
- 239000010432 diamond Substances 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 30
- 239000013078 crystal Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 7
- 239000008119 colloidal silica Substances 0.000 description 6
- 239000006061 abrasive grain Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000007517 polishing process Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、短時間でシリコンウェハーを研摩する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of polishing silicon wafers in a short time.
一般に、シリコンウェハーを製造するには、引き上げら
れたシリコン単結晶の両端を切断し、オリフラ加工およ
び外周研摩したのちエツチングし、スライシングして面
取りしたシリコン単結晶の表面をラッピングし、エツチ
ングしたのちポリシングして表面を鏡面に仕上げされる
ことはよく知られているところである。Generally, in order to manufacture silicon wafers, both ends of the pulled silicon single crystal are cut, the edges are processed with orientation flats, the outer periphery is polished, and then etched, the surface of the silicon single crystal that has been sliced and chamfered is lapped, etched, and then polished. It is well known that the surface is polished to a mirror finish.
上述のように、スライシングされ面取りされたシリコン
単結晶板は、ラッピング→エツチング→ポリシングの各
工程を経て鏡面研摩されるのであるが、上記ラッピング
は# 1000〜1200のアルミナ・ジルコニア混合
遊離砥粒により実施され、ラッピング後の表面粗さはR
:2ttmとなる。As mentioned above, a silicon single crystal plate that has been sliced and chamfered is mirror-polished through the following steps: lapping, etching, and polishing. The surface roughness after lapping is R
:2ttm.
aX
上記ラッピング後エツチングされ、さらにポリシングさ
れるが、上記ポリシングは第1ポリシング工程および第
2ポリシング工程からなり、第1ポリシング工程では研
摩剤としてpH9の弱アルカリ溶液に粒径: [1,0
5〜0.07虜のS t O2が2.5重量%含まれた
コロイダルシリカを用いてパフ研摩し、パフ研摩後の表
面粗さをR:4nsとする。aX After the above lapping, it is etched and further polished, and the above polishing consists of a first polishing step and a second polishing step, and in the first polishing step, particle size: [1,0
Puff polishing is performed using colloidal silica containing 2.5% by weight of S t O2 of 5 to 0.07%, and the surface roughness after puff polishing is set to R: 4ns.
a
つづく第2ポリシング工程では、研摩剤としてpH1O
のアルカリ溶液に粒径: 0.01−以下のS t O
2が1重量%含有したコロイダルシリカ粒を用いてパフ
研摩し、表面粗さをR: 0.7nsの鏡面に仕上げら
れる。a In the subsequent second polishing step, pH 1O was used as the abrasive.
Particle size: 0.01- or less S t O
Puff polishing was performed using colloidal silica particles containing 1% by weight of No. 2, and the surface was finished to a mirror surface with a surface roughness of R: 0.7 ns.
このようにしてポリシングされ鏡面仕上げされたシリコ
ンウェハーは、デバイス化プロセスにてデバイス化され
、その後、裏面を研削加工したのち、パッケージ組立さ
れて半導体集積回路部品等に仕上げられる。The silicon wafer polished to a mirror finish in this way is turned into a device in a device manufacturing process, and after that, the back surface is ground and then packaged and finished into semiconductor integrated circuit parts and the like.
しかし、上記スライシングし面取りしたシリコン単結晶
板表面をラッピングすると、上記ラッピングによりシリ
コン単結晶表面に厚さ:20〜25−程度の加工変質層
が発生し、この加工変質層は、格子歪等があるために電
流がリークしたり、電気抵抗が変化するために、上記加
工変質層のあるシリコンウェハーは半導体集積回路部品
等の作製用ウェハーとしては好ましくない。However, when the surface of the silicon single crystal board that has been sliced and chamfered is lapped, a process-affected layer with a thickness of about 20 to 25 mm is generated on the silicon single-crystal surface due to the lapping, and this process-affected layer is caused by lattice strain, etc. Silicon wafers with the above-mentioned process-affected layer are not preferred as wafers for manufacturing semiconductor integrated circuit components, etc., because of current leakage and changes in electrical resistance.
そのため、ラッピング後のエツチング工程で上記加工変
質層を除去しているが、上記ラッピングにより形成され
る加工変質層の層厚は厚いためにエツチング時間が長く
かかり、短時間で大量のシリコンウェハーを加工するこ
とはできなかった。Therefore, the above-mentioned process-affected layer is removed in the etching process after lapping, but since the process-affected layer formed by lapping is thick, etching takes a long time, and a large number of silicon wafers can be processed in a short period of time. I couldn't do it.
そこで、本発明者等は、従来よりも一層効率よくシリコ
ン単結晶板表面を研摩すべく研究を行った結果、
上記スライシングし面取りしたシリコン単結晶板表面を
遊離砥粒を用いるラッピングに代替して固定砥粒による
砥石を用いて研削すると、加工変質層の層厚が大幅に減
少しく砥石による加工変質層の層厚は約5ura程度で
ある)、その後のエツチング処理を省略することができ
、上記エツチング処理を施しても処理時間を大幅に短縮
することかできるという知見を得たのである。Therefore, the present inventors conducted research in order to polish the surface of a silicon single crystal plate more efficiently than before, and as a result, the present inventors replaced the sliced and chamfered silicon single crystal plate surface with lapping using free abrasive grains. When grinding is performed using a grindstone with fixed abrasive grains, the layer thickness of the process-affected layer is significantly reduced (the thickness of the process-affected layer is approximately 5 ura), and the subsequent etching process can be omitted, and the above-mentioned etching process can be omitted. They discovered that even if etching is performed, the processing time can be significantly shortened.
この発明は、かかる知見にもとづいてなされたものであ
って、
スライシングし、面取りして得られたシリコン単結晶板
表面を砥石を用いて荒研削したのち、人工気相ダイヤモ
ンド砥石を用いて仕上げ研削し、必要に応じてさらにパ
フ研摩によるポリシングを施すシリコンウェハーの研摩
方法に特徴を有するものである。This invention was made based on this knowledge, and the surface of a silicon single crystal plate obtained by slicing and chamfering is roughly ground using a grindstone, and then finish grinding is performed using an artificial vapor phase diamond grindstone. However, the present invention is characterized by a method of polishing a silicon wafer, which further performs polishing by puff polishing if necessary.
上記荒研削は、砥粒# 1200程度の砥石を用いて研
削し、加工後の面粗さをR:0.Bus程度を―ax
得、つづく仕上げ研削において砥石面粗さR;■ax
0.2庫の人工気相合成ダイヤモンド被覆砥石を用いる
とシリコン単結晶の研削後の面粗さはR:6ninまで
仕上げることができる。この面粗さは、従来法における
一次ポリジングと同等以上の面粗さまで仕上げられてい
ることがわかる。The above rough grinding is performed using a grindstone with abrasive grains of approximately #1200, and the surface roughness after processing is R: 0. When the grinding wheel surface roughness is R: 0.2 and the grinding wheel is coated with artificial vapor phase synthetic diamond, the surface roughness after grinding of silicon single crystal can be finished up to R: 6 nin. be able to. It can be seen that this surface roughness is equivalent to or higher than that of primary polishing in the conventional method.
しかし、これ以上になめらかな面粗さは研削では得るこ
とができないので、従来法の二次ポリシング条件と同等
の条件で最終的にポリシングし、鏡面仕上げされたシリ
コンウェハーを得ることができる。However, since a smoother surface roughness cannot be obtained by grinding, final polishing is performed under conditions equivalent to the secondary polishing conditions of the conventional method, and a mirror-finished silicon wafer can be obtained.
上記最終的に行うポリシングは、従来法の二次ポリシン
グと同様にpH1Oのアルカリ溶液に粒径:0、Ol−
以下のS iO2を1.0重量%程度含有したコロイダ
ルシリカを用いてパフ研摩するものであるから、アルカ
リ溶液の化学研摩作用とパフ研摩の機械研摩作用との相
乗作用により加工変質層の極めて少ない鏡面研摩面を得
ることができる。The final polishing described above is performed in the same way as the conventional secondary polishing process, in which the particle size is 0 and Ol-
Since the puff polishing is performed using colloidal silica containing about 1.0% by weight of SiO2, the synergistic effect of the chemical polishing action of the alkaline solution and the mechanical polishing action of the puff polishing results in an extremely small amount of damaged layers due to processing. A mirror polished surface can be obtained.
つぎに、この・発明を実施例を用いて具体的に説明し、
従来例と比較して、この発明の詳細な説明する。Next, this invention will be specifically explained using examples,
The present invention will be explained in detail in comparison with a conventional example.
実施例 1
引き上げられたシリコン単結晶をスライスしてたて:1
0mm、横:10■、厚さ:1mmのシリコン単結晶片
を用意し、このシリコン単結晶片を、回転周速度:90
0m/sinで回転している粗さ二81200のダイヤ
モンド砥石に圧カニ250g/c−で7分間押付け、研
削後の表面粗さR:OJ−腸ax
の荒研削を行った。Example 1 Freshly sliced pulled silicon single crystal: 1
Prepare a silicon single crystal piece of 0 mm, width: 10 mm, thickness: 1 mm, and rotate this silicon single crystal piece at a peripheral rotation speed of 90 mm.
Rough grinding was performed by pressing a pressure crab at 250 g/c for 7 minutes against a diamond grindstone having a roughness of 281,200 and rotating at 0 m/sin to a surface roughness R: OJ-ax.
上記荒研削を施したシリコン単結晶片を、回転周速度:
590m/minで回転している表面粗さ二〇、21I
!@の人工気相合成ダイヤモンド被覆砥石に圧カニ30
0g/c−で20分間押付け、仕上げ研削し、仕上げ研
削後の表面粗さをR:4n■に仕上げた。Rotating the rough-ground silicon single crystal piece above:
Surface roughness 20, 21I rotating at 590m/min
! Pressure crab 30 on @ artificial vapor phase synthetic diamond coated grindstone
It was pressed at 0 g/c- for 20 minutes and finished ground, and the surface roughness after finishing grinding was finished to R: 4n■.
上記仕上げ研削したシリコン単結晶片の表面をpH10
のアルカリ溶液中に粒径: 0.01虜のS iO2:
1重量%を含有するコロイダルシリカを用いて5分間パ
フ研摩することによりポリシングし、表面粗さR: 0
.7nmに鏡面研摩した。The surface of the finished polished silicon single crystal piece was adjusted to pH 10.
Particle size: 0.01 μm SiO2:
Polishing was performed by puff polishing for 5 minutes using colloidal silica containing 1% by weight, and the surface roughness R: 0
.. Mirror polished to 7 nm.
上記スライスしたシリコン単結晶片の表面粗さをR:
0.7niに鏡面研摩するに要する時間は合計で32分
であった。The surface roughness of the sliced silicon single crystal piece is R:
The total time required for mirror polishing to 0.7 ni was 32 minutes.
従来例 1
実施例1で用意したシリコン単結晶片を平均砥粒:#1
200のアルミナ争ジルコニア混合砥粒を用いて表面粗
さR:2−になるまて15分間ラツi+ax
ピングし、ついでエツチング液(弗酸:1、硝酸=4、
酢酸二3の割合で混合した濃度=80%の水溶液)にて
20分間エツチングし、さらにpH9の弱アルカリ溶液
に粒径: D、08部のS i O2が含まれたコロイ
ダルシリカを用いて40分間パフ研摩して−次ポリシン
グを行い、ついで、pH0のアルカリ溶液に粒径: 0
.01xのS iO2が含まれるコロイーダルシリカを
用いて5分間パフ研摩して二次ポリシングを行い、最終
的に表面粗さR: 0.7nmに鏡面研摩した。Conventional example 1 The silicon single crystal pieces prepared in Example 1 were average abrasive: #1
Using 200% alumina and zirconia mixed abrasive grains, polishing was performed for 15 minutes until the surface roughness R: 2- was achieved, and then etching solution (hydrofluoric acid: 1, nitric acid = 4,
Etching was carried out for 20 minutes with an aqueous solution (concentration = 80% aqueous solution mixed with 23 parts of acetic acid), and further etched with colloidal silica containing particle size D and 08 parts of SiO2 in a weak alkaline solution of pH 9. Puff polishing was performed for 1 minute, followed by polishing, and then the particles were immersed in an alkaline solution with a pH of 0.
.. Secondary polishing was performed by puff polishing for 5 minutes using colloidal silica containing 01x SiO2, and finally mirror polishing was performed to a surface roughness R: 0.7 nm.
上記スライスしたシリコン単結晶片の表面粗さをR:
0.7nm(こ鏡面研摩するに要する時間は合計で80
分であった。The surface roughness of the sliced silicon single crystal piece is R:
0.7 nm (total time required for mirror polishing is 80 nm)
It was a minute.
上記実施例1および従来例1を比較すると、この発明の
実施例1てはスライスされたシリコン単結晶をダイヤモ
ンド砥石を用いて研摩しているので加工変質層の少ない
表面粗さR:4nraのシリコン単結晶研摩面を得るこ
とができ、加工変質層の生成が少ないために従来例1に
示されるような長時間を要するエツチング工程および一
次ポリシング工程を省略することができ、ダイヤモンド
研削後ただちに従来例1の二次ポリシングに相当する鏡
面研摩を施して表面粗さR:0.7nsの仕上げ面を得
ることができ、従来例1で表面粗さR:0.7niの面
を得るには80分かかるに対し、この発明の実施例1で
は32分で同じ表面粗さR:O,7nrAを得ることが
でき、シリコンウェハーの加工時間が大幅に短縮されて
いることがわかる。Comparing Example 1 and Conventional Example 1, Example 1 of the present invention polishes the sliced silicon single crystal using a diamond grindstone, so the silicon has a surface roughness R: 4nra with less process-altered layer. Since a single crystal polished surface can be obtained and there is little formation of a damaged layer, the etching process and primary polishing process that take a long time as shown in Conventional Example 1 can be omitted, and the conventional example can be used immediately after diamond grinding. A finished surface with a surface roughness R: 0.7 ns can be obtained by performing mirror polishing equivalent to the secondary polishing in 1. In Conventional Example 1, it took 80 minutes to obtain a surface with a surface roughness R: 0.7 ni. In contrast, in Example 1 of the present invention, the same surface roughness R:O, 7nrA could be obtained in 32 minutes, indicating that the processing time for silicon wafers was significantly shortened.
したがって、この発明は、短時間で大量のシリコンウェ
ハーの研摩を行うことができ、さらに、自動化も容易と
なり、遊離砥粒による作業環境の汚染も減少するなど産
業上優れた効果を奏するものである。Therefore, this invention can polish a large number of silicon wafers in a short time, facilitates automation, and reduces contamination of the working environment due to loose abrasive grains, which has excellent industrial effects. .
Claims (2)
表面を、砥石を用いて荒研削したのち、人工気相ダイヤ
モンド被覆砥石を用いて仕上げ研削することを特徴とす
るシリコンウェハーの加工方法。(1) A method for processing a silicon wafer, which comprises roughly grinding the surface of a silicon single crystal thin plate obtained by slicing using a grindstone, and then final grinding it using an artificial vapor phase diamond-coated grindstone.
げ研削したのち、さらにポリシングすることを特徴とす
る請求項1記載のシリコンウェハーの加工方法。(2) The method of processing a silicon wafer according to claim 1, further comprising polishing after final grinding using the artificial vapor phase diamond-coated grindstone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10980190A JPH048464A (en) | 1990-04-25 | 1990-04-25 | Processing method of silicone wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10980190A JPH048464A (en) | 1990-04-25 | 1990-04-25 | Processing method of silicone wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH048464A true JPH048464A (en) | 1992-01-13 |
Family
ID=14519561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10980190A Pending JPH048464A (en) | 1990-04-25 | 1990-04-25 | Processing method of silicone wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH048464A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4744585B2 (en) * | 2008-12-01 | 2011-08-10 | 本田技研工業株式会社 | Exercise assistance device |
DE112010005453T5 (en) | 2009-10-21 | 2013-06-20 | Honda Motor Co., Ltd. | Motion support device, control method therefor and rehabilitation method |
-
1990
- 1990-04-25 JP JP10980190A patent/JPH048464A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4744585B2 (en) * | 2008-12-01 | 2011-08-10 | 本田技研工業株式会社 | Exercise assistance device |
DE112010005453T5 (en) | 2009-10-21 | 2013-06-20 | Honda Motor Co., Ltd. | Motion support device, control method therefor and rehabilitation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6114245A (en) | Method of processing semiconductor wafers | |
US5937312A (en) | Single-etch stop process for the manufacture of silicon-on-insulator wafers | |
JPS5958827A (en) | Semiconductor wafer and method and apparatus for manufacturing semiconductor wafer | |
TW229324B (en) | Low cost method of fabricating epitaxial semiconductor devices | |
KR20000017512A (en) | Method for reclaiming wafer substrate and polishing solution composition for reclaiming wafer substrate | |
US7416962B2 (en) | Method for processing a semiconductor wafer including back side grinding | |
JP2002222780A (en) | Surface polishing method of silicon wafer | |
US20020037650A1 (en) | Semiconductor wafer and method for fabrication thereof | |
KR20010092732A (en) | Method of processing semiconductor wafers to build in back surface damage | |
JP2610703B2 (en) | Method for manufacturing semiconductor device | |
JPS6296400A (en) | Production of wafer | |
EP1145296B1 (en) | Semiconductor wafer manufacturing method | |
JP2002124490A (en) | Method of manufacturing semiconductor wafer | |
JPH10180624A (en) | Device and method for lapping | |
JP3668647B2 (en) | Semiconductor wafer substrate regeneration method and semiconductor wafer substrate regeneration polishing liquid | |
JP3775176B2 (en) | Semiconductor wafer manufacturing method and manufacturing apparatus | |
JPH05154760A (en) | Polishing composition and polishing method for silicon wafer | |
JPH048464A (en) | Processing method of silicone wafer | |
JP3906688B2 (en) | Polishing cloth for semiconductor wafer and polishing method | |
JP2002252189A (en) | Polishing liquid for semiconductor wafer | |
JPH0513388A (en) | Manufacture of semiconductor wafer | |
JP4154683B2 (en) | Manufacturing method of high flatness back surface satin wafer and surface grinding back surface lapping apparatus used in the manufacturing method | |
JP2000243731A (en) | Manufacture of high-flatness wafer | |
JP2003151939A (en) | Method of manufacturing soi substrate | |
JP2000211997A (en) | Production of epitaxial wafer |