JPH0484477A - Multidither system compensation optical apparatus - Google Patents

Multidither system compensation optical apparatus

Info

Publication number
JPH0484477A
JPH0484477A JP19794390A JP19794390A JPH0484477A JP H0484477 A JPH0484477 A JP H0484477A JP 19794390 A JP19794390 A JP 19794390A JP 19794390 A JP19794390 A JP 19794390A JP H0484477 A JPH0484477 A JP H0484477A
Authority
JP
Japan
Prior art keywords
laser beam
phase
intensity
distribution
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19794390A
Other languages
Japanese (ja)
Inventor
Yuji Ichinose
祐治 一ノ瀬
Yoshihiro Michiguchi
道口 由博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19794390A priority Critical patent/JPH0484477A/en
Publication of JPH0484477A publication Critical patent/JPH0484477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress control errors due to distribution by providing a means for measuring the distribution of laser beam intensities during transmission and a means for calculating feedback gain on the basis of intensities obtained by this measuring means. CONSTITUTION:A transmission laser beam 10 outputted from a laser generator 1 is guided via a beam splitter 13 to a shape various mirror 2 and a laser beam intensity measuring instrument 7. The transmission laser beam 10 which is made to enter the shape various mirror 2 is phase modulated and collected by a light collecting system 3 onto an object 4. Reflection waves 11 from the object 4 are received by a light detector 5. The received signals are converted into electrical signals, and input to a wave-front controller 6. The phase modulation of the transmission laser beam by the variable shape mirror 2 is performed by frequencies different for each of the regions which is divided into N portions. The wave-front controller 6 comprises control sections 12 for N channels corresponding to the divide-by-N regions. The control sections have the same construction, each of which comprising a synchronization detector 6A, an oscillator 6B and a controller 6C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビームを大気等の媒質中で伝搬させ物体
を照射する装置において、媒質の屈折率の分布に起因す
るレーザビームの拡がりを抑える補償光学装置に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a device for propagating a laser beam in a medium such as the atmosphere to irradiate an object, in which the spread of the laser beam due to the distribution of the refractive index of the medium is suppressed. The present invention relates to an adaptive optics device.

〔従来の技術〕[Conventional technology]

従来、マルチディザー方式補償光学装置については、オ
プティカル ソサエティ オブ アメリカ、67.3.
マーチ(1977年)第315頁から第318頁(0,
S、A、VoQ67、No3゜March、1977.
 p p 315−318)において論しられている。
Conventionally, multi-dither adaptive optics devices have been described by Optical Society of America, 67.3.
March (1977) pp. 315-318 (0,
S, A, VoQ67, No3°March, 1977.
pp. 315-318).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は送信時のレーザビームの強度分布が不均
一な場合に、制御誤差が大きくなるという問題が生しる
The above-mentioned conventional technology has a problem in that control errors become large when the intensity distribution of the laser beam during transmission is non-uniform.

本発明の目的は、この問題の解決策を与える装置を提供
することにある。
The aim of the invention is to provide a device which provides a solution to this problem.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は送信時のレーザビ
ーム強度の分布を計測する手段とこの手段より得られる
強度よりフィードバックゲインを計算する手段を設けた
ものである。
In order to achieve the above object, the present invention is provided with means for measuring the distribution of laser beam intensity during transmission and means for calculating a feedback gain from the intensity obtained by this means.

〔作用〕[Effect]

従来技術では、フィードバックゲインは一定としていた
ため、レーザビーム強度に分布がある場合には、強度分
布と各レーザビームの微少領域の位相分布とが区別がつ
かず、制御誤差が生じた。
In the prior art, the feedback gain is constant, so if the laser beam intensity has a distribution, the intensity distribution and the phase distribution of the minute region of each laser beam cannot be distinguished, resulting in a control error.

このため、まず送信時のレーザビームの強度分布を求め
、この分布によりフィードバックゲインを補正すること
により、分布による制御誤差を抑えることができる。
Therefore, by first determining the intensity distribution of the laser beam during transmission and correcting the feedback gain using this distribution, control errors due to the distribution can be suppressed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。レー
ザ発生器1より出力される送信レーザビーム1はビーム
スプリンタ13を介して、一方は形状可変鏡2へ、他方
はレーザビーム強度測定器7へ導光される。形状可変鏡
2に入射された送信レーザビーム10はここで位相変調
され、集光光学系3により目標物4上に集光される。目
標物4からの反射波11を光検出器5で受信し、受信信
号を電気信号に変換し、波面制御装置6に入力する。形
状可変鏡2での位相変調は、送信レーザビームをN分割
した領域毎に異なった周波数で変調される。波面制御装
置6は、N分割した領域数に対応したNチャンネルの制
御部12から構成されている。各制御部(12A〜12
N、Nチャンネル)は全く同一の構成であり、同期検波
器6A。
An embodiment of the present invention will be described below with reference to FIG. A transmitted laser beam 1 outputted from a laser generator 1 is guided via a beam splinter 13 to a deformable mirror 2 on one side and a laser beam intensity measuring device 7 on the other side. The transmitted laser beam 10 incident on the deformable mirror 2 is phase modulated here, and focused onto the target object 4 by the focusing optical system 3. A reflected wave 11 from a target object 4 is received by a photodetector 5, the received signal is converted into an electrical signal, and the electrical signal is input to a wavefront control device 6. Phase modulation in the deformable mirror 2 is performed at a different frequency for each of the N divided regions of the transmitted laser beam. The wavefront control device 6 includes N-channel control sections 12 corresponding to the number of N divided regions. Each control section (12A to 12
N, N channels) have exactly the same configuration, and a synchronous detector 6A.

発振器6B、コントローラ6Cからなる。但し、各制御
部12の発振器6Bの発振角周波数(ω1゜ω2.・・
・・・・ωN)は各チャンネル毎に異なる。光検出器5
より入力された受信信号は、まず、同期検波器6Aによ
り、各チャンネルの発振角周波数と同一の周波数成分の
みが検出され、コントローラ6Cへ出力される。コント
ローラ6Cでは、入力された信号を増幅(ゲインG)L
、こ九を制御位相φ1cとする。同様に各制御部12よ
り制御位相φ2C+ φsct・・・・・φNCが作ら
れ、発振器6Aの出力信号(ψsinω、1)と制御位
相φ1゜が加算され、駆動用電源9へN個の位相(ΦI
C,Φ2C,・・・・・ΦNc;ΦIC=Φ1c十’p
sinω工1)指令信号が出力される。位相指令信号に
比例した信号が形状可変鏡2に入力され、レーザの位相
変調及び位相制御が行なわれる。一方、ビームスプリッ
タ13によりレーザビーム強度測定器7へ入力された送
信レーザビーム10は、ここでN分割した領域毎のレー
ザ強度が測定され、その結果がゲイン決定回路8へ入力
され、コントローラ6Cで用いるゲインG(G 11 
G z、・・・・・・GN)を決定する。
It consists of an oscillator 6B and a controller 6C. However, the oscillation angular frequency (ω1゜ω2...) of the oscillator 6B of each control unit 12
...ωN) differs for each channel. Photodetector 5
First, the synchronous detector 6A detects only the frequency components that are the same as the oscillation angular frequency of each channel, and outputs the received signals to the controller 6C. The controller 6C amplifies the input signal (gain G) L
, is defined as the control phase φ1c. Similarly, control phases φ2C+φsct...φNC are generated by each control unit 12, the output signal (ψsinω, 1) of the oscillator 6A and the control phase φ1° are added, and N phases ( ΦI
C, Φ2C,...ΦNc; ΦIC=Φ1c10'p
sin ω work 1) A command signal is output. A signal proportional to the phase command signal is input to the deformable mirror 2 to perform phase modulation and phase control of the laser. On the other hand, the transmitted laser beam 10 inputted to the laser beam intensity measuring device 7 by the beam splitter 13 is divided into N parts, and the laser intensity is measured for each region.The result is inputted to the gain determination circuit 8, and the laser intensity is measured for each region by the controller 6C. Gain G (G 11
G z,...GN) is determined.

以上が本発明の一実施例である第1図の各部の機能であ
り、以下本発明のポイントであるゲインGの決定法につ
いて詳細に述べる。まず、形状可変鏡2から出力される
送信レーザビーム10のN分割された領域のレーザ放射
強度Uヨは次式で示される。
The above are the functions of each part of FIG. 1, which is an embodiment of the present invention.The method for determining the gain G, which is the key point of the present invention, will be described in detail below. First, the laser radiation intensity Uyo of the N-divided region of the transmitted laser beam 10 output from the deformable mirror 2 is expressed by the following equation.

U m = A m U o e jΦ”      
   、iF)Φll二  −φmc + ’f’ s
in (1) II を送信時の位相(m番目の) A、:ビーム強度係数 φ、c:制御位相(m番目の) ψ :変調振幅 ω、:変講変周角周波数番目の) 送信レーザビーム10が集光光学系3で集光され目標物
4上に到達したときのm番目のレーザ放射強度は上式と
同じく。
U m = A m U o e jΦ”
, iF) Φll2 −φmc + 'f' s
in (1) II Phase when transmitting (mth) A,: Beam intensity coefficient φ, c: Control phase (mth) ψ: Modulation amplitude ω,: Variable frequency angular frequency) Transmitting laser The m-th laser radiation intensity when the beam 10 is focused by the focusing optical system 3 and reaches the target 4 is the same as the above equation.

U * = A m U o e jΦ′      
  ・・(2)但し、Φ、ニーφmc+Y’sinωm
t+φI+dφ、4:大気に伝搬により乱される位相(
以下、外乱位相と呼ぶ) で表わされる。送信レーザビーム10を反射する目標物
4の面積が集光光学系4及びレーザ波長により決まる集
光限界より小さいと、仮定すれば光検出器5で検出され
る受信信号Ipは、k?!:Q 但し、Uo :送信時の放射強度 kl−Q ・・・(3) 但し、φ1=φに、−φkC・・・(4)φkack番
目の外乱位相 φhc*に番目の制御位相 Jo:’f’を引数とする○次ベッセル関数Js:CP
を引数とする1次ベッセル関数各制御部12の同期検波
器6Aの出力は、変調角周波数成分ω1の振幅のみを取
出すため、その出力をS、とすれば、 Ω ≠肥 ・・(5) ここで、ψ1−φ□郊φとし、(5)式を線形化すると 送信レーザビーム10が均一(Am=11m=1゜2・
・・N)で、コントローラ6Cで次の演算を行うとすれ
ば、 φ1m C” G II・S、           
 ・・・(7)(4)、 (6)、 (7)式より 但し、K、=K(N−1)・G。
U * = A m U o e jΦ′
...(2) However, Φ, knee φmc + Y'sinωm
t+φI+dφ, 4: Phase disturbed by propagation into the atmosphere (
(hereinafter referred to as the disturbance phase). Assuming that the area of the target 4 that reflects the transmitted laser beam 10 is smaller than the focusing limit determined by the focusing optical system 4 and the laser wavelength, the received signal Ip detected by the photodetector 5 will be k? ! :Q However, Uo: Radiation intensity at the time of transmission kl-Q...(3) However, when φ1=φ, -φkC...(4) φkack-th disturbance phase φhc* and th control phase Jo:' ○th order Bessel function Js with f' as an argument: CP
The output of the synchronous detector 6A of each control unit 12 takes out only the amplitude of the modulation angular frequency component ω1, so if the output is S, then Ω ≠ Fertilization (5) Here, by setting ψ1−φ□ φ and linearizing equation (5), the transmitted laser beam 10 becomes uniform (Am=11m=1°2・
...N), and if the controller 6C performs the following calculation, φ1m C” G II・S,
...(7) From formulas (4), (6), and (7), K, = K(N-1)・G.

が得られる。(8)式より、K、が大きければφ、。夕
φ 、、                     
      −(9)となり、従って、φ1=φ、d−
φれよりφ1=φ2=・・・・・・=φ、=・・・・・
=φN=O・(10)となり、N分割のレーザビームの
各位相φ、を一致させることができる。
is obtained. From equation (8), if K is large, φ. Eveningφ,,
−(9), therefore, φ1=φ, d−
From φ1=φ2=・・・・・・=φ,=・・・・・・
=φN=O·(10), and the phases φ of the N-divided laser beams can be matched.

送信レーザビーム10が不均一の場合について述べる。A case where the transmitted laser beam 10 is non-uniform will be described.

このとき、均一ビームの場合に制御位相φ1cを(7)
式と同様に決定したとすれば、次の問題が生じる。すな
わち、(5)、 (6)、 (7)式よす・・・(6) となるため、A、≠1 (m=1.2.−N)より(1
1)式の第2項の変差がφ1cの制御に影響を及ぼす。
At this time, in the case of a uniform beam, the control phase φ1c is expressed as (7)
If it is determined in the same way as the formula, the following problem arises. In other words, equations (5), (6), and (7) are correct...(6) Therefore, from A, ≠ 1 (m=1.2.-N), (1
1) The variation in the second term of the equation affects the control of φ1c.

この解決策として、A、を検出してゲインG、を変えれ
ば良い。すなわち、各ゲインG1をG、=G/A、  
          ・・・(12)で決定すれば、各
制御位相φ工。、・・・・・・φNcは、Q≠m 但し、に1=Kz=・・・KN=K(N−1)・G ・
・・(15)となり、制御位相φ、と外乱位相φ、6の
偏差は、各制御チャンネルmが異なっても、その量は一
定であるため、全体の偏差も少なくなる。言い換えれば
、送信レーザビームの不均一により生じる各制御チャン
ネル毎の偏差のばらつきを、本発明はゲインGの補正に
より解決するため、より偏差を小さくできる。
As a solution to this problem, it is sufficient to detect A and change the gain G. That is, each gain G1 is G, = G/A,
...If determined by (12), each control phase φ work. ,...φNc is Q≠m However, 1=Kz=...KN=K(N-1)・G ・
(15), and the deviation between the control phase φ and the disturbance phase φ, 6 is constant even if each control channel m is different, so the overall deviation is also small. In other words, since the present invention solves the variation in deviation for each control channel caused by non-uniformity of the transmitted laser beam by correcting the gain G, the deviation can be further reduced.

なお、送信レーザビーム10の強度分布が、時間的に変
動しないものであれば、−度強度分布を測定しゲイン補
正を行なえば、補償光学装置を運転中にはゲイン固定で
制御すれば良いことは、容易に類推できる。
Note that if the intensity distribution of the transmitted laser beam 10 does not vary over time, it is sufficient to measure the -degree intensity distribution and perform gain correction, and then control the adaptive optics device to keep the gain fixed during operation. can be easily inferred.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、送信レーザビームの強度分布が不均一
の場合にも、偏差の小さい位相制御ができる。
According to the present invention, even when the intensity distribution of a transmitted laser beam is non-uniform, phase control with small deviation can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図である。 1・・レーザ発生器、2・・・形状可変鏡、3 集光光
学系、4・・・目標物、5・・・光検出器、6・・・波
面制御装置、6A・・・同期検波器、6B・・発振器、
6c・コントローラ、7・・・レーザビーム強度測定器
、8・・ゲイン決定回路、9・・駆動用電源。
FIG. 1 is a block diagram of one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Laser generator, 2... Deformable mirror, 3 Condensing optical system, 4... Target, 5... Photodetector, 6... Wavefront control device, 6A... Synchronous detection device, 6B... oscillator,
6c. Controller, 7. Laser beam intensity measuring device, 8. Gain determining circuit, 9. Drive power supply.

Claims (1)

【特許請求の範囲】 1、レーザビームを媒質中で伝搬させるときに生じるレ
ーザビームの拡り等を抑えるレーザ発生器と前記レーザ
ビームの位相分布を変え前記レーザビームをN分割した
領域毎に異なる周波数で位相変調できる形状可変鏡と媒
質中を伝搬した前記レーザビームを検出する光検出器と
前記光検出器の出力信号から前記N個の位相変調周波成
分のみを分離検出する手段と前記分離検出した信号より
形状可変鏡の形状を決定する手段とを設けたマルチディ
ザー方式補償光学装置において、 レーザ発生器から出力された前記レーザビームの強度を
計測する手段と前記計測手段より得られる前記レーザビ
ームのN分割された領域の強度と前記N個の位相変調周
波数成分により前記形状可変鏡の形状を決定する手段を
設けたことを特徴とするマルチディザー方式補償光学装
置。
[Claims] 1. A laser generator that suppresses the spread of the laser beam that occurs when the laser beam is propagated in a medium, and a phase distribution of the laser beam that is different for each region in which the laser beam is divided into N. A variable shape mirror capable of phase modulation with frequency, a photodetector for detecting the laser beam propagated in a medium, means for separating and detecting only the N phase modulation frequency components from the output signal of the photodetector, and the separate detection. A multi-dither adaptive optics device is provided with a means for determining the shape of a deformable mirror based on a signal obtained by measuring the intensity of the laser beam outputted from a laser generator, and a means for measuring the intensity of the laser beam output from the laser generator, 1. A multi-dither type adaptive optics device, comprising means for determining the shape of the deformable mirror based on the intensity of the N divided regions and the N phase modulation frequency components.
JP19794390A 1990-07-27 1990-07-27 Multidither system compensation optical apparatus Pending JPH0484477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19794390A JPH0484477A (en) 1990-07-27 1990-07-27 Multidither system compensation optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19794390A JPH0484477A (en) 1990-07-27 1990-07-27 Multidither system compensation optical apparatus

Publications (1)

Publication Number Publication Date
JPH0484477A true JPH0484477A (en) 1992-03-17

Family

ID=16382880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19794390A Pending JPH0484477A (en) 1990-07-27 1990-07-27 Multidither system compensation optical apparatus

Country Status (1)

Country Link
JP (1) JPH0484477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140403A (en) * 1993-11-18 1995-06-02 Hitachi Ltd Multi-dither system compensating optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140403A (en) * 1993-11-18 1995-06-02 Hitachi Ltd Multi-dither system compensating optical device

Similar Documents

Publication Publication Date Title
US5841125A (en) High energy laser focal sensor (HELFS)
US11973305B2 (en) Coherent beam combination (CBC) systems and methods
US6961129B2 (en) Active control of two orthogonal polarizations for heterodyne interferometry
NL1032008C2 (en) Active control and detection of two almost orthogonal polarizations in a fiber for heterodyne interferometry.
JPH0484477A (en) Multidither system compensation optical apparatus
US6141138A (en) Apparatus and method for measuring characteristics of light
EP0158505A2 (en) Active mirror wavefront sensor
JP2792782B2 (en) Gas concentration measuring method and its measuring device
US4165182A (en) System for obtaining displacement-amplitude information from a quadrature-dual interferometer
JPH10239600A (en) Compensating optical device, optical space communication device using it, laser range finder, and laser finishing machine
JP2008209188A (en) Polarization mode dispersion measuring device
JPH06186337A (en) Laser distance measuring equipment
US10921290B2 (en) Laser ultrasonic testing
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JP2806131B2 (en) Ultrasonic non-contact detection method and device
JPS6371675A (en) Laser distance measuring instrument
JPH09189537A (en) Measuring method using optical heterodyne interference and device using the method
JPS6252436A (en) Gas detector
JPH02140639A (en) Backscattering light measuring instrument
JPS61235719A (en) Fiber interferometer
JPH067099B2 (en) Gas sensor using tunable etalon
JP2003090704A (en) Optical heterodyne interferometer
JP2000091669A (en) Method and device for dye laser oscillation
JPH06105291B2 (en) Laser distance measuring device
JPH08316555A (en) Light source for optical heterodyne