JPH0483838A - Zirconium alloy for constituting member of nuclear fuel aggregate - Google Patents

Zirconium alloy for constituting member of nuclear fuel aggregate

Info

Publication number
JPH0483838A
JPH0483838A JP2196229A JP19622990A JPH0483838A JP H0483838 A JPH0483838 A JP H0483838A JP 2196229 A JP2196229 A JP 2196229A JP 19622990 A JP19622990 A JP 19622990A JP H0483838 A JPH0483838 A JP H0483838A
Authority
JP
Japan
Prior art keywords
zirconium
alloy
corrosion resistance
zirconium alloy
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2196229A
Other languages
Japanese (ja)
Inventor
Toshio Kubo
久保 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP2196229A priority Critical patent/JPH0483838A/en
Publication of JPH0483838A publication Critical patent/JPH0483838A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a zirconium alloy excellent in corrosion resistance and having suitable workability and ductility by adding a specified amt. of Nb as well as specified amounts of Y, Pb, Cu or the like to zirconium. CONSTITUTION:A zirconium alloy for the constituting member of a nuclear fuel assembly is formed of a compsn. obtd. by adding, by weight, 0.5 to 5% niobium to zirconium and furthermore adding one or >= two kinds selected from the group constituted of yttrium, lead, copper, lanthanum, magnesium, calcium, zinc and tin thereto. The zirconium alloy in this invention, i.e., the ternary allay obtd. by adding yttrium, lead or copper to a zirconium-niobium binary alloy is excellent in both mottled corrosion resistance and uniform corrosion resistance compared to those of the conventional zirconium alloy. By using this alloy, the reliability on a nuclear fuel aggregate can be established.

Description

【発明の詳細な説明】 U産業上の利用分野コ 本発明は、軽水冷却型原子炉における核燃料集合体の構
成部材として使用されるジルコニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a zirconium alloy used as a component of a nuclear fuel assembly in a light water-cooled nuclear reactor.

[従来の技術] ジルコニウム合金は中性子吸収断面積が小さく、400
℃以下で純水あるいは水蒸気との反応が少なくかつ適切
な強度および延性をもつなど、被覆管、スペーサ、チャ
ンネルボックス等の燃料集合体構成部材として優れた特
性をもっている。しかしながら従来使用されてきたジル
コニウム合金は高燃焼度下において冷却水と反応し、ノ
ジュラー腐食と呼ばれる斑点状局部腐食か生しることが
ある。
[Prior art] Zirconium alloy has a small neutron absorption cross section of 400
It has excellent properties as a component of fuel assemblies such as cladding tubes, spacers, channel boxes, etc., as it hardly reacts with pure water or water vapor at temperatures below °C and has appropriate strength and ductility. However, conventionally used zirconium alloys react with cooling water under high burn-up conditions, resulting in spot-like localized corrosion called nodular corrosion.

また、斑点状局部腐食か生じない場合には均一に厚い酸
化膜か形成されることも分かってきた(以下、これを−
様腐食と呼ぶ)。
It has also been found that when spotty local corrosion does not occur, a uniformly thick oxide film is formed (hereinafter referred to as -
(called similar corrosion).

これらの問題に対して、ジルコニウム合金の耐食性を改
善するために、製造工程の途中で焼き入れ処理を実施す
るという提案かなされている(特開昭58−22423
9号公報)。
In order to improve the corrosion resistance of zirconium alloys, a proposal has been made to deal with these problems by quenching the zirconium alloy during the manufacturing process (Japanese Patent Laid-Open No. 58-22423
Publication No. 9).

「発明か解決しようとする課題] しかしながら、上記従来技術、すなわち焼き入れ処理に
よって耐食性を向上させる方法には、焼き入れにより加
工性や延性か低下するという問題かあった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technique, that is, the method of improving corrosion resistance by quenching treatment, had a problem in that workability and ductility decreased due to quenching.

本発明はかかる情況に対処してなされたもので、適切な
加工性、延性を保持しつつジルコニウム合金の耐食性を
大幅に改善し、核燃料集合体の構成部材として適したジ
ルコニウム合金を提供することを目的とするものである
The present invention was made in response to such circumstances, and aims to significantly improve the corrosion resistance of zirconium alloy while maintaining appropriate workability and ductility, and to provide a zirconium alloy suitable as a constituent member of a nuclear fuel assembly. This is the purpose.

[課題を解決するための手段] すなわち本発明は、ジルコニウムに05〜5重量%のニ
オブを添加し、さらにイツトリウム、鉛、銅、ランタン
、マグネシウム、カルシウム、亜鉛およびスズからなる
群から選ばれた1種または2種以上を添加してなること
を特徴とする核燃料集合体構成部材用ジルコニウム合金
に関する。
[Means for Solving the Problems] That is, the present invention adds 0.5 to 5% by weight of niobium to zirconium, and further adds niobium selected from the group consisting of yttrium, lead, copper, lanthanum, magnesium, calcium, zinc and tin. The present invention relates to a zirconium alloy for nuclear fuel assembly constituent parts, characterized in that it is made by adding one or more kinds.

[作用] 従来のジルコニウム合金は、ジルコニウムにスズ、鉄、
クロム、ニッケル、ニオブあるいはモリブデンをそれぞ
れ単独あるいは複数元素組み合わせて添加したものであ
った。上記ジルコニウム合金は、ジルコニウムよりは耐
食性が優れているが、原子炉内で長期間使用されている
間に前記斑点状腐食が生じる。また、斑点状腐食を生じ
ない場合には耐−様腐食性が低下するなどの問題が残っ
ていた。
[Function] Conventional zirconium alloys contain tin, iron, and zirconium.
Chromium, nickel, niobium, or molybdenum were added individually or in combination. Although the zirconium alloy has better corrosion resistance than zirconium, the spotty corrosion occurs during long-term use in a nuclear reactor. In addition, when spot corrosion does not occur, there remains a problem such as a decrease in -like corrosion resistance.

ジルコニウムにニオブを約0.5重量%添加することに
より斑点状局部腐食性は大幅に改善されるが、耐−様腐
食性は低下する。本発明者は、ジルコニウムに約0.5
重量%のニオブを添加し、さらに第3元素としてイツト
リウム、鉛、銅、ランタン、マグネシウム、カルシウム
、亜鉛およびスズからなる群から選ばれた1種または2
種以上を添加することにより、斑点状局部腐食および一
様腐食の改善を図った。その結果、ニオブにより斑点状
局部腐食が減少し、また上記第3元素の添加により一様
腐食が減少することが分かった。
By adding about 0.5% by weight of niobium to zirconium, the spot-like corrosion resistance is significantly improved, but the -like corrosion resistance is reduced. The inventor has determined that zirconium has approximately 0.5
% by weight of niobium, and one or two selected from the group consisting of yttrium, lead, copper, lanthanum, magnesium, calcium, zinc and tin as a third element.
By adding more than one species, we attempted to improve spotty localized corrosion and uniform corrosion. As a result, it was found that niobium reduced spotty local corrosion, and addition of the third element reduced uniform corrosion.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、ジルコニウム−ニオブ2元系合金にイツトリ
ウム、鉛、あるいは銅を添加した3元系合金の耐食性を
従来のジルコニウム合金と比較した図である。図ではニ
オブ濃度は1重量%、イツトリウム濃度は0.3重量%
、鉛および銅の濃度はいずれも1.5重量%のものを例
として挙げた。耐食性評価のために、高温水蒸気中腐食
試験(5oO℃/24時間)および高温水中腐食試験(
300℃/30日)を実施し、前者の腐食増量から斑点
状腐食性を、後者の腐食増量から一様腐食性を評価した
FIG. 1 is a diagram comparing the corrosion resistance of a ternary alloy in which yttrium, lead, or copper is added to a binary zirconium-niobium alloy with that of a conventional zirconium alloy. In the figure, the niobium concentration is 1% by weight and the yttrium concentration is 0.3% by weight.
As an example, the concentrations of lead and copper were all 1.5% by weight. For corrosion resistance evaluation, high temperature steam corrosion test (5oO℃/24 hours) and high temperature underwater corrosion test (
300° C./30 days), and the spotty corrosion was evaluated based on the corrosion weight increase in the former, and the uniform corrosion was evaluated based on the latter corrosion weight increase.

第1図から明らかなように、ジルコニウム−ニオブ2元
系合金は従来のジルコニウム合金より耐斑点状腐食性は
優れているが、耐−様腐食性は劣っている。一方、本発
明のジルコニウム合金、すなわちジルコニウム−ニオブ
2元系合金にイツトリウム、鉛あるいは銅を添加した3
元系合金は、耐斑点状腐食性および耐−様腐食性のいず
れも従来のジルコニウム合金より優れている。
As is clear from FIG. 1, the zirconium-niobium binary alloy is superior to conventional zirconium alloys in spot corrosion resistance, but is inferior in spot corrosion resistance. On the other hand, the zirconium alloy of the present invention, that is, the zirconium-niobium binary alloy containing yttrium, lead, or copper,
The base alloy is superior to conventional zirconium alloys in both spot corrosion resistance and -like corrosion resistance.

第2図は本発明のジルコニウム合金中のイツトリウム、
鉛および銅の各濃度と耐食性および延性の関係を示した
ものである。図中、1はイツトリウムの特性曲線、2は
銅の特性曲線、3は鉛の特性曲線である。イツトリウム
の場合は約0.1%以上で耐食性に対する改良効果が現
れているが、濃度の増加に伴い延性か低下する傾向もあ
り、約1%以上から急激な低下傾向を示す。一方、鉛お
よび銅の場合は約0.5%以上で効果か現れ、約1%以
上では概ね飽和傾向にあること、また延性は約3%以上
では濃度増加に伴い徐々に減少することが分かる。
Figure 2 shows yttrium in the zirconium alloy of the present invention,
This figure shows the relationship between lead and copper concentrations, corrosion resistance, and ductility. In the figure, 1 is a characteristic curve of yttrium, 2 is a characteristic curve of copper, and 3 is a characteristic curve of lead. In the case of yttrium, an improvement effect on corrosion resistance appears when the concentration is about 0.1% or more, but ductility also tends to decrease as the concentration increases, and shows a sharp decreasing tendency from about 1% or more. On the other hand, in the case of lead and copper, the effect appears at about 0.5% or more, and it tends to be saturated at about 1% or more, and the ductility gradually decreases as the concentration increases at about 3% or more. .

なお、発明者の一連の実験結果から、第3元素はランタ
ン、マグネシウム、カルシウム、亜鉛およびスズでも上
記添加元素と同等の効果を有することか分かった。また
、ニオブ濃度が約5%以上では急速に延性が低下するた
め、ニオブ濃度は5%以下とすることが望ましい。
Furthermore, from a series of experimental results conducted by the inventor, it has been found that the third elements lanthanum, magnesium, calcium, zinc, and tin have the same effect as the above additive elements. Further, since ductility rapidly decreases when the niobium concentration is about 5% or more, it is desirable that the niobium concentration is 5% or less.

[発明の効果] 以上説明したように、本発明によれば、従来のジルコニ
ウム合金よりも耐食性が優れ、かつ適切な加工性および
延性を有するジルコニウム合金を提供でき、核燃料集合
体に対する一層の信頼性と経済性を確立することができ
る。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a zirconium alloy that has better corrosion resistance than conventional zirconium alloys and has appropriate workability and ductility, thereby providing further reliability for nuclear fuel assemblies. It is possible to establish economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジルコニウム−ニオブ2元系合金にイツトリウ
ム、鉛あるいは銅を添加した3元系合金の耐食性を従来
のジルコニウム合金と比較した図、第2図は本発明のジ
ルコニウム合金中のイツトリウム、鉛および銅濃度と合
金の耐食性および延性の関係を示す図である。 1・・・イツ トリウムの特性曲線 2・・・銅の特性曲線 3・・・鉛の特性曲線
Figure 1 is a diagram comparing the corrosion resistance of a ternary alloy in which yttrium, lead, or copper is added to a binary zirconium-niobium alloy with that of a conventional zirconium alloy. Figure 2 shows yttrium and lead in the zirconium alloy of the present invention. FIG. 3 is a diagram showing the relationship between copper concentration and corrosion resistance and ductility of an alloy. 1... Characteristic curve of yttrium 2... Characteristic curve of copper 3... Characteristic curve of lead

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニウムに0.5〜5重量%のニオブを添加
し、さらにイットリウム、鉛、銅、ランタン、マグネシ
ウム、カルシウム、亜鉛およびスズからなる群から選ば
れた1種または2種以上を添加してなることを特徴とす
る核燃料集合体構成部材用ジルコニウム合金。
(1) Adding 0.5 to 5% by weight of niobium to zirconium, and further adding one or more selected from the group consisting of yttrium, lead, copper, lanthanum, magnesium, calcium, zinc, and tin. A zirconium alloy for nuclear fuel assembly constituent members, characterized by the following:
JP2196229A 1990-07-26 1990-07-26 Zirconium alloy for constituting member of nuclear fuel aggregate Pending JPH0483838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196229A JPH0483838A (en) 1990-07-26 1990-07-26 Zirconium alloy for constituting member of nuclear fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196229A JPH0483838A (en) 1990-07-26 1990-07-26 Zirconium alloy for constituting member of nuclear fuel aggregate

Publications (1)

Publication Number Publication Date
JPH0483838A true JPH0483838A (en) 1992-03-17

Family

ID=16354349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196229A Pending JPH0483838A (en) 1990-07-26 1990-07-26 Zirconium alloy for constituting member of nuclear fuel aggregate

Country Status (1)

Country Link
JP (1) JPH0483838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628124A (en) * 2012-05-02 2012-08-08 北京科技大学 Yttrium-containing zirconium alloy material and preparation method thereof
CN106676297A (en) * 2017-03-24 2017-05-17 南昌专腾科技有限公司 Smelting method and system for zirconium niobium lead alloy
CN106801155A (en) * 2017-03-24 2017-06-06 南昌专腾科技有限公司 The smelting process and system of a kind of zirconium-niobium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628124A (en) * 2012-05-02 2012-08-08 北京科技大学 Yttrium-containing zirconium alloy material and preparation method thereof
CN106676297A (en) * 2017-03-24 2017-05-17 南昌专腾科技有限公司 Smelting method and system for zirconium niobium lead alloy
CN106801155A (en) * 2017-03-24 2017-06-06 南昌专腾科技有限公司 The smelting process and system of a kind of zirconium-niobium alloy

Similar Documents

Publication Publication Date Title
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
KR100441979B1 (en) Tube for a nuclear fuel assembly and method for making same
KR100205917B1 (en) Zirlo material for light water reactor applications
KR100334252B1 (en) Niobium-containing zirconium alloys for nuclear fuel cladding
KR930009415B1 (en) Corrosion resistant zirconium alloy
US3963534A (en) Zirconium alloys
US8882939B2 (en) Zirconium alloy resistant to corrosion in drop shadows for a fuel assembly component for a boiling water reactor, component produced using said alloy, fuel assembly, and use of same
US5985211A (en) Composition of zirconium alloy having low corrosion rate and high strength
US4963323A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
KR19990069103A (en) Zirconium alloy composition with excellent corrosion resistance and high strength
JPH0483838A (en) Zirconium alloy for constituting member of nuclear fuel aggregate
US2990274A (en) Uranium-titanium-niobium alloys
KR100286871B1 (en) Zirconium alloy composition with excellent corrosion resistance and mechanical properties
JP4718656B2 (en) Zr alloy for nuclear fuel assemblies
US3431104A (en) Zirconium base alloy
JPS6239223B2 (en)
JPH0762197B2 (en) Zirconium alloy for nuclear reactor
JPS61174347A (en) Nodular corrosion resisting zirconium-base alloy
JP2675297B2 (en) Corrosion resistant zirconium alloy
JPH02167495A (en) Structural member of nuclear fuel element made of zirconium alloy
JPS6126738A (en) Zirconium alloy
Bell et al. An investigation of the sensitization behavior of Fe-Mn-Cr austenitic steels
JP3003862B2 (en) Corrosion resistant zirconium alloy
JPS6360248A (en) Highly corrosion-resistant zirconium alloy member
JPS62207835A (en) Zr alloy having superior nodular corrosion resistance