JPH0482280A - Metal vapor laser device - Google Patents

Metal vapor laser device

Info

Publication number
JPH0482280A
JPH0482280A JP19493290A JP19493290A JPH0482280A JP H0482280 A JPH0482280 A JP H0482280A JP 19493290 A JP19493290 A JP 19493290A JP 19493290 A JP19493290 A JP 19493290A JP H0482280 A JPH0482280 A JP H0482280A
Authority
JP
Japan
Prior art keywords
laser
discharge tube
metal
buffer gas
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19493290A
Other languages
Japanese (ja)
Inventor
Motoo Yamaguchi
元男 山口
Akira Wada
和田 昭
Tsuneyoshi Ohashi
大橋 常良
Toshimitsu Yoshikawa
吉川 利満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19493290A priority Critical patent/JPH0482280A/en
Publication of JPH0482280A publication Critical patent/JPH0482280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To prevent a laser takeout efficiency from being lowered when a metal vapor adheres to a laser takeout window by a method wherein a buffer gas is made to flow uniformly and at high speed near the introduction port and the evacuation port of the buffer gas from the circumference. CONSTITUTION:A prescribed temperature and a prescribed metal-vapor concentration are set inside a discharge tube 60. However, since a temperature is low near end-part containers 51, 52 and laser takeout windows 21, 22, a metal vapor is diffused and moved toward the windows 21, 22. At this time, a buffer gas is introduced and evacuated at high speed uniformly in the circumferential direction at the inside of the containers 51, 52 of an introduction port 11 and an evacuation port 12. Then, buffer gas streams 101, 102 and gas streams 111, 112 coming into contact with the container walls 51, 52 are generated simultaneously. Metal-vapor gas streams 121. 122 are superposed on the gas streams 111, 112 and are captured at inner circumferential walls of the containers 51, 52. Thereby, it is possible to prevent a laser output from being lowered when a vapor-source metal adheres to the laser takeout windows.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属蒸気レーザにおけるレーザ取り出し窓の
蒸気金属による汚損防止構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure for preventing contamination of a laser extraction window of a metal vapor laser by vapor metal.

〔従来の技術〕[Conventional technology]

第4図及び第5図を用いて従来技術を説明する。 The prior art will be explained using FIGS. 4 and 5.

第4図において、放電管60は断熱材80で熱シールド
されており、放電管60と同軸になるよう電極31.3
2を設け、これらを容器50と絶縁部40で外気とは気
密性を保っている。電極31.32の外側には端部容器
51.52を設け、レーザ取り出し窓21.22を保持
し、これらはいずれも外気とは気密性を保っている。端
部容器5]と52の間は、ガスを循環する配管190と
、絶縁筒41で接続されていて、外気とは気密性を保っ
ている。この装置内にはバッファガスとして、ネオンガ
ス等が約数+Torr封入されている。電極31と32
の間に高電圧を印加し、グロー放電を発生させ、放電エ
ネルギで装置を昇温し、放電管60内に挿入した蒸気源
金属70を溶融し、所定の蒸気圧に保持する。この金属
蒸気をレーザ媒質として、グロー放電で励起し、レーザ
発振条件を整える。すなわち、全反射ミラー1.半透過
ミラ2、で励起空間を挾むと、二枚のミラーの間を往復
反射する間に、レーザ光は増幅されて強くなり、その一
部が半透過ミラー2から外部に取り出されてレーザ3と
して利用される。全反射ミラー1、半透過ミラー2、を
設けずに、他の発振器で発振したレーザビームを通すこ
とにより、ビーム強度を強める増幅器として用いること
もある。
In FIG. 4, the discharge tube 60 is heat shielded by a heat insulating material 80, and the electrodes 31.3 are coaxial with the discharge tube 60.
2, which are kept airtight from the outside air by a container 50 and an insulating section 40. An end container 51.52 is provided outside the electrode 31.32 and holds a laser extraction window 21.22, both of which are kept airtight from the outside air. The end containers 5] and 52 are connected to a pipe 190 for circulating gas through an insulating tube 41, and are kept airtight from the outside air. Neon gas or the like is sealed in this device as a buffer gas at a diagonal of +Torr. electrodes 31 and 32
During this period, a high voltage is applied to generate a glow discharge, the temperature of the device is raised by the discharge energy, and the vapor source metal 70 inserted into the discharge tube 60 is melted and maintained at a predetermined vapor pressure. This metal vapor is used as a laser medium and excited by glow discharge to prepare laser oscillation conditions. That is, total reflection mirror 1. When the excitation space is sandwiched between the semi-transmissive mirror 2, the laser beam is amplified and becomes stronger while being reflected back and forth between the two mirrors, and a part of it is taken out from the semi-transmissive mirror 2 and transmitted to the laser 3. used as. It may also be used as an amplifier that increases the beam intensity by passing a laser beam oscillated by another oscillator without providing the total reflection mirror 1 and the semi-transmission mirror 2.

このような金属蒸気レーザでは、電極31゜32間の放
電管60付近では温度が高く、金属蒸気濃度が高いが、
端部容器51,52、レーザ取り出し窓21.22近辺
は温度が低く、金属蒸気濃度はOである。そこで金属蒸
気が放電管60内からレーザ取り出し窓21.22に向
かって拡散移動し、レーザ取り出し窓21.22に付着
する。
In such a metal vapor laser, the temperature is high near the discharge tube 60 between the electrodes 31 and 32, and the metal vapor concentration is high;
The temperature near the end containers 51 and 52 and the laser extraction windows 21 and 22 is low, and the metal vapor concentration is O. There, the metal vapor diffuses from inside the discharge tube 60 toward the laser extraction window 21.22 and adheres to the laser extraction window 21.22.

その結果、レーザ光が吸収され、レーザ取り出し。As a result, the laser light is absorbed and the laser beam is extracted.

窓21.22から外に取り出す効率が低下する。The efficiency of taking out through the windows 21, 22 is reduced.

これを防止するため、端部容器51.52間に設けたガ
スを循環する配管190内フアン200を設け、バッフ
ァガスを循環し、レーザ取り出し窓に向って拡散する金
属蒸気を配管工90内の金属蒸気回収体210で回収す
る。
In order to prevent this, a fan 200 is provided in the pipe 190 provided between the end containers 51 and 52 to circulate the gas, and the fan 200 in the pipe 190 is provided between the end containers 51 and 52 to circulate the buffer gas and remove the metal vapor that diffuses toward the laser extraction window. The metal vapor recovery body 210 collects the metal vapor.

次に、第5図はレーザ取り出し窓21と端部容器51と
金属蒸気付着防止装置220からなり、右側の金属蒸気
濃度の高い領域から、レーザ取り出し窓21に向って、
金属蒸気が拡散して来る。
Next, FIG. 5 consists of the laser extraction window 21, the end container 51, and the metal vapor adhesion prevention device 220, and from the region with high metal vapor concentration on the right side toward the laser extraction window 21,
Metal vapor diffuses.

これを、金属蒸気付着防止装置220により、レーザ取
り出し窓21に付着するのを防ぐ。この金属蒸気付着防
止装置220として、従来、次に示すような方法が用い
られている。それらは、ファンを用いる方法、水冷トラ
ップを用いる方法、イオントラップ等を用いる方法であ
る。
The metal vapor adhesion prevention device 220 prevents this from adhering to the laser extraction window 21. Conventionally, the following method has been used as this metal vapor adhesion prevention device 220. These include a method using a fan, a method using a water-cooled trap, a method using an ion trap, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図に示す従来技術では、循環ガスが放電管6o内を
流れると、次の二つの問題が発生する。
In the conventional technique shown in FIG. 4, the following two problems occur when circulating gas flows inside the discharge tube 6o.

一つは金属蒸気が放電管60の外に排出されるため、蒸
気源金属70の消耗寿命が短かくなることである。他の
一つは循環ガスが多量に流れると冷却効果が働き、放電
管60の温度が下り、運転温度に保つためには外部から
放電々力を補う必要が生し、効率が低下するという問題
である。これら問題をさけるためには、循環ガスができ
るだけ放電管60の内側を流九ないようにする必要があ
る。
One is that since the metal vapor is discharged outside the discharge tube 60, the wear life of the vapor source metal 70 is shortened. Another problem is that when a large amount of circulating gas flows, a cooling effect occurs, which lowers the temperature of the discharge tube 60, and in order to maintain the operating temperature, it becomes necessary to supplement the discharge force from the outside, reducing efficiency. It is. In order to avoid these problems, it is necessary to prevent the circulating gas from flowing inside the discharge tube 60 as much as possible.

即ち、放電管60の流路抵抗に較べ、ガス循環用配管1
90の流路抵抗が小さいことが必要条件である。放電管
60の内径及び長さは、レーザの出力に、直接、関係す
るため、装置固有の数値である。又、レーザの発生装置
であるため筒状直管である。そこで、ガス循環用配管工
90は放電管60より長くなる。その結果、ガス循環用
配管190は内径が放電管60の内径より大きくする必
要が生しる。装置は非常に大きなものになる欠点がある
That is, compared to the flow path resistance of the discharge tube 60, the gas circulation piping 1
A necessary condition is that the flow path resistance of 90 is small. The inner diameter and length of the discharge tube 60 are directly related to the output of the laser, and are therefore device-specific values. Also, since it is a laser generator, it is a straight cylindrical tube. Therefore, the gas circulation plumber 90 is longer than the discharge tube 60. As a result, the inner diameter of the gas circulation pipe 190 needs to be larger than the inner diameter of the discharge tube 60. The disadvantage is that the device is very large.

又、第5図に示す従来技術では、いずれの方法も高電圧
側では、高電圧絶縁された課電設備が必要となる。又、
高温度、熱放射を受ける領域で使用するため、耐熱性の
良い構造材を用いる必要が生じるなど、設備が大きくな
る欠点と、耐熱面で高価となる欠点がある。
Further, in the conventional technology shown in FIG. 5, any method requires high voltage insulated power charging equipment on the high voltage side. or,
Since it is used in areas subject to high temperatures and heat radiation, it requires the use of structural materials with good heat resistance, which has the disadvantage of requiring large equipment and being expensive in terms of heat resistance.

本発明の目的はレーザ取り出し窓に金属蒸気が付着して
、レーザの取り出し効率が低下するのを防ぐことにある
An object of the present invention is to prevent metal vapor from adhering to the laser extraction window and reducing laser extraction efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、放電管60内の金属蒸気が
レーザ取り出し窓21に向かって濃度拡散で飛散し、レ
ーザ取り窓21に付着する前に、バッファガスの導入、
及び、排気口近くでバッフアガスを周囲から一様に、が
っ、高速で流すことにより、端部容器壁に付着捕集する
In order to achieve the above object, before the metal vapor in the discharge tube 60 scatters toward the laser extraction window 21 by concentration diffusion and adheres to the laser extraction window 21, a buffer gas is introduced;
By flowing the buffer gas uniformly from the surrounding area near the exhaust port at high speed, it is collected on the end container wall.

〔作用〕[Effect]

金属蒸気レーザは、金属を溶融蒸発させるため高い温度
で運転することになる。そのため、構造材が劣化し、不
純物ガスが発する。この不純物ガスは放電の不安定によ
る不拘−励起2反転分布低減等によるレーザ出力の低下
を防ぐためにバッファガスを循環再生、又は、置換して
いる。このバッファガスを導入口、及び、排気口の装置
内側で周方向に一様で高速度の導入及び排気を行なわせ
、端部容器壁に接触するガス流を発生させる。放電管内
で発生し、レーザ取り出し窓に拡散して来る金属蒸気を
、このガス流で端部容器壁に接触させ、金属蒸気を捕集
するので、レーザ取り比し窓を汚損から保護し、レーザ
出力の低下を防ぐことができる。
Metal vapor lasers operate at high temperatures to melt and vaporize the metal. As a result, the structural materials deteriorate and impurity gases are emitted. This impurity gas is circulated and regenerated or replaced with the buffer gas in order to prevent a decrease in laser output due to unrestricted-excitation 2 population inversion reduction due to instability of discharge. This buffer gas is uniformly introduced and exhausted in the circumferential direction inside the device at the inlet and the outlet at a high speed to generate a gas flow that contacts the end container wall. The metal vapor generated in the discharge tube and diffused to the laser extraction window is brought into contact with the end container wall by this gas flow and collected, thereby protecting the laser extraction window from contamination and removing the laser beam. It is possible to prevent a decrease in output.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第3図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、放電部は電極31.32と放電管60
.断熱材80.容器50から構成されており、放電管6
0は断熱材80で熱シールドされており、放電管と同軸
上に放電管の両端に一対の電極31.32を設けている
。電極間を接続する外周は容器50と、電極間を電気的
に絶縁する絶縁筒40で覆われており、外気とは気密性
を保っている。電極31.32の軸方内反放電管60側
は、端部容器51.52を設け、その両端部にレーザ取
り出し窓21.22が保持している。パンファガス導入
口91、及び、排出口92以外は実質的に外気と気密性
を保っている。装置内には導入口91を通してバッファ
ガス11が送り込まれ、排出口92からバッファガス1
2が放出されており、放電管内では数Torr〜数十T
orrになっている。
In FIG. 1, the discharge section includes electrodes 31, 32 and a discharge tube 60.
.. Insulation material 80. It is composed of a container 50 and a discharge tube 6.
0 is heat shielded with a heat insulating material 80, and a pair of electrodes 31 and 32 are provided at both ends of the discharge tube coaxially with the discharge tube. The outer periphery connecting the electrodes is covered with a container 50 and an insulating cylinder 40 that electrically insulates the electrodes, maintaining airtightness from the outside air. The axially inverting discharge tube 60 side of the electrode 31.32 is provided with an end container 51.52, at each end of which a laser extraction window 21.22 is held. Except for the gas inlet 91 and the outlet 92, the airtightness is maintained substantially from the outside air. Buffer gas 11 is fed into the device through an inlet 91, and buffer gas 11 is fed into the device through an outlet 92.
2 is emitted, and the temperature within the discharge tube ranges from several Torr to several tens of T.
It has become orr.

電極31と32の間に高電圧を印加し、グロー放電を発
生させ、放電エネルギで装置を昇温し、放電管60内に
挿入した蒸気源金属70を溶融し、所定の蒸気圧に保持
する。この金属蒸気をレーザ媒質として、グロー放電で
励起し、レーザ発振条件を整える。即ち、全反射ミラー
1.半透過ミラー2、で励起空間を挾むと、二枚のミラ
ー間を往復反射する間に、レーザ光は増幅されて強くな
り、その一部が半透過ミラー2から外部に取り出されて
、レーザ3として利用される。全反射ミラー1゜半透過
ミラー2、を設けずに、他の発振器で発振したレーザビ
ームを通すことにより、ビーム強度を強める増幅器とし
て用いることもある。
A high voltage is applied between the electrodes 31 and 32 to generate a glow discharge, the temperature of the device is raised by the discharge energy, and the vapor source metal 70 inserted into the discharge tube 60 is melted and maintained at a predetermined vapor pressure. . This metal vapor is used as a laser medium and excited by glow discharge to prepare laser oscillation conditions. That is, total reflection mirror 1. When the excitation space is sandwiched between the semi-transmissive mirror 2, the laser beam is amplified and becomes stronger while being reflected back and forth between the two mirrors, and a part of it is taken out from the semi-transmissive mirror 2 and is emitted by the laser 3. used as. It may also be used as an amplifier to strengthen the beam intensity by passing a laser beam oscillated by another oscillator without providing the total reflection mirror 1 and the half-transmission mirror 2.

この金属蒸気レーザにおいて、放電管60内は、所定温
度、所定金属蒸気濃度であるが、端部容器:51.52
及びレーザ取り出し窓21.22近辺は温度が低く、金
属蒸気の濃度はOである。そこで金属蒸気が放電管60
からレーザ取り出し窓21.22に向かって拡散移動す
る。バッファガスの導入口11及び排気口12の端部容
器51゜52内側で、周方向に一様で、高速度の導入及
び排気を行なわせると、放電管内へ向うバッファガス1
01と、放電管内からガス排気口92に向うバッファガ
ス流102と同時に、端部容器壁51゜52に接触する
ガス流111,112が発生する。
In this metal vapor laser, the inside of the discharge tube 60 is at a predetermined temperature and a predetermined metal vapor concentration.
The temperature near the laser extraction windows 21 and 22 is low, and the concentration of metal vapor is O. There, metal vapor flows into the discharge tube 60.
The laser beam diffuses and moves toward the laser extraction windows 21 and 22. When the buffer gas is uniformly introduced and exhausted in the circumferential direction at a high speed inside the end containers 51 and 52 of the buffer gas inlet 11 and exhaust port 12, the buffer gas 1 flows into the discharge tube.
01 and a buffer gas flow 102 from inside the discharge tube toward the gas outlet 92, gas flows 111, 112 are generated which contact the end vessel walls 51, 52.

金属蒸気ガス流121,122をこの端部容器壁に接触
するガス流111,112に乗せ、端部容器51.52
の内周壁に捕集する。
The metal vapor gas streams 121, 122 are superimposed on the gas streams 111, 112 in contact with this end vessel wall, and the end vessels 51,52
collected on the inner wall of the

第2図は、第1図におけるガス排気口92をガス導入口
92′として用い、排気口141,142は電極31.
32と放電管60の間隔を通り、断熱材80の両端部に
位置する部分から排出するように設ける。そして導入ガ
ス11と12′には圧力差を設け、圧力の高い側では、
導入ガス流11は端部容器51内で、放電管60へ導入
するガス流101と、金属蒸気ガス流121を端部容器
51の内周壁で捕集するように流れるガス流111とに
分れ、さらに、放電管60に向うガス流101は、放電
管60内を流れるガス流130と、電極31と放電管6
0の間隙を通して、排気口141から外部に排出するガ
ス流151とに分かれる。
In FIG. 2, the gas exhaust port 92 in FIG.
32 and the discharge tube 60, and is disposed so as to be discharged from the portions located at both ends of the heat insulating material 80. A pressure difference is provided between the introduced gases 11 and 12', and on the higher pressure side,
The introduced gas flow 11 is divided within the end container 51 into a gas flow 101 that is introduced into the discharge tube 60 and a gas flow 111 that flows so as to collect the metal vapor gas flow 121 on the inner peripheral wall of the end container 51. Furthermore, the gas flow 101 toward the discharge tube 60 is combined with the gas flow 130 flowing inside the discharge tube 60, the electrode 31, and the discharge tube 6.
It separates into a gas flow 151 which is discharged to the outside from an exhaust port 141 through a gap of 0.0 mm.

ガス圧の低い側では導入ガス流12′は端部容器52内
で、放電管60へ導入するガス流102′と金属蒸気ガ
ス流122を端部容器52の内周壁で捕集するように流
れるガス流112とに分かれ、放電管60内に向うガス
流102′は放電管60内を流れるガス流1.30と合
流して、電極32と放電管60の間隙から排気口142
を通して、外部に排出するガス流152となる。
On the low gas pressure side, the inlet gas stream 12' flows in the end vessel 52 in such a way that the gas stream 102' and the metal vapor gas stream 122, which are introduced into the discharge tube 60, are collected on the inner circumferential wall of the end vessel 52. The gas flow 102' directed into the discharge tube 60 merges with the gas flow 1.30 flowing inside the discharge tube 60, and flows from the gap between the electrode 32 and the discharge tube 60 to the exhaust port 142.
The gas flow 152 is discharged to the outside through the gas flow.

このように、ガスの導入、排気口の位置が異なる以外の
構造及び機能は第1図と全く同じである。
In this way, the structure and functions are exactly the same as in FIG. 1, except for the gas introduction and exhaust port positions.

第3図はバンファガスの導入及び排気部の構造を示す。FIG. 3 shows the structure of the banfa gas introduction and exhaust section.

(a)はガスの導入及び排気部を端部容器51の内周に
、−様のスリット170状態に形成した場合である。(
b)はガス導入及び排気部を端部容器51の内周に小孔
180列の状態に形成した場合である。
(a) shows the case where the gas introduction and exhaust portions are formed in the inner periphery of the end container 51 in the form of --shaped slits 170. (
b) is a case where the gas introduction and exhaust portions are formed in 180 rows of small holes on the inner periphery of the end container 51.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザ本体内外に導入、又は、排気す
るパンファガスが導入部、及び、排気部で、端部容器壁
に接触するガス流により、放電管内部から拡散してくる
蒸気源金属を端部容器壁に付着捕集することができるの
で、レーザ取り出し窓に付着して、レーザ出力の低下を
防ぐことができる。
According to the present invention, the vapor source metal diffused from inside the discharge tube is absorbed by the gas flow that is introduced into or exhausted from the inside and outside of the laser main body at the introduction section and the exhaust section, and is brought into contact with the end container wall. Since it can be collected on the end container wall, it can be prevented from adhering to the laser extraction window and reducing the laser output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す金属蒸気レーザ装置の
断面図、第2図は本発明の応用例を示す断面図、第3図
は第1図、第2図のガス導入・排気部の拡大図、第4図
は従来の金属蒸気レーザの断面図、第5図は従来の金属
蒸気レーザの端部説明図である。 11.12’  ・・導入ガス流、12・・・排気ガス
流、21.22・レーザ取り出し窓、31.32  ・
電極、51.52・・・端部容器、60・放電管、70
・・蒸気源金属、91.92  ・カス吸排気管、17
0電1図 來5図
Fig. 1 is a cross-sectional view of a metal vapor laser device showing an embodiment of the present invention, Fig. 2 is a cross-sectional view showing an application example of the present invention, and Fig. 3 is a gas introduction/exhaust diagram of Fig. 1 and Fig. 2. FIG. 4 is a sectional view of a conventional metal vapor laser, and FIG. 5 is an explanatory view of an end portion of a conventional metal vapor laser. 11.12'...Introduction gas flow, 12...Exhaust gas flow, 21.22.Laser extraction window, 31.32.
Electrode, 51.52 End container, 60 Discharge tube, 70
・Steam source metal, 91.92 ・Scrap intake and exhaust pipe, 17
0den 1 figure 5 figure

Claims (1)

【特許請求の範囲】 1、容器の内部に円筒状のセラミックス製放電管、前記
放電管の周囲に断熱材、前記放電管の両端に設けた前記
放電管と実質的に同軸の、一対の筒状電極、前記容器の
一部となるように前記一対の電極のさらに両端にレーザ
取り出し窓、前記窓と前記電極の間の容器壁にバッファ
ガスの導入及び排気口、前記放電管の内部に、レーザ媒
質となる金属を設け、前記金属の一部が蒸発して気体状
となつている金属蒸気を含むガスを、放電により励起す
る蒸気レーザ装置において、前記電極と前記レーザ取り
出し窓の間の前記容器壁のいずれにも、前記容器の周方
向にスリットを設け、一方を前記バッファガスの導入口
、他方を排気口としたことを特徴とする金属蒸気レーザ
装置。 2、請求項1において、前記電極と前記レーザ取り出し
窓の間の空間は、前記バッファガスの導入・排気口以外
には、実質的に密封状態で、断熱材を設けている空間と
は連通していない空間となし、断熱材部の軸方向両端か
ら排気できる排気口を設け、前記電極と前記レーザ取出
し窓の間の周方向スリットは、前記バッファガスの導入
にのみ用いた蒸気レーザ装置。 3、請求項1または2において、前記電極と前記レーザ
取り出し窓の間に設けた前記バッファガスの前記吸排気
口の前記スリットの代りに、複数の穴の列をあけた金属
蒸気レーザ装置。
[Scope of Claims] 1. A cylindrical ceramic discharge tube inside a container, a heat insulating material around the discharge tube, and a pair of cylinders substantially coaxial with the discharge tube provided at both ends of the discharge tube. a laser extraction window at both ends of the pair of electrodes so as to become part of the container, a buffer gas introduction and exhaust port in the container wall between the window and the electrode, and an inside of the discharge tube; In a vapor laser device in which a metal serving as a laser medium is provided and a gas containing a metal vapor in which a part of the metal evaporates and becomes gaseous is excited by electric discharge, the A metal vapor laser device characterized in that slits are provided in both walls of the container in the circumferential direction of the container, one of which serves as an inlet for the buffer gas, and the other serves as an exhaust port. 2. In claim 1, the space between the electrode and the laser extraction window is substantially sealed except for the buffer gas introduction/exhaust port, and communicates with a space provided with a heat insulating material. The vapor laser device is provided with an exhaust port that can exhaust air from both axial ends of the heat insulating material part, and a circumferential slit between the electrode and the laser extraction window is used only for introducing the buffer gas. 3. The metal vapor laser device according to claim 1 or 2, wherein a plurality of rows of holes are provided in place of the slits in the intake and exhaust ports for the buffer gas provided between the electrodes and the laser extraction window.
JP19493290A 1990-07-25 1990-07-25 Metal vapor laser device Pending JPH0482280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19493290A JPH0482280A (en) 1990-07-25 1990-07-25 Metal vapor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19493290A JPH0482280A (en) 1990-07-25 1990-07-25 Metal vapor laser device

Publications (1)

Publication Number Publication Date
JPH0482280A true JPH0482280A (en) 1992-03-16

Family

ID=16332741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19493290A Pending JPH0482280A (en) 1990-07-25 1990-07-25 Metal vapor laser device

Country Status (1)

Country Link
JP (1) JPH0482280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089899A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089899A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device

Similar Documents

Publication Publication Date Title
JPH0482280A (en) Metal vapor laser device
JP3934190B2 (en) Metal vapor laser device
JP3341965B2 (en) Vertical coaxial plasma processing system
JPH07187609A (en) Ozonizer
JPS62113488A (en) Metallic-vapor laser device
JP2716833B2 (en) Gas laser tube
JPH01273375A (en) Discharge excitation excimer laser device
JPH01228184A (en) Metal vapor laser oscillator
JPS6348881A (en) Gas laser oscillator
JPH0983089A (en) Metal vapor laser
JPS5918693Y2 (en) gas laser equipment
JP2980381B2 (en) Laser equipment
JPH05250998A (en) Collector for microwave tube
JP2971595B2 (en) Metal vapor laser oscillation tube
JPS63221622A (en) Dry-type thin film processing equipment
JPH01143371A (en) Metal vapor laser device
JP2002237631A (en) Gas laser oscillator
JPH07307505A (en) Gas laser device
JPH02130975A (en) Microwave laser apparatus
Lancashire et al. The NASA High-Power Carbon Dioxide Laser A Versatile Tool for Laser Applications
JPH02116182A (en) Laser fine pipe
JPH04288889A (en) Strontium vapor laser device
JPH02281671A (en) Gas laser oscillation device
JPS63252489A (en) Metal vapor laser device
JPS6026309B2 (en) ion laser tube