JPH02130975A - Microwave laser apparatus - Google Patents

Microwave laser apparatus

Info

Publication number
JPH02130975A
JPH02130975A JP63283845A JP28384588A JPH02130975A JP H02130975 A JPH02130975 A JP H02130975A JP 63283845 A JP63283845 A JP 63283845A JP 28384588 A JP28384588 A JP 28384588A JP H02130975 A JPH02130975 A JP H02130975A
Authority
JP
Japan
Prior art keywords
discharge section
discharge
laser
microwave
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63283845A
Other languages
Japanese (ja)
Inventor
Hideomi Takahashi
秀臣 高橋
Kiyohisa Terai
清寿 寺井
Toru Tamagawa
徹 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63283845A priority Critical patent/JPH02130975A/en
Publication of JPH02130975A publication Critical patent/JPH02130975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Abstract

PURPOSE:To create glow discharge uniformly for improving overall efficiency and to reduce the size of a microwave laser apparatus by inserting insulator inserts into a discharge section of a waveguide for limiting a laser discharge section to a size equivalent to a diameter of laser beam. CONSTITUTION:Microwave power 2 is supplied into a waveguide 2 from a microwave oscillator 1 and enters into a discharge section 5 through a pressure barrier 4. Insulators 51, 52 of Teflon for example are applied on the periphery of the discharge section 5 so as to limit a glow discharge section to the central part 53 of the discharge section 5. The discharge section 5 terminates in closed- circuit wind tunnels 7, 7' and a vacuum vessel 8 is defined thereby. Laser gas is circulated in the vacuum vessel by a blower 10 and cooled by heat exchangers 9a, 9b. Internal gas pressure is controlled by a controller 15 through a supply valve 13 and an exhaust valve 14. Light pump by glow discharge in the glow discharge section 53 is emitted as laser light 18 through a semi-transparent mirror 16 and a total reflection mirror 17.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、マイクロ波放電励起を行う大出力のコンパク
トなマイクロ波レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high-output, compact microwave laser device that performs microwave discharge excitation.

(従来の技術) 一般にレーザ発振を得る為には、レーザ媒質中で空間的
に均一な放電の発生を必要とするが、特にマイクロ波を
放電励起に用いる場合、このことは重要となる。即ち、
マイクロ波を通常のレーザ発振で用いられる圧力(20
〜200Torr)で用いると。
(Prior Art) Generally, in order to obtain laser oscillation, it is necessary to generate a spatially uniform discharge in a laser medium, and this is particularly important when microwaves are used for discharge excitation. That is,
The pressure used in normal laser oscillation (20
~200 Torr).

マイクロ波が放電部に入射する入口付近に放電が集中的
に生じる。従って、この部分に高密度のプラズマが形成
され、インピーダンスがこの部分で極端に低下する。そ
の結果、入射マイクロ波は放電部に入った途端に、殆ど
100%が反射されてしまい、放電空間に有効に電気入
力が供給されないことになる。
Discharge occurs intensively near the entrance where microwaves enter the discharge section. Therefore, high-density plasma is formed in this portion, and impedance is extremely reduced in this portion. As a result, almost 100% of the incident microwave is reflected as soon as it enters the discharge section, and no electrical input is effectively supplied to the discharge space.

この対策として例えば文献(Appli、Phys、L
att、 。
As a countermeasure against this, for example, literature (Appli, Phys, L
att.

37(ハ)、 p673(1980)によれば、第3図
に示した様なものが有る。第3図に於いてレーザガス3
1は上部入口32より高圧で供給され、誘電体で構成さ
れたノズル33を通過すると共に高速となりガス圧力が
低下する。
37 (c), p. 673 (1980), there is something like the one shown in Figure 3. In Figure 3, the laser gas 3
1 is supplied at high pressure from the upper inlet 32, and as it passes through the nozzle 33 made of dielectric material, the gas speed increases and the gas pressure decreases.

一方、マイクロ波34は図で左方より導波管35によっ
て供給されマイクロ波を透過する圧力隔壁36を通して
レーザ放電部41に供給される。レーザ放電部41の空
間37は窩圧力であるから、ここでは放電は発生しない
、レーザガスは既に述べた様に誘電体ノズル33に於い
て加速され、ガス圧力が低下するので、ノズル33の下
流にマイクロ波放電38が発生する。ここでの放電は低
ガス圧中での放電であるから−様となり、下流側に構成
した光共振器39により、マイクロ波で励起されたレー
ザガス中を通るレーザ光が、増幅発振される。排出ガス
40は真空ポンプにより図の右方に排出されている。
On the other hand, the microwave 34 is supplied from the left side in the figure by a waveguide 35 and is supplied to the laser discharge section 41 through a pressure partition 36 that transmits the microwave. Since the cavity pressure is in the space 37 of the laser discharge section 41, no discharge occurs here.As mentioned above, the laser gas is accelerated in the dielectric nozzle 33, and the gas pressure decreases, so that no discharge occurs downstream of the nozzle 33. A microwave discharge 38 is generated. Since the discharge here occurs in a low gas pressure, the laser beam excited by the microwave and passing through the laser gas is amplified and oscillated by the optical resonator 39 configured on the downstream side. Exhaust gas 40 is discharged to the right in the figure by a vacuum pump.

(発明が解決しようとする課題) ところで、この方式の欠点の第1はノズルを通して断熱
膨張させる為に、レーザガスの全量を排気する真空ポン
プが必要となることで、真空ポンプの排気動力が多大と
なり、全体としてのレーザ発振効率が極端に低下してし
まうことである。
(Problem to be solved by the invention) By the way, the first drawback of this method is that a vacuum pump is required to exhaust the entire amount of laser gas in order to adiabatically expand it through the nozzle, which requires a large amount of exhaust power for the vacuum pump. , the overall laser oscillation efficiency is extremely reduced.

第2の欠点は放電がノズルの出口付近に集中してしまう
ことである。即ち、ノズルから下流に向かっての圧力勾
配は、ノズル出口が最低で次第に高くなり、又、マイク
ロ波電界強度も絶縁物ノズルの作用で出口対辺で最大な
ので、ノズルの出口付近に放電が集中することに成る。
The second drawback is that the discharge is concentrated near the exit of the nozzle. In other words, the pressure gradient downstream from the nozzle is lowest at the nozzle exit and gradually increases, and the microwave electric field strength is also maximum at the opposite side of the exit due to the effect of the insulator nozzle, so the discharge is concentrated near the nozzle exit. That's a big deal.

さらには、放電が部分的に集中してしまい、ガス温度が
上昇して、レーザ励起効率が低下するだけでなく、アー
ク限界が低下してレーザ出力が低下してしまう不具合が
有った。従って、これらの改良が望まれていた。
Furthermore, there was a problem in that the discharge was locally concentrated, the gas temperature rose, and the laser excitation efficiency was lowered, as well as the arc limit was lowered and the laser output was lowered. Therefore, these improvements have been desired.

本発明は、通常のガス圧力(20〜200Torr)で
−様なグロー放電が可能である総合効率の良い、コンパ
クトなマイクロ波レーザ装置を提供することを目的とす
るものである。
An object of the present invention is to provide a compact microwave laser device with good overall efficiency, which is capable of producing a glow discharge of a certain type at normal gas pressures (20 to 200 Torr).

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明のマイクロ波レーザ装置は、マイクロ波放電を導
波管の内部で直接にマイクロ波伝搬方向に行わせるもの
である。さらに導波管内の電界の強い部分でレーザビー
ムを取出す部分のみを放電させる為に導波管周辺部にマ
イクロ波損失の小さいテフロン等の絶縁物を挿入するこ
とによりグロー放電部分を限定し、レーザガスの励起を
効果的にしたものである (作 用) 主放電電源たるマイクロ波電源が作動してマイクロ波が
放電部に供給されると、前記の様に放電部は伝搬方向に
延びており導波管内で直接に放電させられるので−様な
グロー放電が点弧し、効果的な放電励起が行われる。さ
らに導波管内の放電部はレーザビームを取出す部分のみ
に限定され周辺部にはマイクロ波損失の小さいテフロン
等の絶縁物を挿入することによりグロー放電部分が限定
されているのでレーザガスの励起が効果的に行オノれる
(Means for Solving the Problems) The microwave laser device of the present invention causes microwave discharge to occur directly in the microwave propagation direction inside a waveguide. Furthermore, in order to discharge only the part where the electric field is strong in the waveguide and the part from which the laser beam is extracted, an insulating material such as Teflon with low microwave loss is inserted around the waveguide to limit the glow discharge part, and the laser gas (Function) When the microwave power source, which is the main discharge power source, is activated and microwaves are supplied to the discharge section, the discharge section extends in the propagation direction and conducts as described above. Since the discharge is caused directly within the wave tube, a --like glow discharge is ignited and effective discharge excitation is performed. Furthermore, the discharge part in the waveguide is limited to the part from which the laser beam is taken out, and the glow discharge part is limited by inserting an insulator such as Teflon with low microwave loss in the peripheral part, so excitation of the laser gas is effective. I can hit the target.

(実施例) 第1図に本発明の実施例を示す、第1図(a)に於いて
1はマイクロ波発振塁であり、マイクロ波電力2が導波
管3内に放射される。導波管3内には、圧力隔壁4があ
り、大気側(マイクロ波発振器側)と真空器側(マイク
ロ波放電管側)とに区画している。
(Embodiment) An embodiment of the present invention is shown in FIG. 1. In FIG. There is a pressure partition 4 inside the waveguide 3, which divides the waveguide 3 into an atmosphere side (microwave oscillator side) and a vacuum vessel side (microwave discharge tube side).

真空容器側導波管には、放電部5が接続されている。導
波管放電部5には、その周辺部にマイクロ波損失の小さ
いテフロン等の絶縁物51.52が挿入され、グロー放
電部を導波管放電部の中央部53に限定している。導波
管放電部5の先は循環風洞7.7′ となって、真空容
器8を構成しており、内部に熱交換器9a、9bと送風
器10とが設置されている。全体は真空ポンプ11で排
気された後、レーザガスがボンベ12より供給される。
A discharge section 5 is connected to the vacuum container side waveguide. Insulators 51 and 52 such as Teflon with low microwave loss are inserted into the waveguide discharge section 5 at its periphery to limit the glow discharge section to the central section 53 of the waveguide discharge section. The tip of the waveguide discharge section 5 becomes a circulating wind tunnel 7, 7', forming a vacuum container 8, in which heat exchangers 9a, 9b and a blower 10 are installed. After the whole is evacuated by a vacuum pump 11, laser gas is supplied from a cylinder 12.

内部ガス圧力はガス供給弁13及び排気弁14で制御さ
れており、これらの制御は制御器15で行われている。
The internal gas pressure is controlled by a gas supply valve 13 and an exhaust valve 14, and these controls are performed by a controller 15.

16は半透過ミラーであり、17は全反射ミラーで。16 is a semi-transmission mirror, and 17 is a total reflection mirror.

これら一対のミラーで構成された光共振器に因って、レ
ーザ光が放電部53に生じたグロー放電(斜線部)に因
り励起され、レーザ光18として外部に取出される。
Due to the optical resonator constituted by these pair of mirrors, laser light is excited by the glow discharge (shaded area) generated in the discharge section 53, and is extracted to the outside as laser light 18.

第1図に示した用に1本発明では放電がマイクロ波導波
管内5内で直接に発生するところが大いなる特徴である
。従来例の第3図で述べたマイクロ波の欠点であるプラ
ズマ中に深く浸透しないという点は、本発明者の研究で
次の点にあることが明らかとなった。
A major feature of the present invention shown in FIG. 1 is that the discharge occurs directly within the microwave waveguide 5. The inventor's research has revealed that the drawback of microwaves, which is described in FIG. 3 of the conventional example, is that they do not penetrate deeply into plasma.

即ち、第3図の従来例にある様にノズル部33はマイク
ロ波を透過する絶縁物で構成せざるを得ないが、放電は
図示の様にノズル部33でも発生する。
That is, although the nozzle portion 33 must be made of an insulator that transmits microwaves as in the conventional example shown in FIG. 3, discharge also occurs in the nozzle portion 33 as shown.

マイクロ波は空間を伝搬するというが、この為には壁面
電流が必ず流れなくてはならない、しかるに第3図の従
来例では、ノズル部33の放電に対する壁面電流管5で
はなく、ノズル部33の内面を流れなくてはならない、
従ってこのノズル部33内面に強力な内面電流を流すに
十分な濃密な電子密度を有するシースが形成されろ、こ
れによって多大のマイクロ波電力の消費と共に、マイク
ロ波の反射等が発生していた。
Microwaves are said to propagate in space, but for this to happen, a wall current must flow.However, in the conventional example shown in FIG. It must flow within,
Therefore, a sheath having a high enough electron density to flow a strong internal current must be formed on the inner surface of the nozzle portion 33, which causes consumption of a large amount of microwave power and reflection of microwaves.

ここでは、以上に鑑みて導波管3自体を放電管とし、さ
らには導波管放電部5内にマイクロ波損失の小さい絶縁
物51.52が配設されているので、マイクロ波グロー
放電は中央部53に限定される。
In view of the above, the waveguide 3 itself is used as a discharge tube, and furthermore, insulators 51 and 52 with small microwave loss are provided in the waveguide discharge section 5, so that the microwave glow discharge is It is limited to the central portion 53.

第1図(a)のAA’断面を示す(b)図で分る様に、
マイクロ波電界Aは正弦波分布をしており中央部が強い
、又、レーザ光は通常、円形であるから放電部を中央部
53に限定することは、放電部エネルギを有効に利用す
ることを可能とする。光共振器により放電部中央53の
グロー放電(斜線部)で励起されたレーザ光は半透過ミ
ラー16によりレーザ光18として外部に取出される。
As can be seen in Figure 1(b), which shows the AA' cross section in Figure 1(a),
The microwave electric field A has a sinusoidal distribution and is strong at the center, and since laser light is usually circular, limiting the discharge part to the center part 53 makes effective use of the energy of the discharge part. possible. Laser light excited by the glow discharge (shaded area) in the center 53 of the discharge section by the optical resonator is extracted to the outside as laser light 18 by the semi-transmissive mirror 16.

従って効果的なレーザ光の励起が可能となる。Therefore, effective laser beam excitation becomes possible.

この様に本実施例によればマイクロ波のエネルギが効果
的に放電部5に注入され、−様なグロー放電を形成する
。さらには導波管そのものを放電管とした構造で有るか
ら、堅牢でコンパクトなものと成る。
In this way, according to this embodiment, microwave energy is effectively injected into the discharge section 5, forming a --like glow discharge. Furthermore, since the waveguide itself is a discharge tube, it is robust and compact.

さらに放電部をレーザ・ビームと同程度の形状に限定し
ているので、効率の良い放電励起が可能となり、コンパ
クトで大出力のレーザ装置となる。
Furthermore, since the discharge portion is limited to the same shape as the laser beam, efficient discharge excitation is possible, resulting in a compact, high-output laser device.

第2図に示したのは本発明の第2の実施例である。即ち
、マイクロ波導波管内に第1図の様な絶縁物を挿入する
代わりに絶縁物製中空容器を挿入し、これに冷却風又は
絶縁物製油等の流体を循環させて冷却するものである。
FIG. 2 shows a second embodiment of the invention. That is, instead of inserting an insulator as shown in FIG. 1 into the microwave waveguide, a hollow container made of an insulator is inserted, and cooling air or a fluid such as insulator oil is circulated through the container for cooling.

この場合、放電部が直接に冷却されるので放電電力密度
を高く取れる。
In this case, since the discharge section is directly cooled, the discharge power density can be increased.

又、絶縁物製中空容器は大気圧の空気又は油であるから
、放電する可能性は無い、さらに大気又は油が51.5
2の部分に満たされているので、固体絶縁物を挿入した
場合のボイドの恐れは皆無である。
In addition, since the hollow container made of insulating material is filled with air or oil at atmospheric pressure, there is no possibility of electrical discharge.
Since the portion 2 is filled, there is no fear of voids occurring when a solid insulator is inserted.

〔発明の効果〕〔Effect of the invention〕

この様に本発明によれば、マイクロ波のエネルギが効果
的に放電部に注入され、−様グロー放電が形成され、さ
らに放電部をレーザ・ビーム径程度に限定したので、効
果的なレーザ光の増幅発振が行われ、総合効率の良好な
レーザ発振装置と成る。
As described above, according to the present invention, microwave energy is effectively injected into the discharge part to form a --like glow discharge, and furthermore, since the discharge part is limited to about the diameter of the laser beam, effective laser beam Amplified oscillation is performed, resulting in a laser oscillation device with good overall efficiency.

さらにはマイクロ波の特徴として、空間電荷は放電空間
にトラップされるので、直流又は交流の通常のレーザと
違って、電子を供給する為の陰極降下部が不要となり、
放電によるレーザ光励起の効率が高くなる。
Furthermore, a feature of microwaves is that space charges are trapped in the discharge space, so unlike normal DC or AC lasers, there is no need for a cathode fall section to supply electrons.
The efficiency of laser light excitation by discharge is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明のマイクロ波レーザ装置の断面図
、同(b)は第1図(a)のA−A’断面図、第2図(
a)は本発明の第2の実施例を示した断面図、同(b)
は第2図(a)のA−A’断面図、第3図は従来のレー
ザ装置の主要部を示す断面図である。 1・・・マイクロ波発振盤 2・・・マイクロ波電力3
・・・導波管      4・・・圧力隔壁5・・・放
電部      6・・・グロー放電7・・・@環風洞
     8・・・真空容器9a 、 Ob・・・熱交
換器   10・・・送風機16、17・・・光共振器 代理人 弁理士 則 近 憲 佑 同    第子丸   健 (久ン
FIG. 1(a) is a sectional view of the microwave laser device of the present invention, FIG. 1(b) is a sectional view taken along the line AA' in FIG. 1(a), and FIG.
a) is a cross-sectional view showing the second embodiment of the present invention; FIG.
is a sectional view taken along line AA' in FIG. 2(a), and FIG. 3 is a sectional view showing the main parts of a conventional laser device. 1...Microwave oscillator board 2...Microwave power 3
... Waveguide 4 ... Pressure partition 5 ... Discharge part 6 ... Glow discharge 7 ... @ ring wind tunnel 8 ... Vacuum vessel 9a, Ob ... Heat exchanger 10 ... Blower 16, 17... Optical resonator agent Patent attorney Nori Chika Ken Yudo Ken Daishimaru

Claims (1)

【特許請求の範囲】[Claims] 真空容器内にCO_2等を含むレーザ媒質ガスを低ガス
圧で封入し、このガスを送風機で放電部に熱交換器を通
して循環させ、前記放電部の外部のマイクロ波電源より
マイクロ波を供給し、マイクロ波導波管内で直接にグロ
ー放電させてレーザ媒質ガスを励起するマイクロ波レー
ザ装置に於いて、レーザ放電部をレーザビーム径程度に
限定するべく絶縁物製挿入物を導波管放電部に挿入した
ことを特徴とするマイクロ波レーザ装置。
A laser medium gas containing CO_2 etc. is sealed in a vacuum container at low gas pressure, this gas is circulated through a heat exchanger to the discharge section using a blower, and microwaves are supplied from a microwave power source outside the discharge section, In a microwave laser device that excites a laser medium gas by direct glow discharge in a microwave waveguide, an insulating insert is inserted into the waveguide discharge part in order to limit the laser discharge part to the diameter of the laser beam. A microwave laser device characterized by:
JP63283845A 1988-11-11 1988-11-11 Microwave laser apparatus Pending JPH02130975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283845A JPH02130975A (en) 1988-11-11 1988-11-11 Microwave laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283845A JPH02130975A (en) 1988-11-11 1988-11-11 Microwave laser apparatus

Publications (1)

Publication Number Publication Date
JPH02130975A true JPH02130975A (en) 1990-05-18

Family

ID=17670908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283845A Pending JPH02130975A (en) 1988-11-11 1988-11-11 Microwave laser apparatus

Country Status (1)

Country Link
JP (1) JPH02130975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606571A (en) * 1994-03-23 1997-02-25 Matsushita Electric Industrial Co., Ltd. Microwave powered gas laser apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606571A (en) * 1994-03-23 1997-02-25 Matsushita Electric Industrial Co., Ltd. Microwave powered gas laser apparatus

Similar Documents

Publication Publication Date Title
US6636545B2 (en) Supersonic and subsonic laser with radio frequency excitation
US4955035A (en) Microwave-pumped, high-pressure, gas-discharge laser
JPH01173771A (en) Method of activating laser gas electrically and gas laser
EP0852835B1 (en) Supersonic and subsonic laser with rf discharge excitation
JPH02130975A (en) Microwave laser apparatus
US6061379A (en) Pulsed x-ray laser amplifier
JPH02129979A (en) Microwave laser device
JPH0246785A (en) Method of electric excitation of gas laser and gas laser
US10582603B2 (en) Optical resonators that utilize plasma confinement of a laser gain media
JPH02129980A (en) Microwave laser device
JPH02129976A (en) Microwave laser device
JPH01262682A (en) Microwave laser apparatus
JPH0276276A (en) Microwave laser device
JPH03235386A (en) Microwave laser
RU2812411C1 (en) Axial-flow gas laser with raman excitation
US3617933A (en) Method for generating oscillation in krypton laser
CA1064151A (en) High power gas laser
JPH01262681A (en) Microwave laser apparatus
JPH02133975A (en) Microwave laser device
JPH06140694A (en) Microwave discharge exciting laser
JPH02133974A (en) Microwave laser device
RU2153744C2 (en) Gaseous-discharge co laser
JP2566584B2 (en) Gas laser device
Peters et al. Long-pulse ArF and F2 excimer lasers
JPH0276277A (en) Microwave laser device