JPH06140694A - Microwave discharge exciting laser - Google Patents

Microwave discharge exciting laser

Info

Publication number
JPH06140694A
JPH06140694A JP30974092A JP30974092A JPH06140694A JP H06140694 A JPH06140694 A JP H06140694A JP 30974092 A JP30974092 A JP 30974092A JP 30974092 A JP30974092 A JP 30974092A JP H06140694 A JPH06140694 A JP H06140694A
Authority
JP
Japan
Prior art keywords
metal container
laser
microwave
oscillation
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30974092A
Other languages
Japanese (ja)
Inventor
Masashi Shindo
正士 神藤
Hidetoshi Takakura
秀俊 高倉
Masahiko Adachi
雅彦 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP30974092A priority Critical patent/JPH06140694A/en
Publication of JPH06140694A publication Critical patent/JPH06140694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a microwave discharge exciting laser having large outputs and a lower power loss. CONSTITUTION:One end of a wave guide 1 is connected with a microwave oscillator 11 and the other end is connected with a metal container 2, and an opening 2a is provided in a part superimposing on an internal radius part of the wave guide 1 in a wall surface of the metal container 2 and a symmetrical pair of cylindrical metal projections 3, 9 is provided in the direction of crossing the axial direction of the wave guide 1 within the metal container 2. An oscillating pipe closing one end 4a and the other end 4b is inserted into the symmetrical cylindrical metal projections 3, 9, and the oscillating tube 4 is connected with a laser gas circulating pipe 8 between the one end 3a of the cylindrical metal projection 3 located in the external side of the metal container 2 and the one end 4a of the oscillating tube 4, and the oscillating tube 4 is connected with a laser gas circulating pipe 10 between one end 9a of the cylindrical metal projection 9 located in the external side of the metal container 2 and the other end 4b of the oscillating pipe 4, in order to circulate laser gas 5 within the oscillating tube 4 through the pipes 8, 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マイクロ波放電励起
により発振するレーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser oscillated by microwave discharge excitation.

【0002】[0002]

【従来の技術】従来のマイクロ波放電励起レーザは、発
振管に直接、マイクロ波電源を接続することによりマイ
クロ波を供給してレーザ発振させる方法、または発振管
に直接、導波管を接続し、この導波管を介してマイクロ
波を供給してレーザ発振させる方法が用いられていた。
2. Description of the Related Art A conventional microwave discharge pumped laser is a method of supplying microwaves by directly connecting a microwave power source to an oscillation tube to cause laser oscillation, or connecting a waveguide directly to the oscillation tube. A method of supplying a microwave through this waveguide to cause laser oscillation has been used.

【0003】図2は従来のマイクロ波放電励起レーザの
一例を示し、発振管21に電力を供給するために発振管
21の外周上の両側に、電極22,23が設けられ、発
振管21の長軸上で発振管21を挟む位置には全反射ミ
ラー26と半反射ミラー27が設けられており、電極2
2にはマイクロ波電源28およびレーザ発振に先立って
レーザガス29を予備電離するためのチョークコイル2
4と予備電離回路25が接続されている。
FIG. 2 shows an example of a conventional microwave discharge excitation laser. Electrodes 22 and 23 are provided on both sides on the outer circumference of the oscillation tube 21 to supply electric power to the oscillation tube 21, and the oscillation tube 21 is provided with electrodes 22 and 23. A total reflection mirror 26 and a semi-reflection mirror 27 are provided on the long axis at positions sandwiching the oscillation tube 21.
2 is a microwave power source 28 and a choke coil 2 for pre-ionizing the laser gas 29 prior to laser oscillation.
4 and the preionization circuit 25 are connected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述のマ
イクロ波放電励起レーザでは、発振管21の断面の縦寸
法と横寸法の比が1に近づくほどマイクロ波は発振管2
1から漏れてしまい不経済となること、およびマイクロ
波が発振管21から漏れることにより電波障害が発生す
ることから、発振管21の断面の縦寸法を横寸法に比べ
て小さくとる必要があり、その結果発振管21の断面積
を大きくすることができず、大きな出力が得られない欠
点がある。発振管21の断面の縦寸法を横寸法に比べて
小さくとった状態で大きなレーザ出力を得るために、発
振管21の全長を長くしてレーザガスの体積を増すこと
も考えられるが、この場合、全長が実用に耐えないほど
長くなってしまうので、結局この方式では大出力化には
向かない。また、レーザ発振をおこすためのグロー放電
は、ガス圧力を一気圧以下に下げてゆけば放電が容易で
あるものの一気圧以上では容易でないので、レーザ出力
を大きくするためレーザガスの圧力を一気圧以上にする
ことが必要な場合には、上述の構造ではチョークコイル
24と予備電離回路25を設ける必要があるが、そうす
ると構造が複雑化する。そこで本発明は、必要部分にの
み均一な高電界を生ぜしめて一気圧以上のレーザガス中
でのレーザ発振を可能とし、それにより大出力で電力ロ
スの低いマイクロ波放電励起レーザを実現したものであ
る。また放電装置が閉鎖型構造であるため漏洩マイクロ
波が無く他機器への障害を及ぼすことがないようにした
ものである。
However, in the above-mentioned microwave discharge excitation laser, the microwave is generated in the oscillation tube 2 as the ratio of the longitudinal dimension to the lateral dimension of the oscillation tube 21 approaches 1.
Since it is uneconomical because it leaks from No. 1, and microwaves leak from the oscillation tube 21 to cause radio interference, it is necessary to make the vertical dimension of the cross section of the oscillation tube 21 smaller than the horizontal dimension. As a result, the cross-sectional area of the oscillation tube 21 cannot be increased, and a large output cannot be obtained. In order to obtain a large laser output in a state where the vertical dimension of the cross section of the oscillation tube 21 is smaller than the horizontal dimension, it is conceivable to increase the total length of the oscillation tube 21 to increase the volume of laser gas. In this case, Since the total length is too long to be practical, this method is not suitable for high output. Further, glow discharge for causing laser oscillation is easy if the gas pressure is lowered to 1 atm or less, but it is not easy at 1 atm or more, so the laser gas pressure is set to 1 atm or more to increase the laser output. If it is necessary to provide the above structure, it is necessary to provide the choke coil 24 and the preionization circuit 25 in the above-described structure, but this complicates the structure. Therefore, the present invention realizes a microwave discharge pumped laser with a large output and a low power loss by generating a uniform high electric field only in a necessary portion to enable laser oscillation in a laser gas of 1 atm or more. . In addition, since the discharge device has a closed structure, there is no leakage microwave so that other devices are not damaged.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、導
波管1の一端にマイクロ波発振器11を接続し、他端に
金属容器2を接続し、この金属容器2内には、導波管1
の軸方向に対して交差する方向に対向する一対の筒状金
属突起物3,9を設け、この一対の筒状金属突起物3,
9には発振管4を内挿させ、その内部にはレーザガス5
を入れ、発振管4の長軸上で発振管4を挟む位置に全反
射ミラー6と半反射ミラー7を対向配置する。
According to a first aspect of the present invention, a microwave oscillator 11 is connected to one end of a waveguide 1 and a metal container 2 is connected to the other end thereof. Wave tube 1
A pair of cylindrical metal projections 3, 9 facing each other in the direction intersecting the axial direction of the cylindrical metal projections 3, 9 are provided.
Oscillation tube 4 is inserted in 9 and laser gas 5
Then, the total reflection mirror 6 and the semi-reflection mirror 7 are arranged so as to face each other at a position sandwiching the oscillation tube 4 on the long axis of the oscillation tube 4.

【0006】請求項2の発明では、請求項1の発明にお
いて金属容器2を接地する。請求項3の発明では、請求
項1または2の発明において金属容器2内に放電を起こ
しにくい種類のガス又は誘導体を入れる。請求項4の発
明では、請求項1または2の発明において、金属容器2
内を高真空に排気する。請求項5の発明では、請求項1
または2の発明において、金属容器2内の圧力を発振管
4内のガス圧力より高くする。
In the invention of claim 2, the metal container 2 is grounded in the invention of claim 1. According to the invention of claim 3, in the invention of claim 1 or 2, a gas or a derivative of a kind that hardly causes an electric discharge is put in the metal container 2. In the invention of claim 4, in the invention of claim 1 or 2, the metal container 2
The inside is evacuated to high vacuum. In the invention of claim 5, claim 1
Alternatively, in the second aspect of the invention, the pressure inside the metal container 2 is made higher than the gas pressure inside the oscillation tube 4.

【0007】[0007]

【作用】上記のように構成した請求項1の発明のマイク
ロ波放電励起レーザにおいては、金属容器2が直方体空
洞共振器であればTM110 モードを、金属容器2が円筒
空洞共振器であればTM010 モードを、導波管1を通し
て金属容器2内に励振すると、金属容器2内の一対の筒
状金属突起物3,9の軸心近傍でこの一対の筒状金属突
起物3,9に挟まれる空間においてマイクロ波の高電界
が発生するので、筒状金属突起物3,9に内挿された発
振管4内部のレーザガス5は、そのガス圧が一気圧以上
であってもグロー放電が起こり、これにより発生したレ
ーザ光が全反射ミラー6と半反射ミラー7の間を往復し
て増幅されレーザ発振が起こる。
In the microwave discharge pumped laser according to the first aspect of the present invention configured as described above, TM110 mode is used when the metal container 2 is a rectangular parallelepiped cavity resonator, and TM010 mode is used when the metal container 2 is a cylindrical cavity resonator. When the mode is excited into the metal container 2 through the waveguide 1, the mode is sandwiched between the pair of cylindrical metal projections 3 and 9 in the vicinity of the axes of the pair of cylindrical metal projections 3 and 9 in the metal container 2. Since a high electric field of microwaves is generated in the space, glow discharge occurs in the laser gas 5 inside the oscillation tube 4 inserted in the cylindrical metal projections 3 and 9 even if the gas pressure is 1 atm or more, The laser light thus generated reciprocates between the total reflection mirror 6 and the semi-reflection mirror 7 and is amplified to cause laser oscillation.

【0008】請求項2の発明のマイクロ波放電励起レー
ザにおいては、金属容器2が接続されているので、動作
中に誤って金属容器2に触れても感電の恐れはない。請
求項3の発明のマイクロ波放電励起レーザにおいては、
発振管4外部近傍での放電がおこることはなく、効率の
良い安定した発振を行うことができる。請求項4の発明
のマイクロ波放電励起レーザにおいては、発振管4外部
近傍での放電がおこることはなく、効率の良い安定した
発振を行うことができる。請求項5の発明のマイクロ波
放電励起レーザにおいても、発振管4外部近傍での放電
がおこることはなく、効率の良い安定した発振を行うこ
とができる。
In the microwave discharge excitation laser of the second aspect of the present invention, since the metal container 2 is connected, there is no risk of electric shock even if the metal container 2 is accidentally touched during operation. In the microwave discharge excitation laser of the invention of claim 3,
There is no discharge near the outside of the oscillation tube 4, and efficient and stable oscillation can be performed. In the microwave discharge pumped laser according to the invention of claim 4, discharge is not generated near the outside of the oscillation tube 4, and efficient and stable oscillation can be performed. Also in the microwave discharge pumped laser of the fifth aspect of the present invention, discharge is not generated near the outside of the oscillation tube 4, and efficient and stable oscillation can be performed.

【0009】[0009]

【実施例】図1は、本発明のマイクロ波放電励起レーザ
の一例で、導波管1の一端にマイクロ波発振器11を接
続し、他端に金属容器2を接続し、金属容器2の壁面で
導波管1の内径部分と重なる部分には窓2aをあけ、金
属容器2内には導波管1の軸方向に対して交差する方向
に、対向する一対の筒状金属突起物3,9を設け、この
対向する筒状金属突起物3,9内に一端4a,他端4b
を閉じた発振管4を内挿させ、金属容器2の外部側に位
置する筒状金属突起物3の一端3aと発振管4の一端4
aとの間において発振管4にレーザガス循環用の配管8
を接続し、金属容器2の外部側に位置する筒状金属突起
物9の一端9aと発振管4の一端4bとの間において発
振管4にレーザガス循環用の配管10を接続して、配管
8,10を通じて発振管4内にレーザガス5を循環させ
る。一端4a,他端4bにおける発振管4の端面はいず
れも、発振管4内部から発振管4の長軸に沿って走って
きたレーザ光がその方向を変えられないようにじゅうぶ
ん滑らかにし、発振管4の外側にはそれぞれ全反射ミラ
ー6と半反射ミラー7を設ける。金属容器2は接地す
る。金属容器2内には放電を起こしにくい種類のガス又
は誘電体を入れるか、金属容器2内を高真空に排気する
か、または金属容器2内の圧力を発振管4内のガス圧力
より十分に高くする。
FIG. 1 is an example of a microwave discharge pumped laser according to the present invention, in which a microwave oscillator 11 is connected to one end of a waveguide 1 and a metal container 2 is connected to the other end thereof, and a wall surface of the metal container 2 is connected. A window 2a is opened in a portion that overlaps the inner diameter portion of the waveguide 1, and a pair of cylindrical metal projections 3 facing each other in a direction intersecting the axial direction of the waveguide 1 are formed in the metal container 2. 9 are provided, and one end 4a and the other end 4b are provided in the cylindrical metal projections 3 and 9 facing each other.
The oscillating tube 4 closed is inserted, and the one end 3a of the cylindrical metal protrusion 3 and the one end 4 of the oscillating tube 4 located outside the metal container 2 are inserted.
Piping 8 for laser gas circulation in oscillation tube 4 between
And a pipe 10 for laser gas circulation is connected to the oscillation tube 4 between one end 9a of the cylindrical metal projection 9 located on the outside of the metal container 2 and one end 4b of the oscillation tube 4 to connect the pipe 8 , 10 to circulate the laser gas 5 in the oscillation tube 4. The end faces of the oscillating tube 4 at the one end 4a and the other end 4b are sufficiently smooth so that the direction of the laser light running from the inside of the oscillating tube 4 along the major axis of the oscillating tube 4 cannot be changed. A total reflection mirror 6 and a semi-reflection mirror 7 are provided on the outside of each of the four. The metal container 2 is grounded. A gas or a dielectric material that is unlikely to cause an electric discharge is placed in the metal container 2, the inside of the metal container 2 is evacuated to a high vacuum, or the pressure inside the metal container 2 is set sufficiently higher than the gas pressure inside the oscillation tube 4. Make it higher

【0010】このマイクロ波放電励起レーザにおいて
は、金属容器2が直方体空洞共振器であればTM110 モ
ードを、金属容器2が円筒空洞共振器であればTM010
モードを用い、マイクロ波が導波管1を通って金属容器
2に送り込まれると、金属容器2内の一対の筒状金属突
起物3,9の軸心近傍で、かつこの一対の筒状金属突起
物3,9に挟まれる空間において高電界が発生するの
で、この高電界空間の発振管4内部においてグロー放電
が起き、このグロー放電により発振管4内で発生した光
が全反射ミラー6と半反射ミラー7の間で往復を繰り返
すことによりレーザ光が発生する。
In this microwave discharge excitation laser, TM110 mode is used when the metal container 2 is a rectangular parallelepiped cavity resonator, and TM010 mode is used when the metal container 2 is a cylindrical cavity resonator.
When microwaves are sent into the metal container 2 through the waveguide 1 by using the mode, the pair of cylindrical metal projections 3 and 9 in the metal container 2 are in the vicinity of the axial center of the pair of cylindrical metal projections. Since a high electric field is generated in the space between the protrusions 3 and 9, glow discharge occurs inside the oscillation tube 4 in this high electric field space, and the light generated in the oscillation tube 4 due to this glow discharge is reflected by the total reflection mirror 6. Laser light is generated by repeating back and forth between the semi-reflecting mirrors 7.

【0011】この実施例によれば、グロー放電が発振管
4内に均一に発生し、電力のロスも少なく大出力のレー
ザ光が得られる。また高電界が印加される部分が金属容
器2の内部にあるので、金属容器2を接地することによ
り金属容器2は大地と等電位となり感電の恐れも無い。
また、漏洩マイクロ波により他機器に障害を及ぼすこと
もなく、予備電離回路も不要となる。
According to this embodiment, glow discharge is uniformly generated in the oscillation tube 4, and a large output laser beam with little power loss can be obtained. Further, since the portion to which the high electric field is applied is inside the metal container 2, by grounding the metal container 2, the metal container 2 becomes equipotential with the ground, and there is no fear of electric shock.
Further, the leakage microwave does not affect other devices, and the preliminary ionization circuit is unnecessary.

【0012】図2は本発明のマイクロ波励起レーザの他
の例で、発振管4において一端3aと一端4aの間およ
び他端9aと他端4bの間にそれぞれ予備放電電極4
c,4dを設け、プラズマも低密度のものを用い、プラ
ズマ形成時の共振周波数を予めマイクロ波周波数に合わ
せたものである。この他は図1の例と同じである。低密
度プラズマでは共振周波数のシフトが少ないことから、
プラズマ形成時の共振周波数を予めマイクロ波周波数に
合わせておくことにより、放電開始後に共振器の共振周
波数が高い方向にシフトしても放電が停止することなく
レーザ発振は連続的に行なわれる。
FIG. 2 shows another example of the microwave excitation laser of the present invention. In the oscillation tube 4, between the one end 3a and the one end 4a and between the other end 9a and the other end 4b, respectively, the preliminary discharge electrode 4 is provided.
c and 4d are provided, a low density plasma is used, and the resonance frequency at the time of plasma formation is adjusted to the microwave frequency in advance. Others are the same as the example of FIG. Since the resonance frequency shift is small in low density plasma,
By adjusting the resonance frequency at the time of plasma formation to the microwave frequency in advance, laser oscillation is continuously performed without stopping discharge even if the resonance frequency of the resonator shifts to a higher direction after the start of discharge.

【0013】[0013]

【発明の効果】請求項1の発明によれば、マイクロ波放
電励起によるレーザ発振においても、大出力で電力ロス
が少なく効率性に優れたレーザを実現することができ
る。ここでは一対の筒状金属物3,9を配置することに
より発振管近傍の電界を高めている。これにより、マイ
クロ波発振器の出力をむやみに上げなくても放電が可能
となる。それに加えて、金属容器2が直方体空洞共振器
であればTM110 モードを、金属容器2が円筒空洞共振
器であればTM010 モードを利用することにより発振管
近傍の電界は共振器のQ値倍に高められ、マイクロ波放
電は更に容易になる。これらの共振モードは容器の軸方
向成分のみマイクロ波電界を有し、電界分布は中心軸で
最も強く容器壁に近いほど弱いのでレーザガスの放電に
必要な発振管近傍のみの電界を強めることができ、マイ
クロ波発振器の出力を著しく低減することが可能とな
り、消費電力の低減,発振効率の増大および装置の小型
化が実現できる。従って、高密度高エネルギーの電子を
必要とするエキシマレーザ又は炭酸ガスレーザへの利用
が最も有望である。エキシマレーザへ利用した場合、放
電は、放電が始まると同時に共振器の共振周波数が高い
周波は数の側にシフトするので、共振器へのマイクロ波
入力が無くなり、停止する。これによりプラズマを消滅
しレーザ発振は停止する。それと同時に共振器の共振周
波数は元の値に復帰するためマイクロ波は再び共振器に
吸収され放電を開始する。このようにして、放電初期の
グロー状放電形成後アーク状放電が形成される前に共振
器へのマイクロ波入力が絶たれて放電が消滅するため、
レーザガスの劣化が少なく、効率の良いレーザ発進が可
能となる。ここでの放電の点滅の周期はプラズマ密度の
立ち上がりと消滅の時定数によって決まる。
According to the first aspect of the present invention, it is possible to realize a laser having a large output, a small power loss, and excellent efficiency even in laser oscillation by microwave discharge excitation. Here, the electric field in the vicinity of the oscillation tube is increased by arranging the pair of cylindrical metal objects 3 and 9. As a result, the discharge can be performed without unnecessarily increasing the output of the microwave oscillator. In addition, the TM110 mode is used when the metal container 2 is a rectangular parallelepiped cavity resonator, and the TM010 mode is used when the metal container 2 is a cylindrical cavity resonator. Enhanced, microwave discharge becomes even easier. These resonance modes have a microwave electric field only in the axial component of the container, and the electric field distribution is strongest at the center axis and weaker near the container wall, so that the electric field only near the oscillation tube necessary for discharging the laser gas can be strengthened. The output of the microwave oscillator can be remarkably reduced, and power consumption can be reduced, oscillation efficiency can be increased, and the device can be downsized. Therefore, the most promising application is for an excimer laser or a carbon dioxide laser, which requires high-density and high-energy electrons. When used in an excimer laser, the discharge stops when the discharge starts and the high resonance frequency of the resonator shifts to the number side, so that there is no microwave input to the resonator. This extinguishes the plasma and stops the laser oscillation. At the same time, the resonance frequency of the resonator returns to its original value, so that the microwave is absorbed again in the resonator and discharge is started. In this way, since the microwave input to the resonator is cut off and the discharge is extinguished after the glow discharge is formed at the beginning of the discharge and before the arc discharge is formed,
The deterioration of the laser gas is small, and efficient laser starting is possible. The blinking cycle of the discharge here is determined by the time constants of rise and disappearance of the plasma density.

【0014】金属容器2内にある一対の筒状金属突起物
3,9は一見電極のように見えるがこれは電極ではな
く、筒状金属突起物3,9の軸心近傍でかつこの一対の
筒状金属突起物3,9に挟まれる空間において高電界を
発生させるためのものであるから、電極から放電による
不純物が発生しないという点で、他の方式のマイクロ波
放電励起レーザと同じ長所を持つものである。
The pair of cylindrical metal projections 3 and 9 in the metal container 2 looks like electrodes at first glance, but this is not an electrode, but near the axial center of the cylindrical metal projections 3 and 9 and the pair of cylindrical metal projections 3 and 9. Since it is for generating a high electric field in the space between the cylindrical metal projections 3 and 9, it has the same advantage as other types of microwave discharge pumped lasers in that impurities are not generated from the electrodes due to discharge. To have.

【0015】請求項2の発明によれば、金属容器2が接
地されているので、動作中に誤って金属容器2に触れて
も感電の恐れがない。請求項3の発明によれば、発振管
4外部近傍のガス又は誘電体が放電を起こすことなく効
率の良い安定した発振を行うことができる。請求項4の
発明によれば、発振管4外部近傍にて放電を起こすこと
なく効率の良い安定した発振を行うことができる。請求
項5の発明によれば、発振管4外部近傍のガスが放電を
起こすことなく効率の良い安定した発振を行うことがで
きる。
According to the second aspect of the invention, since the metal container 2 is grounded, there is no risk of electric shock even if the metal container 2 is accidentally touched during operation. According to the third aspect of the present invention, it is possible to perform efficient and stable oscillation without causing discharge of gas or the dielectric near the outside of the oscillation tube 4. According to the invention of claim 4, efficient and stable oscillation can be performed without causing discharge near the outside of the oscillation tube 4. According to the invention of claim 5, the gas near the outside of the oscillation tube 4 can perform efficient and stable oscillation without causing discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のマイクロ波放電励起レーザの一例を示
す図である。
FIG. 1 is a diagram showing an example of a microwave discharge excitation laser of the present invention.

【図2】本発明のマイクロ波放電励起レーザの他の一例
を示す図である。
FIG. 2 is a diagram showing another example of the microwave discharge excitation laser of the present invention.

【図3】従来のマイクロ波放電励起レーザの一例を示す
図である。
FIG. 3 is a diagram showing an example of a conventional microwave discharge excitation laser.

【符号の説明】[Explanation of symbols]

1 導波管 2 金属容器 3 筒状金属突起物 4 発振管 5 レーザガス 6 全反射ミラー 7 半反射ミラー 8 配管 9 筒状金属突起物 10 配管 DESCRIPTION OF SYMBOLS 1 Waveguide 2 Metal container 3 Cylindrical metal projection 4 Oscillation tube 5 Laser gas 6 Total reflection mirror 7 Semi-reflection mirror 8 Piping 9 Cylindrical metal projection 10 Piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 雅彦 愛知県西春日井郡西枇杷島町芳野町3丁目 1番地 株式会社高岳製作所名古屋事業所 内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masahiko Adachi 3-chome, Yoshinocho, Nishibiwajima-cho, Nishibashijima-cho, Nishikasugai-gun, Aichi Takadake Works Nagoya Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導波管1の一端にマイクロ波発振器11
を接続し、他端には金属容器2を接続し、この金属容器
2内には導波管1の軸方向に対して交差する方向に、対
向する一対の筒状金属突起物3,9を設け、この一対の
筒状金属突起物3,9に発振管4を内挿させ、発振管4
内部にはレーザガス5を入れ、発振管4の長軸上で発振
管4を挟む位置に全反射ミラー6と半反射ミラー7を対
向配置したマイクロ波放電励起レーザ。
1. A microwave oscillator 11 is provided at one end of a waveguide 1.
And a metal container 2 is connected to the other end, and a pair of cylindrical metal projections 3 and 9 facing each other in a direction intersecting the axial direction of the waveguide 1 are provided in the metal container 2. The oscillation tube 4 is provided in the pair of cylindrical metal projections 3 and 9 and
A microwave discharge excitation laser in which a laser gas 5 is put inside, and a total reflection mirror 6 and a semi-reflection mirror 7 are arranged so as to face each other at a position sandwiching the oscillation tube 4 on the long axis of the oscillation tube 4.
【請求項2】 金属容器2を接地した請求項1記載のマ
イクロ波放電励起レーザ。
2. The microwave discharge excitation laser according to claim 1, wherein the metal container 2 is grounded.
【請求項3】 金属容器2内に放電を起こしにくい種類
のガス又は誘電体を入れた請求項1または2記載のマイ
クロ波放電励起レーザ。
3. The microwave discharge excitation laser according to claim 1, wherein the metal container 2 contains a gas or a dielectric material of a kind that does not easily generate a discharge.
【請求項4】 金属容器2内を高真空に排気した請求項
1または2記載のマイクロ波放電励起レーザ。
4. The microwave discharge excitation laser according to claim 1, wherein the inside of the metal container 2 is evacuated to a high vacuum.
【請求項5】 金属容器2内の圧力を発振管4内のガス
圧力より高くした請求項1または2記載のマイクロ波放
電励起レーザ。
5. The microwave discharge pump laser according to claim 1, wherein the pressure inside the metal container 2 is set higher than the gas pressure inside the oscillation tube 4.
JP30974092A 1992-10-26 1992-10-26 Microwave discharge exciting laser Pending JPH06140694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30974092A JPH06140694A (en) 1992-10-26 1992-10-26 Microwave discharge exciting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30974092A JPH06140694A (en) 1992-10-26 1992-10-26 Microwave discharge exciting laser

Publications (1)

Publication Number Publication Date
JPH06140694A true JPH06140694A (en) 1994-05-20

Family

ID=17996732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30974092A Pending JPH06140694A (en) 1992-10-26 1992-10-26 Microwave discharge exciting laser

Country Status (1)

Country Link
JP (1) JPH06140694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295003A (en) * 2007-07-23 2007-11-08 Tadahiro Omi Apparatus and method for oscillating excimer laser, aligner, and laser tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295003A (en) * 2007-07-23 2007-11-08 Tadahiro Omi Apparatus and method for oscillating excimer laser, aligner, and laser tube

Similar Documents

Publication Publication Date Title
KR100291152B1 (en) Plasma generating apparatus
Hodges et al. Waveguide laser for the far infrared (FIR) pumped by a CO2 laser
US5748663A (en) Retangular discharge gas laser
US4955035A (en) Microwave-pumped, high-pressure, gas-discharge laser
US4891819A (en) RF excited laser with internally folded resonator
JPH01173771A (en) Method of activating laser gas electrically and gas laser
JPH06140694A (en) Microwave discharge exciting laser
JPH09172214A (en) Rectangular emission gas laser
JPH0246785A (en) Method of electric excitation of gas laser and gas laser
JP2989296B2 (en) Microwave discharge excitation method for laser gas
RU2164048C1 (en) Device for microwave firing of gas-discharge laser and for lasing process maintenance by producing coaxial plasma line
EP0687044B1 (en) Rectangular discharge gas laser
JP2871217B2 (en) Microwave pumped gas laser device
JPH0311684A (en) Microwave laser apparatus
JPH02130975A (en) Microwave laser apparatus
JPH02129979A (en) Microwave laser device
JPH02133974A (en) Microwave laser device
JPH02129976A (en) Microwave laser device
Waynant et al. Design considerations for RF pumping of rare gas halide lasers
JP2877267B2 (en) Laser oscillation device
Akimov et al. Influence of the excitation field frequency on the operation of an rf-pumped waveguide CO2 laser
RU1440308C (en) Microwave-discharged laser
JP2871218B2 (en) Method and apparatus for microwave excitation of gas laser
JP3281823B2 (en) Microwave discharge excitation method for laser gas
JPH01262682A (en) Microwave laser apparatus