JPH0482167A - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH0482167A
JPH0482167A JP2194804A JP19480490A JPH0482167A JP H0482167 A JPH0482167 A JP H0482167A JP 2194804 A JP2194804 A JP 2194804A JP 19480490 A JP19480490 A JP 19480490A JP H0482167 A JPH0482167 A JP H0482167A
Authority
JP
Japan
Prior art keywords
air
fuel cell
exhaust air
exhaust
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194804A
Other languages
Japanese (ja)
Inventor
Hideaki Miyoshi
英明 三好
Toru Otani
徹 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2194804A priority Critical patent/JPH0482167A/en
Publication of JPH0482167A publication Critical patent/JPH0482167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To clean an air pre-heater without stopping the title power generator by, in cleaning the air pre-heater, discharging exhaust air to the atmosphere through a bypass pipe and exhaust air pipe. CONSTITUTION:In the case that a pressure loss in an exhaust air system is increased by corrosive products sticked on the wall surface of an exhaust air passage 106 of an air pre-heater 17, a cutoff valves 24 and 25 provided on a bypass pipe 23 are opened and cutoff valves 21 and 22 are closed. Consequently, the exhaust air is allowed to temporarily flow in the pipe 23, which enables cleaning the corrosive products without stopping a fuel cell power generator. After that, the valves 21 and 22 connected with the air pre-heater 17 is opened and the valves 24 and 25 are closed thus enabling the resetting of allowing the exhaust air to flow in the sir pre-heater 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池本体から排出される排空気を用い
て燃料電池の反応空気を予熱する空気予熱器を有する燃
料電池発電装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell power generation device having an air preheater that preheats reaction air of a fuel cell using exhaust air discharged from a fuel cell main body. be.

〔従来の技術〕[Conventional technology]

従来、燃料の有している化学エネルギーを直接電気エネ
ルギーに変換する装置として燃料電池が知られている。
Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy.

この燃料電池は通常電解質を挟んで一対の多孔質電極を
配置するとともに一方の電極の背面に水素を含むガス(
燃料)を流し、また他方の電極の背面に酸素を含むガス
(酸化剤)を流し、このときに起こる電気化学反応を利
用して電気エネルギーを取り出すようにしたものである
This fuel cell usually consists of a pair of porous electrodes with an electrolyte sandwiched between them, and a hydrogen-containing gas (
A gas containing oxygen (oxidant) is flowed behind the other electrode, and the electrochemical reaction that occurs at this time is used to extract electrical energy.

最近実用化を目指して盛んに開発が進められている燃料
電池発電装置は、炭化水素燃料を水蒸気と反応(改質反
応)させて水素を多く含むカスを製造する改貰装置と、
燃料電池本体とを備えている。
Fuel cell power generation equipment, which has recently been actively developed with the aim of putting it into practical use, uses a reforming device that reacts hydrocarbon fuel with steam (reforming reaction) to produce hydrogen-rich residue.
It is equipped with a fuel cell main body.

このような燃料電池発電装置の(に来技術として例えば
昭和63年9月新エネルギー総合開発機楕[昭和62年
度研究成果年報C1l]に示すものがあり、その概要を
第4図に示す。
As an example of recent technology for such a fuel cell power generation device, there is one shown in the September 1988 New Energy Comprehensive Development Machine Report [Annual Report of Research Results for 1988 C1l], and its outline is shown in Fig. 4.

図において、(1)は燃料極(1a)、空気極(1b)
、冷却器(1c)からなる燃料電池本体、(2)は炭化
水素燃料(原燃料)を水蒸気と反応させて水素を多く含
む改Hガスを製造する改質器で、反応部(2a)とバー
ナ部(2b)とで構成される。(3)は原燃料中のイオ
ウ(S>を取り除く脱硫器、〈4)は原燃料を水蒸気と
混合昇圧するエジェクタ、〈5)は水蒸気分離器、(6
)は電池冷却水ポンプ、(7)は空気ブロワ、(8)、
 (9)は原燃料供給管、(10)はスチーム供給管、
(11)は混合ガス供給管、(12)は改質ガス供給管
、(13)は排可燃ガス管、(14)は排ガス管、<1
5)、 (+6)は反応空気供給管、(17)は空気予
熱管、<1.8>、 (19)は排空気管、(20)は
燃焼空気供給管、(21)は電池冷却水管である。
In the figure, (1) indicates the fuel electrode (1a) and the air electrode (1b).
, a fuel cell body consisting of a cooler (1c), and (2) a reformer that reacts hydrocarbon fuel (raw fuel) with water vapor to produce reformed H gas containing a large amount of hydrogen. It is composed of a burner part (2b). (3) is a desulfurizer that removes sulfur (S>) from raw fuel, (4) is an ejector that mixes raw fuel with steam and increases the pressure, (5) is a steam separator, (6)
) is a battery cooling water pump, (7) is an air blower, (8),
(9) is the raw fuel supply pipe, (10) is the steam supply pipe,
(11) is a mixed gas supply pipe, (12) is a reformed gas supply pipe, (13) is an exhaust combustible gas pipe, (14) is an exhaust gas pipe, <1
5), (+6) is the reaction air supply pipe, (17) is the air preheating pipe, <1.8>, (19) is the exhaust air pipe, (20) is the combustion air supply pipe, (21) is the battery cooling water pipe It is.

また、燃料電池本体の反応空気を排空気を用いて予熱す
る空気予熱器(17)の従来技術としては例えば第5図
に示すものがある。図において、(101)は反応空気
入口、(102)は反応空気出口、(103)は排空気
入口、(104)は排空気出口、(105)は反応空気
流路、(106)は排空気流路、(107)は凝縮液を
排出させるドレン管である。
Further, as a prior art example of an air preheater (17) for preheating the reaction air of the fuel cell main body using exhaust air, there is one shown in FIG. 5, for example. In the figure, (101) is the reaction air inlet, (102) is the reaction air outlet, (103) is the exhaust air inlet, (104) is the exhaust air outlet, (105) is the reaction air flow path, and (106) is the exhaust air. The air flow path (107) is a drain pipe for discharging condensed liquid.

次に、上記のように構成された従来燃料電池発電装置の
動作について説明する。燃料電池本体(1)は燃料極(
1a)、空気極(1b)、冷却器(1c)より構成され
、燃flfi(la)に水素を含むガス、空気極(1b
)に空気をそれぞれ供給して酸化還元反応を行わせるこ
とにより電力を外部に取り出す。燃料極(1a)には反
応用に水素を必要とし、このために炭化水素燃料を水素
リッチガスに改質する改質器(2)が組合わされる。ま
ず、天然ガス等の炭化水素燃料(原燃料)が、入口の原
燃料供給管(8)を経て脱硫器(3)に供給され、原燃
料の中に含まれ、改質触媒を被毒させるおそれのあるイ
オウ(S)分が、吸着除去される。脱硫器(3)を出た
原燃料は原燃料供給管(9)を経てエジェクタ(4)に
送られる。エジェクタ(4)は、水蒸気分離器(5)か
ら供給される高圧のスチームを駆動力として、原燃料を
スチームと混合昇圧する機能を有する。エジェクタ(4
)において原燃料とスチームとか混合しなあとその混合
ガスは混合ガス供給管(11)を通って改質器り2)の
反応部(2a)に送られる。反応部(2a)には改訂触
媒が充填されそこで混合ガスはバーナ部(2b)より熱
を与えられ改質反応を生じ、水素を主成分とする改質ガ
スに変換される。得られた改質ガスは、改質ガス供給管
(12)を経て燃料電池本体(1)の燃料極(1a)に
供給され、そこで反応によって消費される。消費された
残りの余剰燃料は、排可燃ガス管(13)を通って改質
器(2)のバーナ部(2b)に送られ、そこで燃焼され
て反応部(2a)に対し熱が与えられる。
Next, the operation of the conventional fuel cell power generation apparatus configured as described above will be explained. The fuel cell main body (1) has a fuel electrode (
1a), an air electrode (1b), and a cooler (1c).
) by supplying air to each of them to cause an oxidation-reduction reaction to take out electricity to the outside. The fuel electrode (1a) requires hydrogen for the reaction, and for this purpose is combined with a reformer (2) for reforming hydrocarbon fuel into hydrogen-rich gas. First, hydrocarbon fuel (raw fuel) such as natural gas is supplied to the desulfurizer (3) through the raw fuel supply pipe (8) at the inlet, where it is contained in the raw fuel and poisons the reforming catalyst. Possible sulfur (S) components are adsorbed and removed. The raw fuel leaving the desulfurizer (3) is sent to the ejector (4) via the raw fuel supply pipe (9). The ejector (4) has a function of mixing raw fuel with steam and pressurizing it using high-pressure steam supplied from the steam separator (5) as a driving force. Ejector (4
), the raw fuel and steam are mixed, and the mixed gas is sent to the reaction section (2a) of the reformer 2) through the mixed gas supply pipe (11). The reaction section (2a) is filled with a revised catalyst, where the mixed gas is given heat from the burner section (2b) to cause a reforming reaction and is converted into a reformed gas containing hydrogen as a main component. The obtained reformed gas is supplied to the fuel electrode (1a) of the fuel cell main body (1) via the reformed gas supply pipe (12), where it is consumed by reaction. The remaining consumed fuel is sent to the burner section (2b) of the reformer (2) through the exhaust combustible gas pipe (13), where it is combusted to provide heat to the reaction section (2a). .

バーナ部(2b)から排出される燃焼排ガスは、排ガス
管(14)を経て大気に放出される。空気ブロワ(7)
からの空気の一部は、反応空気供給管(15)を経て、
空気予熱器(17)に導入され、排空気の熱で予熱され
た後反応空気供給管(16)を経て燃料電池本体(1)
の空気1(Ib)に供給され、そこて酸化反応に供され
る。前述の燃料& (la)への改質ガス供給および空
気fi(Ib)への空気の供給によって燃料電池本体(
1)内て酸化還元反応が行われ、電気出力が外部に取り
出される。空気極(1b)で消費された残りの空気は排
空気管(18)経て前記空気予熱器(17)に導入され
、反応空気によって冷却後排空気管(19)を経てバー
ナ部(2b)からの排ガス管(18)に合流して大気に
放出される。空気ブロワ(7)からの残りの空気は、燃
料空気供給管(20)を経て改質器(2)のバーナ部(
2b)へ供給され、そこで燃焼用空気として消費される
Combustion exhaust gas discharged from the burner section (2b) is discharged into the atmosphere through an exhaust gas pipe (14). Air blower (7)
A part of the air from is passed through the reaction air supply pipe (15),
The air is introduced into the air preheater (17), preheated by the heat of the exhaust air, and then passed through the reaction air supply pipe (16) to the fuel cell main body (1).
air 1 (Ib), where it is subjected to an oxidation reaction. The fuel cell main body (
1) Oxidation-reduction reaction takes place inside, and electrical output is taken out to the outside. The remaining air consumed in the air electrode (1b) is introduced into the air preheater (17) through the exhaust air pipe (18), and after being cooled by the reaction air, it is discharged from the burner section (2b) through the exhaust air pipe (19). The gas flows into the exhaust gas pipe (18) and is discharged into the atmosphere. The remaining air from the air blower (7) passes through the fuel air supply pipe (20) to the burner section (2) of the reformer (2).
2b), where it is consumed as combustion air.

燃料電池本体(1)には、反応熱を除去する目的で冷却
器(1c)か配置され、この冷却器(1c)に電池冷却
水が通水される。水蒸気分離器(5)で発生したスチー
ムは、スチーム供給管(10)を経てエジェクタ(4)
に供給され、前述の原燃料との混合に使用される。
A cooler (1c) is arranged in the fuel cell body (1) for the purpose of removing reaction heat, and cell cooling water is passed through the cooler (1c). The steam generated in the steam separator (5) passes through the steam supply pipe (10) to the ejector (4).
and used for mixing with the raw fuel mentioned above.

さて、空気予熱器(17)は第5図にその構成を示すと
おり、チューブプレート(107)およびコルゲーショ
ン<108)によって形成された反応空気流路(105
)および排空気流F!@(106)が交互に形成されて
いる。反応空気人口(101)から導入された反応空気
は、排空気の熱を得て反応空気出口(102)から排出
され、排空気入口(103)から導入された排空気は反
応空気によって冷却され、排空気出口(104)から排
出される。このとき、排空気中に含まれる、水分、リン
酸蒸気またはリン酸ミストの一部は凝縮し、排空気流路
(106)の壁面に付着する。ドレン管(109)は前
述のリン酸を含む凝縮液を外部に排出するためのもので
ある。
Now, as the configuration of the air preheater (17) is shown in FIG. 5, the reaction air flow path (105) is formed by a tube plate (107) and a corrugation
) and exhaust airflow F! @ (106) are formed alternately. The reaction air introduced from the reaction air port (101) obtains heat from the exhaust air and is discharged from the reaction air outlet (102), and the exhaust air introduced from the exhaust air inlet (103) is cooled by the reaction air. Exhaust air is discharged from the exhaust air outlet (104). At this time, a portion of the moisture, phosphoric acid vapor, or phosphoric acid mist contained in the exhaust air condenses and adheres to the wall surface of the exhaust air flow path (106). The drain pipe (109) is for draining the condensate containing the aforementioned phosphoric acid to the outside.

なお、チューブプレート(107)およびコルゲーショ
ン(108)の材質は、熱伝導性と耐食性等を考慮して
例えばそれぞれSO3304およびSUS 316が用
いられている。
Note that the tube plate (107) and the corrugation (108) are made of, for example, SO3304 and SUS 316, respectively, in consideration of thermal conductivity and corrosion resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃料電池発電装置は、以上のように構成されてい
るのて、空気予熱器(17)の排空気流路(106)の
壁面に凝縮したリン酸によりコルゲーション(108)
 、チューブプレーlへ(107)が腐食し、その腐食
生成物によって排空気7荒路から閉塞し、排空気入口(
103) 、排空気出口(104)間の圧力損失が増大
する。排空気系統の圧力損失の増大は、燃料電池本体(
1)の空気極(1b)側圧力の上昇を弓き起こし、これ
に伴い燃FJ極(1a)と空気i (lb)との差圧上
昇さらには電解質マトリックスを介しての空気の燃料極
(la)側への移行(クロスオーバ)が起こり、燃料極
(1a)を損傷するおそれがあるため装置を停止して、
腐食生成物を定期的に洗浄除去しなければならないとい
う問題点があった。
Since the conventional fuel cell power generation device is configured as described above, the corrugation (108) is caused by phosphoric acid condensed on the wall of the exhaust air passage (106) of the air preheater (17).
, to the tube plate l (107) is corroded, and the corrosion products block the exhaust air 7 rough passage, and the exhaust air inlet (107) is blocked.
103), the pressure loss between the exhaust air outlet (104) increases. The increase in pressure loss in the exhaust air system is caused by the fuel cell main body (
1) causes an increase in the pressure on the air electrode (1b) side, which causes an increase in the differential pressure between the fuel FJ electrode (1a) and the air i (lb), and further increases the air flow to the fuel electrode (1b) through the electrolyte matrix. 1a) side (crossover) may occur and damage the fuel electrode (1a), the device is stopped and
There was a problem in that corrosion products had to be periodically cleaned and removed.

この発明は、上記のような問題点を解消するためになさ
れたもので、第1、第2の発明においては、空気予熱器
の排空気流路に生成付着した腐食生成物の洗浄除去を装
置を停止しないで運転中に行うことができる燃料電池発
電装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and in the first and second inventions, a device is provided for cleaning and removing corrosion products generated and adhered to the exhaust air flow path of an air preheater. The object of the present invention is to obtain a fuel cell power generation device that can perform power generation during operation without stopping.

また、第3の発明においては、空気予熱器の内部の腐食
を防止し、腐食生成付着による圧力の損失の増大を防止
できる燃料電池発電装置を得ることを目的とする。
Furthermore, a third object of the present invention is to provide a fuel cell power generation device that can prevent corrosion inside an air preheater and prevent an increase in pressure loss due to corrosion formation and adhesion.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の第1の発明に係る燃料電池発電装置は、排空
気管に空気予熱管を迂回したバイパス管を取り付け、前
記排空気バイパス管を通過させて大気中に放出てきるよ
うになっているものである。
In the fuel cell power generation device according to the first aspect of the present invention, a bypass pipe that bypasses the air preheating pipe is attached to the exhaust air pipe, and the exhaust air is passed through the bypass pipe and discharged into the atmosphere. It is something.

第2の発明に係る燃料電池発電装置は、空気予熱器に並
列に他の空気予熱器を取り付け、空気を交互に予熱でき
るようになっているものである。
In the fuel cell power generation device according to the second aspect of the invention, another air preheater is attached in parallel to the air preheater so that air can be preheated alternately.

第3の発明に係る燃料電池発電装置は、排空気が接触す
る空気予熱内部の接ガス部を耐熱リン酸材で構成したも
のである。
In the fuel cell power generation device according to the third aspect of the invention, the gas contacting part inside the air preheating unit with which exhaust air comes into contact is made of a heat-resistant phosphoric acid material.

〔作 用〕[For production]

この発明の第1発明においては、空気予熱器の洗浄の際
には、排空気はバイパス管、排空気管を通じて大気中に
放出される。
In the first aspect of the present invention, when cleaning the air preheater, exhaust air is discharged into the atmosphere through the bypass pipe and the exhaust air pipe.

この発明の第2の発明においては、空気予熱器の洗浄の
際には、排空気は他の空気予熱器、排空気管を通じて大
気中に放出される。
In the second aspect of the present invention, when cleaning the air preheater, exhaust air is discharged into the atmosphere through another air preheater and an exhaust air pipe.

この発明の第3の発明においては、空気予熱器の接ガス
部がリン酸に起因して腐食するようなことはない。
In the third aspect of the present invention, the gas contact portion of the air preheater does not corrode due to phosphoric acid.

〔実施例〕〔Example〕

〔第1の発明の実施例〕 第1図は、第1の発明の一実施例を示す系統図である。 [Embodiment of the first invention] FIG. 1 is a system diagram showing an embodiment of the first invention.

第1図において、符号(1)〜(20)は第4図に示し
た従来の構成と同じものである。(21)(22)は、
空気予熱器(17)につながる排空気管(18)(19
)の上流側および下流側に設けた第1および第2の遮断
弁、(23)は第1の遮断弁(21)の上流側から分岐
し、第2の遮断弁(22)の下流側につながるバイパス
管、(24)、 (25)は、バイパス管(23)に設
けた第3および第4の遮断弁である。
In FIG. 1, symbols (1) to (20) are the same as the conventional structure shown in FIG. (21) and (22) are
Exhaust air pipes (18) (19) connected to the air preheater (17)
), the first and second shutoff valves (23) are branched from the upstream side of the first shutoff valve (21) and are located downstream of the second shutoff valve (22). The connecting bypass pipes (24) and (25) are third and fourth shutoff valves provided in the bypass pipe (23).

次に、上記実施例の燃料電池発電装置の動作について説
明する。運転中の動作は第4図に示した従来の動作と同
じであり、相違点のみ以下に記す。
Next, the operation of the fuel cell power generating apparatus of the above embodiment will be explained. The operation during operation is the same as the conventional operation shown in FIG. 4, and only the differences will be described below.

すなりち空気予熱器(17)の排空気流路(106)の
壁面に生成付着しf:腐食生成物によって排空気系統の
圧力損失が増大した場合、バイパス管(23)に設けた
第3および第4の遮断弁(24)、 (25)を開にし
、第1および第2の遮断弁(21)、 (22)を閉に
し、jJF空気を一時的にバイパス管(23)に流すこ
とにより、燃料電池発電装置を停止することなく、前述
の腐食生成物を洗浄除去できる。洗浄除去終了後は、空
気予熱器(17)につながる第1および第2の遮断弁(
21)、 (22)を開とし、バイパス管(23)の第
3および第4の遮断弁(24)、 (25)を閉として
排空気か空気予熱器(エフ)に流れるように復旧するこ
とができる。したかって、従来技術で問題となった、排
空気系統の圧力損失の増大、これに伴う燃料極(]a)
と空気fi (lb)との差圧上昇、さらには電解質マ
トリックスを介しての空気の燃料極(1a)側への移行
(クロスオーバ)に起因する電極の損傷等が、プラント
を停止することなく未然に防止できる。
When the pressure loss in the exhaust air system increases due to corrosion products, the third corrosion product installed in the bypass pipe (23) and open the fourth shutoff valve (24), (25), close the first and second shutoff valves (21), (22), and temporarily flow the jJF air into the bypass pipe (23). Accordingly, the above-mentioned corrosion products can be washed and removed without stopping the fuel cell power generation device. After cleaning and removal, the first and second shutoff valves (
21), (22) are opened and the third and fourth shutoff valves (24), (25) of the bypass pipe (23) are closed to restore exhaust air to flow to the air preheater (F). I can do it. Therefore, the problem with the conventional technology is the increase in pressure loss in the exhaust air system and the accompanying fuel electrode (]a)
damage to the electrode due to an increase in the differential pressure between the air and the air fi (lb), as well as air migration to the fuel electrode (1a) side through the electrolyte matrix (crossover), without stopping the plant. It can be prevented.

〔第2の発明の実施例〕 第2図は第2の発明の一実施例を示す系統図である。第
2図において、符号(1)〜(20)は第4図に示した
従来の構成と同じものである。(21)(22)は空気
予熱器(17)につながる排空気管(]8)(19)の
上流側および下流側に設けた第1および第2の遮断弁、
(26)は空気予熱器、 (27)は第1の遮断弁(2
1)の上流側から分岐し、第2の3!!断弁(22)の
下流側に空気予熱器(26)を経てさながる排空気管で
、(28)、 (29)は空気予熱器(26)の上流側
および下流側に設けた第5および第6の遮断弁である。
[Embodiment of the second invention] FIG. 2 is a system diagram showing an embodiment of the second invention. In FIG. 2, symbols (1) to (20) are the same as the conventional structure shown in FIG. (21) and (22) are first and second shutoff valves provided on the upstream and downstream sides of the exhaust air pipes (8) and (19) connected to the air preheater (17);
(26) is the air preheater, (27) is the first shutoff valve (2
Branches from the upstream side of 1), and the second 3! ! Exhaust air pipes are connected to the downstream side of the cutoff valve (22) via the air preheater (26), and (28) and (29) are the exhaust pipes installed on the upstream and downstream sides of the air preheater (26). They are the fifth and sixth shutoff valves.

(30)、 (31)は、空気予熱器(+7)につなが
る反応空気管(15)、 (16)の上流側および下流
側に設けた第7および第8の遮断弁、(32)は前記第
7の遮断弁(30〉の上流側から分岐し、第8の遮断弁
(31)の下流側に空気予熱器(26)を経てつながる
反応空気管で、(33)、 <34)は空気予熱器(2
6)の上流側および下流側に設けた遮断弁である。
(30) and (31) are the reaction air pipe (15) connected to the air preheater (+7), and seventh and eighth shutoff valves provided on the upstream and downstream sides of (16); (32) are the A reaction air pipe that branches from the upstream side of the seventh shutoff valve (30) and connects to the downstream side of the eighth shutoff valve (31) via an air preheater (26), and (33) and <34) are air pipes. Preheater (2
These are shutoff valves provided on the upstream and downstream sides of 6).

次に、上記実施例の燃料電池発電システムの動作につい
て説明する。運転中の動作は第4図に示した従来の動作
と同じであり、相違点のみ以下に記す、すなわち、空気
予熱器(17)の排空気流路(106)の壁面に生成付
着した腐食生成物によって排空気系統の圧力損失が増大
した場合、空気予熱器(26)につながる排空気管(2
7)の第5および第6の遮断弁(28)、 (29)お
よび空気予熱器(26)につながる反応空気管(32)
の遮断弁(33)、 (34>を開にし、空気予熱器(
17)につながる排空気管(18)、 (+9)の第1
および第2の遮断弁(21)、 (22)および空気予
熱器(17)につながる反応空気管(15)、 (16
)の第7および第8の遮断弁(30)、 (31>を閉
にし、排空気および反応空気を圧力損失の増大した空気
予熱器(17)から他方の正常な空気予熱器(26)に
切替えることにより、装置を停止することなく前述の腐
食生成物を洗浄除去できる。また、空気予熱器(26)
の排空気系統の圧力損失が増大した場合には、前述と同
様の操作を行い、排空気および反応空気を他方の空気予
熱器(17)に切替えることができる。
Next, the operation of the fuel cell power generation system of the above embodiment will be explained. The operation during operation is the same as the conventional operation shown in Fig. 4, and only the differences are described below. If the pressure loss in the exhaust air system increases due to an object, the exhaust air pipe (2
7) fifth and sixth shutoff valves (28), (29) and a reaction air pipe (32) leading to the air preheater (26)
Open the shutoff valves (33) and (34) of the air preheater (
The first of the exhaust air pipes (18) and (+9) connected to 17)
and reaction air pipes (15), (16) leading to second shutoff valves (21), (22) and air preheater (17).
), the seventh and eighth shutoff valves (30) and (31>) are closed, and the exhaust air and reaction air are passed from the air preheater (17) with increased pressure loss to the other normal air preheater (26). By switching, the above-mentioned corrosion products can be cleaned and removed without stopping the equipment.In addition, the air preheater (26)
If the pressure loss in the exhaust air system increases, the same operation as described above can be performed to switch the exhaust air and reaction air to the other air preheater (17).

〔第3の発明の実施例〕 第3図は第3の発明の一実施例を示す斜視図であり、第
3図において(101)〜(105)は第5図に示した
従来の構成と同じものである。
[Embodiment of the third invention] Fig. 3 is a perspective view showing an embodiment of the third invention, and in Fig. 3, (101) to (105) are different from the conventional configuration shown in Fig. 5. It's the same thing.

排空気流路(106)はコルゲーション(108) 、
チューブプレート(+07>の接ガス部に耐熱リン酸材
であるフッ素樹脂を用いて50μm程度の厚みで被覆部
(110)を形成したちのである。上記の燃料電池発電
装置では、排空気入口(+03)から導入された排空気
中にはリン酸蒸気またリン酸ミストが含まハ、ているた
めに、排空気流路(106)のコルゲーション(108
)表面にリン酸が凝縮、付着するが、排空気流&&(1
,06)め接ガス部にフッ素樹脂がコーティングされて
いるために金属表面が腐食されることはなく腐食生成物
も生じない。そのために凝縮付着したリン酸はドレン(
109)へ流れ、排空気流路(106)の圧力損失を高
めることなく運転が可能となる。
The exhaust air flow path (106) is a corrugation (108),
A covering part (110) with a thickness of about 50 μm is formed using fluororesin, which is a heat-resistant phosphoric acid material, on the gas contact part of the tube plate (+07).In the above fuel cell power generation device, the exhaust air inlet ( Since the exhaust air introduced from the exhaust air flow path (106) contains phosphoric acid vapor or phosphoric acid mist, the corrugation (108) of the exhaust air flow path (106)
) Phosphoric acid condenses and adheres to the surface, but the exhaust air flow && (1
, 06) Since the gas contact area is coated with fluororesin, the metal surface will not be corroded and no corrosion products will be generated. Therefore, the condensed phosphoric acid is drained (
109), and operation can be performed without increasing pressure loss in the exhaust air flow path (106).

なお、上記第1の発明ないし第3の発明の各実施例では
空気予熱器(17)の場合について説明したが、これら
の発明は空気予熱器のかわりに排空気中の水分を凝縮、
回収する排空気冷却器、または燃焼排ガスと排空気との
混合ガス中の水分を凝縮回収する排ガス冷却器にも適用
できる。
In addition, in each of the embodiments of the first to third inventions, the case of the air preheater (17) has been explained, but these inventions condense moisture in the exhaust air, instead of the air preheater.
The present invention can also be applied to an exhaust air cooler that collects the exhaust air, or an exhaust gas cooler that condenses and recovers moisture in a mixed gas of combustion exhaust gas and exhaust air.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の第1の燃料電池発電装
置によれば、空気予熱器の洗浄の際には、排空気はバイ
パス管、a[空気管を通じて大気中に放出されるように
なっているので、装置を停止する二となく空気予熱器を
洗浄することがてきるという効果がある。
As explained above, according to the first fuel cell power generation device of the present invention, when cleaning the air preheater, exhaust air is discharged into the atmosphere through the bypass pipe, a [air pipe]. This has the effect that the air preheater can be cleaned without having to stop the equipment.

第2の発明の燃料電池発電装置によれば、空気予熱器の
洗浄の際には、排空気は他の空気予熱器、排空気管を通
して大気中に放出されるようにな−)でいるのて、装置
を停止することなく空気予熱器を交互に洗浄することが
できる効果がある。
According to the fuel cell power generation device of the second invention, when cleaning the air preheater, the exhaust air is discharged into the atmosphere through the other air preheater and the exhaust air pipe. This has the effect that the air preheater can be alternately cleaned without stopping the equipment.

第3の発明の燃料電池発電装置によれば、空気予熱器内
部の接ガス部を耐熱リン酸材て構成したことにより、凝
縮リン酸による腐食が防止され、腐食生成物付着による
排空気系統の圧力損失増大を防止できるという効果があ
る。
According to the fuel cell power generation device of the third aspect of the invention, since the gas contact part inside the air preheater is made of a heat-resistant phosphoric acid material, corrosion due to condensed phosphoric acid is prevented, and corrosion of the exhaust air system due to adhesion of corrosion products is prevented. This has the effect of preventing an increase in pressure loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の一実施例を示す系統図、第2図は
第2の発明の一実施例を示す系統図、第3図は第3の発
明の一実施例を示す空気予熱器の斜視図、第4図は従来
の燃料電池発電装置の一例を示す系統図、第5図は第4
図の空気予熱器の斜視図である。 図中、(1)は燃料電池本体、(2)は改質器、(17
)、 (26)は空気予熱器、(18)、 (+9)は
排空気管、(23)はバイパス管、(21)、 (22
)、 (24)、 (25)(28)、(29)、 (
30)、 (31)は遮断弁、(110)は被覆部であ
る。 なお、各図中、同一符号は同一または相当部分を示す。
Fig. 1 is a system diagram showing an embodiment of the first invention, Fig. 2 is a system diagram showing an embodiment of the second invention, and Fig. 3 is an air preheating diagram showing an embodiment of the third invention. Fig. 4 is a system diagram showing an example of a conventional fuel cell power generation device, and Fig. 5 is a perspective view of the device.
FIG. 2 is a perspective view of the air preheater shown in FIG. In the figure, (1) is the fuel cell main body, (2) is the reformer, (17
), (26) are air preheaters, (18), (+9) are exhaust air pipes, (23) are bypass pipes, (21), (22
), (24), (25) (28), (29), (
30) and (31) are shutoff valves, and (110) is a covering portion. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)炭化水素燃料を水蒸気と反応させて改質ガスを得
る反応部と、この反応部に必要な熱エネルギーを発生さ
せるバーナ部とを有する改質器と、この改質ガスと空気
とを電気化学的に反応させて電力を得る燃料電池本体と
、 この燃料電池本体から排出された排空気を大気に導く排
空気管に取り付けられ空気ブロワから燃料電池本体内に
送られる空気と排空気とを熱交換して空気を予熱する空
気予熱器と を備えた燃料電池発電装置において、 前記排空気管に前記空気予熱管を迂回したバイパス管を
取り付け、前記排空気をバイパス管を通過させて大気中
に放出できるようになっていることを特徴とする燃料電
池発電装置。
(1) A reformer that has a reaction section that reacts hydrocarbon fuel with steam to obtain reformed gas, a burner section that generates the thermal energy necessary for this reaction section, and a system that combines the reformed gas and air. The main body of the fuel cell generates electricity through an electrochemical reaction, and the air and exhaust air that is sent into the main body of the fuel cell from an air blower attached to an exhaust air pipe that guides the exhaust air discharged from the main body of the fuel cell to the atmosphere. In a fuel cell power generation device equipped with an air preheater that preheats the air by exchanging heat with the air, a bypass pipe that bypasses the air preheating pipe is attached to the exhaust air pipe, and the exhaust air is passed through the bypass pipe and released into the atmosphere. A fuel cell power generation device characterized in that the fuel cell power generation device is capable of emitting energy into the fuel cell.
(2)炭化水素燃料を水蒸気と反応させて改質ガスを得
る反応部と、この反応部に必要な熱エネルギーを発生さ
せるバーナ部とを有する改質器と、この改質ガスと空気
とを電気化学的に反応させて電力を得る燃料電池本体と
、 この燃料電池本体から排出された排空気を大気に導く排
空気管に取り付けられ空気ブロワから燃料電池本体内に
送られる空気と排空気とを熱交換して空気を予熱する空
気予熱器と を備えた燃料電池発電装置において、 前記空気予熱器に並列に他の空気予熱器を取り付け、前
記空気を交互に予熱できるようになっていることを特徴
とする燃料電池発電装置。
(2) A reformer that has a reaction section that reacts hydrocarbon fuel with steam to obtain reformed gas, a burner section that generates the thermal energy necessary for this reaction section, and a system that combines this reformed gas and air. The main body of the fuel cell generates electricity through an electrochemical reaction, and the air and exhaust air that is sent into the main body of the fuel cell from an air blower attached to an exhaust air pipe that guides the exhaust air discharged from the main body of the fuel cell to the atmosphere. and an air preheater that preheats the air by exchanging heat with the air, wherein another air preheater is attached in parallel to the air preheater so that the air can be preheated alternately. A fuel cell power generation device featuring:
(3)炭化水素燃料を水蒸気と反応させて改質ガスを得
る反応部と、この反応部に必要な熱エネルギーを発生さ
せるバーナ部とを有する改質器と、この改質ガスと空気
とを電気化学的に反応させて電力を得る燃料電池本体と
、 この燃料電池本体から排出された排空気を大気に導く排
空気管に取り付けられ空気ブロワから燃料電池本体内に
送られる空気と排空気とを熱交換して空気を予熱する空
気予熱器と を備えた燃料電池発電装置において、 前記排空気が接触する前記空気予熱器内部の接ガス部を
耐熱リン酸材で構成したことを特徴とする燃料電池発電
装置。
(3) A reformer that has a reaction section that reacts hydrocarbon fuel with steam to obtain reformed gas, a burner section that generates the thermal energy necessary for this reaction section, and a system that combines this reformed gas and air. The main body of the fuel cell generates electricity through an electrochemical reaction, and the air and exhaust air that is sent into the main body of the fuel cell from an air blower attached to an exhaust air pipe that guides the exhaust air discharged from the main body of the fuel cell to the atmosphere. and an air preheater that preheats the air by exchanging heat with the air, characterized in that a gas contact part inside the air preheater that the exhaust air comes into contact with is made of a heat-resistant phosphoric acid material. Fuel cell power generation device.
JP2194804A 1990-07-25 1990-07-25 Fuel cell power generator Pending JPH0482167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194804A JPH0482167A (en) 1990-07-25 1990-07-25 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194804A JPH0482167A (en) 1990-07-25 1990-07-25 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JPH0482167A true JPH0482167A (en) 1992-03-16

Family

ID=16330538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194804A Pending JPH0482167A (en) 1990-07-25 1990-07-25 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0482167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010209A2 (en) * 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Device and method for using the waste heat of an air-cooled fuel cell battery
JP2009054477A (en) * 2007-08-28 2009-03-12 Honda Motor Co Ltd Fuel cell system, and operation method thereof
JP2021150156A (en) * 2020-03-18 2021-09-27 東京瓦斯株式会社 Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010209A2 (en) * 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Device and method for using the waste heat of an air-cooled fuel cell battery
WO2000010209A3 (en) * 1998-08-10 2000-06-08 Siemens Ag Device and method for using the waste heat of an air-cooled fuel cell battery
US6630261B2 (en) 1998-08-10 2003-10-07 Siemens Aktiengesellschaft Apparatus and method for utilizing the waste heat of an air-cooled fuel cell battery
JP2009054477A (en) * 2007-08-28 2009-03-12 Honda Motor Co Ltd Fuel cell system, and operation method thereof
JP2021150156A (en) * 2020-03-18 2021-09-27 東京瓦斯株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
JP2008541382A (en) High temperature fuel cell system with integrated heat exchanger network
JP4311762B2 (en) High temperature fuel cell facility operation method and high temperature fuel cell facility
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
JP2000156236A5 (en)
JP2000156236A (en) Solid polymer type fuel cell system
JP5127395B2 (en) Fuel cell power generation system
JPH08321316A (en) Fuel cell generator
JP2000200617A (en) Fuel-cell composite power generating plant system
JP3644667B2 (en) Fuel cell power generator
JP2003142132A (en) Fuel cell system
EP2530774B1 (en) Fuel cell system and operation method therefor
JPH0482167A (en) Fuel cell power generator
JP2005294207A (en) Fuel cell system
JPH08298130A (en) Fuel cell power plant
JP3675599B2 (en) Phosphoric acid fuel cell power plant
JP2008105892A (en) Stopping method for fuel reformer
JPH05251107A (en) Fuel cell
JPH0629036A (en) Heat collection system of fuel cell power-generation device
JP2002241108A (en) Fuel reforming apparatus and fuel cell power generation apparatus
JPH01143155A (en) Fuel cell power generator
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JPH08315845A (en) Phosphoric acid type fuel cell power generation device
JPS6266578A (en) Air cooling type fuel cell power generating system
JPS6280970A (en) Power generating method of fuel cell