JPH0482059B2 - - Google Patents

Info

Publication number
JPH0482059B2
JPH0482059B2 JP60097596A JP9759685A JPH0482059B2 JP H0482059 B2 JPH0482059 B2 JP H0482059B2 JP 60097596 A JP60097596 A JP 60097596A JP 9759685 A JP9759685 A JP 9759685A JP H0482059 B2 JPH0482059 B2 JP H0482059B2
Authority
JP
Japan
Prior art keywords
powder
weight
silicon carbide
thermal conductivity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60097596A
Other languages
Japanese (ja)
Other versions
JPS61256658A (en
Inventor
Akira Senda
Osamu Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP60097596A priority Critical patent/JPS61256658A/en
Publication of JPS61256658A publication Critical patent/JPS61256658A/en
Publication of JPH0482059B2 publication Critical patent/JPH0482059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、IC、LSI等に使用される基板材料に
関し、特に高い電気絶縁性と低い誘電率を有し、
且つ高い熱伝導率を有するセラミツクス電気絶縁
性基板材料の製造方法に関する。 〔従来の技術〕 従来、電気絶縁性基板にはアルミナ(Al2O3
が広く用いられており、また、特に熱放散性を重
視する場合には、酸化ベリリウム(BeO)系セ
ラミツクスが使用されている。しかし、集積回路
用基板は集積度が高まるにつれて、高い放熱性が
要求され、アルミナ系基板は、かかる要求を満た
すことができないので、大規模集積回路の基板と
しては使用し得ない。また、BeO系基板は、そ
の有害性が問題となつており、安全性の面から、
その使用は著しく制限されている。 〔発明が解決しようとする問題点〕 一般に、セラミツクスは高い電気抵抗と低い誘
電率を有するが、熱伝導率が小さく、そのため、
特に、最近、当該技術分野において強く要望され
ているLSIや超LSI等の基板としては不適切であ
る。大規模集積回路用基板は、前述の如く、高い
電気絶縁性と大きな熱伝導率及び可及的低い誘電
率が要求され、これらをすべて満たしうる材料の
開発が急がれている。 従つて、本発明の目的は、セラミツクスの優れ
た特性を利用し、その欠点、特に熱伝導率を顕著
に向上させたLSI等に使用しうる上記性質を満た
した絶縁基板を提供するにある。また、他の目的
は、ポピユラーな原料を用いて安価に提供でき、
製造及び使用において安全性がそこなわれること
のないLSI等用セラミツクス基板を提供すること
にある。 〔問題点を解決するための手段〕 本発明者らは、上記目的を達成すべく、多くの
試作研究を行つた結果、高い電気抵抗性と低い誘
電性を有し、しかも高い熱伝導率をもつた実用性
の優れた新規セラミツクス絶縁性基板の製造方法
を開発した。 すなわち、本発明は、炭化けい素粉末2〜85重
量%と窒化アルミニウム粉末15〜98重量%との混
合物を2000〜2400℃の温度で焼結する電気絶縁性
基板材料の製造方法を開発した。 本発明の製造方法に用いられる原料は、入手が
容易な炭化けい素及び窒化アルミニウムであつ
て、可及的高純度のものが使用される。 本発明の方法に係る基板材料は、炭化けい素
SiC粉末2〜85重量%と窒化アルミニウムAlN粉
末98〜15重量%との均質混合物を成形、焼結して
つくられるが、できるだけ微細な粉末混合物が有
利に用いられる。その好ましい平均粒径は、
AlN粉末が10nm以下で、SiC粉末は100nm以下
である。 炭化けい素粉末が85重量%を超えると、誘電率
が100以上となり、また2重量%未満では、炭化
けい素の特長である熱伝導率が有効に作用しない
ので好ましくない。炭化けい素と窒化アルミニウ
ムの好ましい混合範囲割合は70〜80重量%対20〜
30重量%である。 微紛状物質混合物は、次いで、例えば2000℃以
上の高温条件で焼結される。このような高温焼結
は、いわゆる常圧焼結のような方法を用いてもい
いが、ホツトプレスなどが有利に採用できる。焼
結温度が、例えば1900℃以下の低い温度では、焼
結体の電気絶縁性が極度に低下するので好ましく
ない。望ましい賠償温度は、2100℃以上である。 また、この焼結は、焼結時の加圧条件には実質
的に関係がなく、本発明者らの研究によれば、例
えば、焼結温度を一定にして、圧力を常圧ないし
200気圧の各種加圧条件で焼結した焼結体を電気
抵抗値は、圧力の大きさとは関係がなく、ほぼ一
定であつた。 〔作用〕 本発明の方法による電気絶縁性基板材料は、炭
化けい素粉末と窒化アルミニウム粉末混合物に、
バインダーその他の添加物を全く加えることな
く、焼結によつて容易に焼結体を製造することが
できる。また、本発明の材料は、例えば印加電圧
10Vでは、1015〜1016Ω・cmオーダーの高い電気
絶縁性、周波数1MHzで10〜12程度の低い誘電率
及び0.15Cal/cm・s・℃程度以上の高い熱伝導
度を有し、大規模集積回路等の絶縁基板として好
適に使用できるものである。絶縁基板には、社会
的要求に沿つて半導体チツプ等の回路構成要素
が、ますます高密度に形成されるようになつてき
たが、本発明の基板材料は、そのような要求にも
対応しうる実用性の優れたSiC/AlN系複合セラ
ミツクス材料である。 〔実施例〕 次に、実施例により本発明を更に詳細に説明す
る。 実施例 1 信越化学社製の炭化けい素(純度99.999%ただ
し、ガス不純物は除く)微粉末24重量%と市販の
窒化アルミニウム粉末76重量%をボールミルを用
いて2時間混合した。得られた均質混合粉末をホ
ツトプレスにより、200Kg/cm2の圧力及び2300℃
の温度で1時間焼結させ、SiC/AlN系複合焼結
体を得た。 得られた焼結体は、3.12g/c.c.の密度を有し、
印加電圧10Vで測定した電気抵抗は、1.0×
1016Ω・cm,1MHzで測定した誘電率は12.0、熱伝
導度は0.15Cal/cm・s・℃で、大規模集積回路
用基板として好適に使用できるものである。 上記焼結体のX線回折によれば、その回折パタ
ーンは窒化アルミニウム粉末と酷似し、その組織
は、ほぼ一相から成つていて、SiCとAlNとの固
溶体が形成されていることが観察され、このよう
な焼結状態のゆえに、焼結体はAlNの構造をと
りながら、SiCの高い熱伝導率特性が保持されて
いるものと理解される。 実施例 2 実施例1の炭化けい素及び窒化アルミニウムを
用い、それらの配合割合を種々変化させた各種粉
末混合物を調製して、それぞれを2300℃の温度で
常圧焼結し、各焼結体の誘電率(1MHz)及び熱
伝導率を測定した。その結果を原料粉末組成と共
に下掲第1表にまとめて示す。 また、それら各焼結体試料の電気抵抗を10Vの
印加電圧で測定した。それらの結果を添付図面第
1図にグラフで示した。 本発明の基板材料は、上記具体例における各種
測定値から明らかなように、LSIや超LSIに要求
される諸性能を兼備し、特に望ましい熱伝導性を
有するので、その実用的価値は極めて高く、優れ
た産業上の利用性を有する。
[Industrial Application Field] The present invention relates to substrate materials used in ICs, LSIs, etc., which have particularly high electrical insulation properties and low dielectric constants,
The present invention also relates to a method of manufacturing a ceramic electrically insulating substrate material having high thermal conductivity. [Conventional technology] Conventionally, electrically insulating substrates are made of alumina (Al 2 O 3 ).
Beryllium oxide (BeO) ceramics are widely used, and beryllium oxide (BeO) ceramics are used when heat dissipation is particularly important. However, as the degree of integration of integrated circuit substrates increases, high heat dissipation properties are required, and alumina-based substrates cannot meet these requirements and cannot be used as substrates for large-scale integrated circuits. In addition, the toxicity of BeO-based substrates has become a problem, and from the standpoint of safety,
Its use is severely restricted. [Problems to be solved by the invention] Generally, ceramics have high electrical resistance and low dielectric constant, but have low thermal conductivity, so
In particular, it is unsuitable for use as a substrate for LSIs, super LSIs, etc., which have recently been strongly desired in the technical field. As mentioned above, substrates for large-scale integrated circuits are required to have high electrical insulation, high thermal conductivity, and as low a dielectric constant as possible, and there is an urgent need to develop materials that can satisfy all of these requirements. Therefore, an object of the present invention is to provide an insulating substrate that satisfies the above-mentioned properties, which can be used in LSIs, etc., by making use of the excellent properties of ceramics, and has significantly improved thermal conductivity, in particular. In addition, the other purpose is to use popular raw materials and provide them at low cost.
The object of the present invention is to provide a ceramic substrate for LSI etc. whose safety is not impaired during manufacture and use. [Means for Solving the Problems] In order to achieve the above object, the present inventors conducted many prototype researches and found that the present inventors have developed a product that has high electrical resistance, low dielectricity, and high thermal conductivity. We have developed a method for manufacturing a new ceramic insulating substrate that is both practical and practical. That is, the present invention has developed a method for producing an electrically insulating substrate material in which a mixture of 2 to 85% by weight of silicon carbide powder and 15 to 98% by weight of aluminum nitride powder is sintered at a temperature of 2000 to 2400°C. The raw materials used in the manufacturing method of the present invention are silicon carbide and aluminum nitride, which are easily available and have the highest possible purity. The substrate material according to the method of the present invention is silicon carbide.
It is produced by molding and sintering a homogeneous mixture of 2-85% by weight of SiC powder and 98-15% by weight of aluminum nitride AlN powder, preferably a powder mixture as fine as possible is used. The preferred average particle size is
The AlN powder is 10 nm or less, and the SiC powder is 100 nm or less. If the silicon carbide powder exceeds 85% by weight, the dielectric constant will be 100 or more, and if it is less than 2% by weight, the thermal conductivity, which is a feature of silicon carbide, will not work effectively, which is not preferable. The preferred mixing range ratio of silicon carbide and aluminum nitride is 70~80% by weight to 20~
It is 30% by weight. The fine powder mixture is then sintered at a high temperature of, for example, 2000° C. or higher. For such high-temperature sintering, a method such as so-called pressureless sintering may be used, but hot pressing or the like can be advantageously employed. A low sintering temperature of, for example, 1900° C. or lower is not preferred because the electrical insulation properties of the sintered body are extremely reduced. A desirable compensation temperature is 2100°C or higher. Moreover, this sintering is not substantially related to the pressure conditions during sintering, and according to the research of the present inventors, for example, the sintering temperature is kept constant and the pressure is set to normal pressure or
The electrical resistance values of the sintered bodies sintered under various pressure conditions of 200 atm were almost constant, regardless of the magnitude of the pressure. [Function] The electrically insulating substrate material obtained by the method of the present invention is obtained by adding silicon carbide powder and aluminum nitride powder to a mixture of silicon carbide powder and aluminum nitride powder.
A sintered body can be easily produced by sintering without adding any binder or other additives. In addition, the material of the present invention can be used, for example, at an applied voltage.
At 10V, it has high electrical insulation on the order of 10 15 to 10 16 Ω・cm, a low dielectric constant of about 10 to 12 at a frequency of 1MHz, and high thermal conductivity of about 0.15 Cal/cm・s・℃ or more, and has a large It can be suitably used as an insulating substrate for large-scale integrated circuits, etc. In line with social demands, circuit components such as semiconductor chips have become increasingly densely formed on insulating substrates, and the substrate material of the present invention meets such demands. This is a SiC/AlN composite ceramic material with excellent practicality. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 24% by weight of silicon carbide (99.999% purity, excluding gas impurities) fine powder manufactured by Shin-Etsu Chemical Co., Ltd. and 76% by weight of commercially available aluminum nitride powder were mixed for 2 hours using a ball mill. The obtained homogeneous mixed powder was hot pressed at a pressure of 200 kg/cm 2 and at 2300°C.
The mixture was sintered at a temperature of 1 hour to obtain a SiC/AlN composite sintered body. The obtained sintered body has a density of 3.12 g/cc,
The electrical resistance measured with an applied voltage of 10V is 1.0×
The dielectric constant measured at 10 16 Ω·cm and 1 MHz was 12.0, and the thermal conductivity was 0.15 Cal/cm·s·°C, making it suitable for use as a substrate for large-scale integrated circuits. According to X-ray diffraction of the above sintered body, its diffraction pattern is very similar to that of aluminum nitride powder, and its structure is almost composed of one phase, with the formation of a solid solution of SiC and AlN. It is understood that because of this sintered state, the sintered body retains the high thermal conductivity characteristics of SiC while taking the structure of AlN. Example 2 Using the silicon carbide and aluminum nitride of Example 1, various powder mixtures were prepared with varying blending ratios, and each was sintered under normal pressure at a temperature of 2300°C to obtain each sintered body. The dielectric constant (1MHz) and thermal conductivity were measured. The results are summarized in Table 1 below along with the raw material powder composition. Furthermore, the electrical resistance of each of these sintered body samples was measured with an applied voltage of 10V. The results are shown graphically in Figure 1 of the accompanying drawings. As is clear from the various measured values in the above specific examples, the substrate material of the present invention has various performances required for LSI and VLSI, and has particularly desirable thermal conductivity, so its practical value is extremely high. , has excellent industrial applicability.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2で測定したSiC−AlN系焼結
体のAlN含量(重量%)と電気抵抗(Ω・cm)
との関係を示すグラフである。
Figure 1 shows the AlN content (wt%) and electrical resistance (Ω cm) of the SiC-AlN sintered body measured in Example 2.
It is a graph showing the relationship between

Claims (1)

【特許請求の範囲】[Claims] 1 炭化けい素粉末2〜85重量%と窒化アルミニ
ウム粉末15〜98重量%との混合物を2000〜2400℃
の温度で焼結することを特徴とする電気絶縁性基
板の製造方法。
1. Heat a mixture of 2 to 85% by weight of silicon carbide powder and 15 to 98% by weight of aluminum nitride powder at 2000 to 2400°C.
A method for producing an electrically insulating substrate, characterized by sintering at a temperature of .
JP60097596A 1985-05-08 1985-05-08 Electrically insulating substrate material Granted JPS61256658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097596A JPS61256658A (en) 1985-05-08 1985-05-08 Electrically insulating substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097596A JPS61256658A (en) 1985-05-08 1985-05-08 Electrically insulating substrate material

Publications (2)

Publication Number Publication Date
JPS61256658A JPS61256658A (en) 1986-11-14
JPH0482059B2 true JPH0482059B2 (en) 1992-12-25

Family

ID=14196615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097596A Granted JPS61256658A (en) 1985-05-08 1985-05-08 Electrically insulating substrate material

Country Status (1)

Country Link
JP (1) JPS61256658A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756345B2 (en) * 1999-05-12 2006-03-15 住友大阪セメント株式会社 Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111978A (en) * 1982-12-16 1984-06-28 株式会社東芝 Electrically insulative radiator substrate board material
JPS605551A (en) * 1983-06-23 1985-01-12 Shinko Electric Ind Co Ltd Manufacture of lead frame
JPS6027653A (en) * 1983-07-21 1985-02-12 株式会社日立製作所 Ceramic resistor material
JPS6036376A (en) * 1983-08-08 1985-02-25 株式会社日立製作所 Silicon carbide resistor material and manufacture

Also Published As

Publication number Publication date
JPS61256658A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
JPS63190761A (en) Aluminum nitride-base sintered body
EP0080213B1 (en) Highly heat-conductive ceramic material
JPS63210043A (en) High thermal conductivity glass-ceramic composite
JPH0482059B2 (en)
KR100404815B1 (en) Ceramic material substrate
JPH0616477A (en) Production of low-temperature sintering type ceramic for packaging of semiconductor device
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JP3134437B2 (en) Low-temperature sintered ceramic composition for multilayer substrate
JPH0512300B2 (en)
JPS5891059A (en) Composite ceramic sintered body and manufacture
JP2605045B2 (en) Aluminum nitride sintered body
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH075378B2 (en) Black aluminum nitride sintered body and manufacturing method thereof
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS6236066A (en) Silicon carbide base sintered body and manufacture
JPH0641390B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JPH09124369A (en) Sintered compact of aluminum nitride
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JPS59111978A (en) Electrically insulative radiator substrate board material
JPS61251575A (en) Silicon carbide sintered body and manufacture
JPS6369761A (en) Manufacture of aluminum nitride base sintered body
JPS6230663A (en) Material for electronic circuit substrate
JPS6227487B2 (en)
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body