JPH0481666A - Method for measuring pull-up speed in pull-up casting - Google Patents

Method for measuring pull-up speed in pull-up casting

Info

Publication number
JPH0481666A
JPH0481666A JP19659890A JP19659890A JPH0481666A JP H0481666 A JPH0481666 A JP H0481666A JP 19659890 A JP19659890 A JP 19659890A JP 19659890 A JP19659890 A JP 19659890A JP H0481666 A JPH0481666 A JP H0481666A
Authority
JP
Japan
Prior art keywords
pinch roller
starting rod
distance
sensor
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19659890A
Other languages
Japanese (ja)
Other versions
JPH0743391B2 (en
Inventor
Masao Furuta
古田 正夫
Teruo Ashimoto
葭本 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2196598A priority Critical patent/JPH0743391B2/en
Publication of JPH0481666A publication Critical patent/JPH0481666A/en
Publication of JPH0743391B2 publication Critical patent/JPH0743391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide data for determining optimum conditions for a product to contribute to improvement in product quality by measuring a pull-up speed pattern of a starting rod by a pinch roller. CONSTITUTION:An eccentric disk 28 is attached to a rotating axis 32 of a pinch roller 22 which holds a starting rod 20 to be eccentrically rotated, while a distance sensor 34 is faced on a peripheral face of the eccentric disk, wherein the sensor 34 is connected to an arithmetic circuit 36 to convert a change in a distance between the distance sensor and the eccentric disk to an angle speed of the pinch roller, thereby measuring a pull-up speed pattern of the starting rod by the pinch roller. Since the sensor 34 continuously monitors the pinch roller peripheral face 28, the change in the distance between the sensor and the disk peripheral face can be converted into an angular velocity of the pinch roller by calculation and displayed as the pull-up speed pattern with respect to the rod 20 when necessary. Even if rotation of the pinch roller 22 is slow, the angular velocity can directly be measured as a change in the distance between the sensor 34 and the eccentric disk, permitting the pull-up speed pattern to be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶湯を収容した収容炉から、引上鋳造方法によ
って管体を鋳造する際の、引上速度パターンを測定する
方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for measuring a drawing speed pattern when a tube body is cast by a drawing casting method from a containing furnace containing molten metal. .

(従来技術) 厚肉管体を製造する引上鋳造装置は、第1図に示すごと
く溶湯を収容した収容炉(1)中に、上下に開口した鋳
型面(4)を有する鋳型(6)を配備し、鋳型面(4)
中へスターティングロッド(20)を上方から下降させ
、ロット下端に付着した溶湯を鋳型面からの冷却によっ
て凝固させつつ引上げることにより、管体を連続鋳造す
るものが提案されている。鋳型(6)は架台(12)へ
連結杆(14)によって懸垂支持されており、該架台(
12)か係合しているねじ軸(10)の制御回転により
、溶湯の液面に対する鋳型面の位置が一定に制御されて
いる。
(Prior art) As shown in Fig. 1, a drawing casting apparatus for manufacturing thick-walled tubes is constructed by placing a mold (6) in a containing furnace (1) containing molten metal and having a mold surface (4) that is open at the top and bottom. Deploy the mold surface (4)
It has been proposed to continuously cast a tube body by lowering a starting rod (20) into the mold from above and pulling up the molten metal adhering to the lower end of the lot while solidifying it by cooling from the mold surface. The mold (6) is suspended and supported by a connecting rod (14) to a pedestal (12).
12) The position of the mold surface relative to the molten metal level is controlled to be constant by controlled rotation of the screw shaft (10) that is engaged with the screw shaft (12).

スターティングロッド(20)は一対のピンチローラ(
22)(24)によって挟持され、一方のピンチローラ
(22)に連結している制御モータ(26)の回転によ
って、引上速度はプログラムされたバタンに従い制御さ
れる。
The starting rod (20) has a pair of pinch rollers (
By the rotation of a control motor (26) which is clamped by 22) and (24) and is connected to one of the pinch rollers (22), the pulling speed is controlled according to a programmed slam.

引上速度の変化は製品の管体肉厚に直接影響するため精
密な制御か必要とされる。特に鋳型面(4)の表面で凝
固した鋳造金属は、鋳型面と摩擦接触しながら上昇する
ため、摩擦力を可及的に軽減する必要がある。そこでピ
ンチローラおよびアイドラーローラ(24)はその1回
転中に60ないし100回の回転と停止のパターンを繰
返して、スターティングロッドを小刻みに引上げている
Changes in the pulling speed directly affect the product tube wall thickness, so precise control is required. In particular, since the cast metal solidified on the surface of the mold surface (4) rises while making frictional contact with the mold surface, it is necessary to reduce the frictional force as much as possible. Therefore, the pinch roller and the idler roller (24) repeat a rotation and stop pattern 60 to 100 times during one rotation to gradually pull up the starting rod.

引上速度のパターンの一例か第5図に示されている。引
上速度は毎分20ないし200cmの低速であるから、
ピンチローラは毎分工ないL数回転の低速回転を行ない
、回転中は第5図に示すパターンで増速(a)、等速(
b)、減速(C)、停止(d)を頻繁に繰返している。
An example of a pattern of pulling speed is shown in FIG. Since the pulling speed is slow at 20 to 200 cm per minute,
The pinch roller rotates at a low speed of L number of revolutions per minute, and during rotation, speed increases (a) and constant speed (
b), deceleration (C), and stopping (d) are frequently repeated.

鋳型面に於ける金属の凝固は、引上速度の停止中(d)
の期間に発達し、等透引上期間(b工程)では凝固は弱
まり、製品の肉厚は薄くなる。摩擦力を下げ、しかも製
品の肉厚を均一に保つにはピンチローラによるスターテ
ィングロッドの引上速度パターン(第5図)を正確に測
定して、製品の鋳造条件毎に最適のパターンを決定する
ことが重要であるか、前述した通り低速回転中のピンチ
ローラ(22)の微小な回転変動を精密に測定すること
は極めて困難であった。回転体の測定に於いて通常行な
われる方法は、回転体周囲に等ピッチで描いた多数の白
黒マークを光電管センサーによって検出し、パルスをカ
ウントする方法、あるいはレーザーを照射する方法であ
るが、いずれも回転体が毎分1ないし数回転という低速
の場合には、白黒マークのピッチかパターンの1サイク
ルよりも大きくなって、測定には役立たない。
Solidification of metal on the mold surface occurs while the pulling speed is stopped (d)
It develops during the period of , and solidification weakens during the iso-diafiltration period (step b), and the thickness of the product becomes thinner. In order to reduce the frictional force and keep the thickness of the product uniform, accurately measure the pulling speed pattern of the starting rod by the pinch roller (Figure 5) and determine the optimal pattern for each product casting condition. As mentioned above, it is extremely difficult to precisely measure minute rotational fluctuations of the pinch roller (22) during low speed rotation. The usual methods for measuring rotating objects are to detect a large number of black and white marks drawn at equal pitches around the rotating object using a phototube sensor and count the pulses, or to irradiate the object with a laser. However, when the rotating body rotates at a low speed of one to several revolutions per minute, the pitch of the black and white marks is larger than one cycle of the pattern, and is not useful for measurement.

本発明はスターティングロッドおよび鋳造管引上速度パ
ターンを、それが低速で起っているにもかかわらず測定
でき、製造された製品との比較対象に使用できる方法を
提供するものである。
The present invention provides a method by which starting rod and cast tube pull rate patterns can be measured, even though they occur at low speeds, and used for comparison with manufactured products.

(構成■) 本発明はスターティングロッド(20)を挟持するピン
チローラ(22)の回転軸(32)へ、偏心円板(28
)を取り付けて偏心回転させると共に、該偏心円板の周
面に距離センサー(34)を対向配備し、該距離センサ
ー(34)は演算回路(36)に接続して、距離センサ
ーと偏心円板間の距離変化をピンチローラの角速度に変
換することにより、ピンチローラによるスターティング
ロッドの引上速度パターンを測定するものである。
(Structure ■) The present invention provides an eccentric disc (28
) is attached and eccentrically rotated, and a distance sensor (34) is arranged oppositely on the circumferential surface of the eccentric disk, and the distance sensor (34) is connected to an arithmetic circuit (36), and the distance sensor and the eccentric disk are connected to each other. By converting the distance change between the pinch rollers into the angular velocity of the pinch roller, the pulling speed pattern of the starting rod by the pinch roller is measured.

(作用、効果) センサー(34)と偏心円板(28)間の距離は、ピン
チローラ(22)の回転と共に刻々変化する。センサー
(34)はピンチローラ周面(28)を連続的に監視し
ているから、センサーと偏心円板周面との距離変化は演
算によってピンチローラの角速度に変換し、必要により
スターティングロッド(20)に対する引上速度のパタ
ーンとして表示できる。ピンチローラ(22)の回転が
低速であっても、角速度はセンサー(34)と偏心円板
間の距離変化として直接測定されるから引上速度パター
ンを測定できる。
(Operation, Effect) The distance between the sensor (34) and the eccentric disk (28) changes every moment as the pinch roller (22) rotates. Since the sensor (34) continuously monitors the circumferential surface of the pinch roller (28), changes in the distance between the sensor and the circumferential surface of the eccentric disk are converted into the angular velocity of the pinch roller by calculation, and if necessary, the starting rod ( 20) can be displayed as a pattern of pulling speed. Even if the pinch roller (22) rotates at a low speed, the pulling speed pattern can be measured because the angular velocity is directly measured as a change in the distance between the sensor (34) and the eccentric disk.

(構成■) 本発明は、ピンチローラ(22)の回転軸(32)へ、
円板(40)を取り付け、該円板(40)の周縁部にク
ランクロッド(42)を介してスライダ−(44)を連
繋し、スライダー(44)のスライド方向の延長上に距
離センサー(34)を対向配備し、該距離センサー(3
4)は演算回路(36)に接続して、スライダーとセン
サーとの距離変化をピンチローラの角速度に変換する。
(Configuration ■) The present invention provides for the rotation shaft (32) of the pinch roller (22) to
A disc (40) is attached, a slider (44) is connected to the peripheral edge of the disc (40) via a crank rod (42), and a distance sensor (34) is installed on the extension of the slider (44) in the sliding direction. ) are arranged facing each other, and the distance sensor (3
4) is connected to the arithmetic circuit (36) and converts the distance change between the slider and the sensor into the angular velocity of the pinch roller.

(作用、効果) センサーがスライダー先端面を連続的に監視しているか
ら、センサーとスライダーとの距離変化は演算によって
ピンチローラの角速度に変換し、スターティングロッド
あるいは鋳造管の引上速度パターンを測定できる。
(Function, Effect) Since the sensor continuously monitors the slider tip surface, changes in the distance between the sensor and the slider are converted into the angular velocity of the pinch roller by calculation, and the pulling speed pattern of the starting rod or casting pipe is determined. Can be measured.

(実施例) 以下の説明および図面は本発明を説明するためのもので
あるから、これらは発明を限定して解釈するために用い
られるべきではない。
(Example) Since the following description and drawings are for explaining the present invention, they should not be used to limit the invention.

引上連続鋳造装置は、第1図に示した構成に限定される
ことなく、その他の各種形式の引上鋳造装置に実施でき
る。
The continuous pulling casting apparatus is not limited to the configuration shown in FIG. 1, and can be implemented in various other types of drawing casting apparatuses.

スターティングロッド(20)あるいは鋳造管を挟持す
るピンチローラ(22)は、第2図に示す通り一対のピ
ンチローラ(22)(24)によって挟持されている。
The pinch roller (22) that pinches the starting rod (20) or the casting pipe is pinched by a pair of pinch rollers (22) and (24) as shown in FIG.

一方のピンチローラ(22)は、回転軸(32)が制御
モータ(26)に連結して制御されつつ回転し、他方の
ピンチローラ(24)は、フレームへ回転自由に軸受け
されたアイドラーである。
One pinch roller (22) has a rotating shaft (32) connected to a control motor (26) and rotates under control, and the other pinch roller (24) is an idler rotatably supported on the frame. .

ピンチローラ(22)は中央が小径、両側が拡大する円
錐面に形成されている。鋳造管(21)の引上速度v(
mm7分)に対し、ピンチローラ(22)の回転速度n
 (rpm)は次の関係式で決められる。
The pinch roller (22) is formed into a conical surface having a small diameter at the center and widening on both sides. The pulling speed v(
mm7 minutes), the rotational speed n of the pinch roller (22)
(rpm) is determined by the following relational expression.

■ 但、Dlはピンチローラの外径、D2はピンチローラの
2つの円錐面が交わる点に於ける直径、dは鋳造管(2
1)の外径、2rは鋳造管とピンチローラとの接触点に
於けるピンチローラの直径、Aはピンチローラの幅であ
る。
■ However, Dl is the outer diameter of the pinch roller, D2 is the diameter at the point where the two conical surfaces of the pinch roller intersect, and d is the diameter of the cast pipe (2
1), 2r is the diameter of the pinch roller at the point of contact between the casting tube and the pinch roller, and A is the width of the pinch roller.

実例 A= 70mm、 D、=120mm、 D2:50m
m。
Example A = 70mm, D = 120mm, D2: 50m
m.

d=50mmSv=400mm/分の時、N=1゜49
17 rpmである。
When d=50mmSv=400mm/min, N=1°49
17 rpm.

ピンチローラの回転軸(32)には偏心円板(28)が
取り付けられている。偏心円板の周面に対し、距離セン
サー(34)が配備され、光学的測定によりセンサー(
34)から発射された光線を偏心円板(28)の周面に
於いて反射させ、反射光を受光することによりセンサー
に対する偏心円板上の対応点の偏心距離Xを夫々計測す
るものである。
An eccentric disk (28) is attached to the rotating shaft (32) of the pinch roller. A distance sensor (34) is arranged on the circumferential surface of the eccentric disk, and the sensor (34) is detected by optical measurement.
34) is reflected on the circumferential surface of the eccentric disk (28), and by receiving the reflected light, the eccentric distance X of the corresponding point on the eccentric disk with respect to the sensor is measured. .

センサー(34)からの出力は演算回路(36)に於い
て処理され、次の関係式によってピンチローラ(22)
の回転速度dθ/dtが求められる。
The output from the sensor (34) is processed in the arithmetic circuit (36), and the pinch roller (22) is processed by the following relational expression.
The rotation speed dθ/dt is determined.

θは、偏心円板を含む面内に於いて、回転軸中心とセン
サー(34)とを結ぶ直線に対し、偏心半径がなす角度
、Rは偏心円板の半径、rは偏心円板の偏心距離、又は
回転軸(32)の中心から、センサー(34)に対する
偏心円板周面上の対応点までの半径である。
θ is the angle that the eccentric radius makes with respect to the straight line connecting the center of the rotating shaft and the sensor (34) in the plane that includes the eccentric disk, R is the radius of the eccentric disk, and r is the eccentricity of the eccentric disk. It is the distance or radius from the center of the rotation axis (32) to the corresponding point on the circumferential surface of the eccentric disk relative to the sensor (34).

上記関係式に基づいた演算処理によって出力されるピン
チローラ(22)の角速度あるいは鋳造管(21)に対
する引上速度は、適当な記録装置(38)に入力して記
録され、必要に応じて第5図に対応する引上速度パター
ンを出力することができる。
The angular velocity of the pinch roller (22) or the pulling speed with respect to the cast tube (21) outputted by the calculation process based on the above relational expression is input to and recorded in an appropriate recording device (38), and is recorded as necessary. A pulling speed pattern corresponding to FIG. 5 can be output.

偏心円板(28)はセンサー(34)に対する偏心半径
の最大あるいは最小の位相にあるときは、偏心円板の回
転に対応するセンサー(34)の測定精度は低下するた
め、同一形状の2つの偏心円板(28) (30)を第
2図、第3図に示すごとく位相を90度かえて取り付け
、夫々に対しセンサー(34) (35)を配備する。
When the eccentric disk (28) is at the maximum or minimum phase of the eccentric radius with respect to the sensor (34), the measurement accuracy of the sensor (34) corresponding to the rotation of the eccentric disk decreases. Eccentric disks (28) and (30) are installed with their phases shifted by 90 degrees as shown in FIGS. 2 and 3, and sensors (34) and (35) are provided for each.

2つのセンサー(34)(35)をピンチローラが90
度回転する毎に切換えて演算回路(36)に接続するこ
とによって、常に精度の高い測定か行なわれる。
The pinch roller connects the two sensors (34) and (35) to 90
By switching the connection to the arithmetic circuit (36) every time it rotates, highly accurate measurements can always be performed.

第4図は本発明の他の実施例であって、回転軸(32)
と同軸に円板(40)を一体に取り付け、円板上の周縁
にクランクロッド(42)の一端を取り付け、クランク
ロッドの他端にはガイド(46)に沿って、摺動するス
ライダー(44)を取り付け、該スライダー(44)の
先端面に対向してセンサ(34)を配備する。ピンチロ
ーラの回転はスライダー(44)の直線移動となって表
われるから、センサー(34)は回転軸(32)の中心
からスライダー(44)先端の距離Xを連続的に測定し
、同様にして適当な関係式に基づき距離Xの変動によっ
てピンチローラの角速度が測定できる。
FIG. 4 shows another embodiment of the present invention, in which the rotating shaft (32)
A disk (40) is integrally attached coaxially with the disk, one end of a crank rod (42) is attached to the periphery of the disk, and a slider (44) that slides along a guide (46) is attached to the other end of the crank rod. ), and a sensor (34) is placed opposite the tip surface of the slider (44). Since the rotation of the pinch roller appears as a linear movement of the slider (44), the sensor (34) continuously measures the distance X from the center of the rotation axis (32) to the tip of the slider (44), and similarly The angular velocity of the pinch roller can be measured by varying the distance X based on an appropriate relational expression.

本発明はピンチローラが毎分工ないし数回転の低速回転
であっても、回転中の引上速度のパターンを測定し記録
できるから、製品に対する最適条件を決定するためのデ
ータを提供し、製品の品質の向上に寄与できるものであ
る。
The present invention can measure and record the pattern of the pulling speed during rotation even if the pinch roller rotates at a low speed of milliseconds or several revolutions per minute, thereby providing data for determining the optimum conditions for the product and improving the quality of the product. This can contribute to improving quality.

本発明は上記実施例に限定されることなく特許請求の範
囲に記載した範囲で当業者であれば変更が可能であるこ
とは勿論である。
It goes without saying that the present invention is not limited to the above embodiments, but can be modified by those skilled in the art within the scope of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引上鋳造装置に本発明を実施した状況を示す正
面図、第2図は第1図■−■線に沿って破断した拡大断
面図、第3図は偏心円板とセンサーとの配置を示す説明
図、第4図は本発明の他の実施例の概略図、第5図は引
上速度の変動パターンを示すグラフである。 (4)・・・鋳型面 (6)・・・鋳型 (20)・・・スターティングロッド (22)・・・ピンチローラ (26)・・・制御モータ (28) (30)・・・偏心円板 (32)・・・回転軸 (34) (35)・・・センサー (36)・・・演算回路 (44)・・・スライダ
Figure 1 is a front view showing the present invention applied to a pulling casting machine, Figure 2 is an enlarged sectional view taken along the line ■-■ in Figure 1, and Figure 3 is an eccentric disk and sensor. FIG. 4 is a schematic diagram of another embodiment of the present invention, and FIG. 5 is a graph showing a variation pattern of the pulling speed. (4)...Mold surface (6)...Mold (20)...Starting rod (22)...Pinch roller (26)...Control motor (28) (30)...Eccentricity Disc (32)...Rotary axis (34) (35)...Sensor (36)...Arithmetic circuit (44)...Slider

Claims (2)

【特許請求の範囲】[Claims] (1)上下に開口し内面に鋳造面を形成して溶湯を収容
した鋳型中に、スターティングロッドを下降し、鋳型中
の溶湯をスターティングロッド下端に付着させ、凝固さ
せつつ、該スターティングロッドを一対のピンチローラ
によって挟持して引上げ、管体を鋳造する方法に於いて
、スターティングロッドを挟持するピンチローラの回転
軸(32)に偏心円板を取り付けて偏心回転させると共
に、該偏心円板の周囲に距離センサーを対向配備し、距
離センサーは演算回路に接続して距離センサーと偏心円
板間の距離変化をピンチローラの角速度に変換すること
により、ピンチローラによるスターティングロッドの引
上速度パターンを測定することを特徴とする引上鋳造に
於ける引上速度の測定方法。
(1) A starting rod is lowered into a mold that is open at the top and bottom and has a casting surface formed on the inner surface to accommodate the molten metal, and the molten metal in the mold is attached to the lower end of the starting rod and solidified while the starting rod is placed inside the mold. In the method of casting a tube body by pinching and pulling up a rod between a pair of pinch rollers, an eccentric disk is attached to the rotating shaft (32) of the pinch rollers that pinch the starting rod, and the eccentric disk is rotated eccentrically. Distance sensors are arranged facing each other around the disc, and the distance sensor is connected to an arithmetic circuit to convert the change in distance between the distance sensor and the eccentric disc into the angular velocity of the pinch roller, thereby controlling the pulling of the starting rod by the pinch roller. A method for measuring pulling speed in drawing casting, characterized by measuring an upward speed pattern.
(2)上下に開口し内面に鋳型面を形成して溶湯を収容
した鋳型中に、スターティングロッドを下降し、鋳型中
の溶湯をスターティングロッド下端に付着させ、凝固さ
せつつ、該スターティングロッドを一対のピンチローラ
によって挟持して引上げ、管体を鋳造する方法に於いて
、スターティングロッドを挟持するピンチローラの回転
軸に円板を取り付けると共に、該円板の周縁部にクラン
クロッド(42)の一端を止め、他端をガイドに沿って
摺動可能なスライダーに止め、該スライダーのスライド
方向の延長上に距離センサーを対向配備し、距離センサ
ーは演算回路に接続して距離センサーとスライダー間の
距離変化をピンチローラの角速度に変換することにより
、ピンチローラによるスターティングロッドの引上速度
パターンを測定することを特徴とする引上鋳造に於ける
引上速度の測定方法
(2) A starting rod is lowered into a mold that has vertical openings and a mold surface formed on the inner surface to accommodate molten metal, and the molten metal in the mold is attached to the lower end of the starting rod, and while solidifying, the starting rod is In the method of casting a tube body by pinching and pulling up a rod between a pair of pinch rollers, a disk is attached to the rotating shaft of the pinch rollers that pinch the starting rod, and a crank rod ( 42) One end is fixed, the other end is fixed to a slider that can be slid along a guide, distance sensors are arranged oppositely on the extension of the slider in the sliding direction, and the distance sensor is connected to an arithmetic circuit to function as a distance sensor. A method for measuring the pulling speed in pulling casting, characterized by measuring the pulling speed pattern of the starting rod by the pinch roller by converting the distance change between the sliders into the angular velocity of the pinch roller.
JP2196598A 1990-07-24 1990-07-24 Measuring method of pulling speed in pulling casting Expired - Lifetime JPH0743391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196598A JPH0743391B2 (en) 1990-07-24 1990-07-24 Measuring method of pulling speed in pulling casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196598A JPH0743391B2 (en) 1990-07-24 1990-07-24 Measuring method of pulling speed in pulling casting

Publications (2)

Publication Number Publication Date
JPH0481666A true JPH0481666A (en) 1992-03-16
JPH0743391B2 JPH0743391B2 (en) 1995-05-15

Family

ID=16360409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196598A Expired - Lifetime JPH0743391B2 (en) 1990-07-24 1990-07-24 Measuring method of pulling speed in pulling casting

Country Status (1)

Country Link
JP (1) JPH0743391B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048691B2 (en) 2008-06-30 2011-11-01 Konica Minolta Holdings, Inc. Wiring forming method
WO2015015686A1 (en) * 2013-07-30 2015-02-05 トヨタ自動車株式会社 Upward-drawing continuous casting method
KR20210156096A (en) * 2020-06-17 2021-12-24 (재)대구기계부품연구원 Apparatus for integrated testing wear resistancy and thermal stress

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438344B (en) * 2019-01-16 2021-11-12 宝山钢铁股份有限公司 Measuring device and measuring method for hot roll gap of hydraulic fan-shaped section of continuous casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048691B2 (en) 2008-06-30 2011-11-01 Konica Minolta Holdings, Inc. Wiring forming method
WO2015015686A1 (en) * 2013-07-30 2015-02-05 トヨタ自動車株式会社 Upward-drawing continuous casting method
JP2015027689A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Pull up type continuous casting method
KR20210156096A (en) * 2020-06-17 2021-12-24 (재)대구기계부품연구원 Apparatus for integrated testing wear resistancy and thermal stress

Also Published As

Publication number Publication date
JPH0743391B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5228893A (en) Optical fiber tension monitoring technique
JPH01281269A (en) Method and device for detecting bobbin periphery of waywinding bobbin and evaluating result thereof
US5301541A (en) Drag determining apparatus
CN206014657U (en) A kind of glass substrate forming state monitoring device
JPH0481666A (en) Method for measuring pull-up speed in pull-up casting
CN218156657U (en) Wheel hub bearing flange dynamic balance parameter detection subassembly
CN205763046U (en) A kind of strip steel back-flexing controls device
CN116045823A (en) Omnibearing measuring device for wall thickness of quartz crucible
GB2138562A (en) Measurement of profiles of irregular objects
JP3335246B2 (en) Traverse control apparatus and control method for filament winding reel winder
FR3107795B1 (en) System for controlling at least one active magnetic bearing equipping a rotating machine comprising a rotor and a stator, and corresponding method.
US4922589A (en) Process and apparatus for repeatedly controlling a fabric napping operation
JP2757129B2 (en) Die diameter measuring method and die diameter measuring device for continuous wire drawing machine
SU1697117A1 (en) Method of measuring parameters of clamping roller and device
JP3704193B2 (en) Roll member measuring device
CN218066246U (en) High temperature cast iron pipe diameter detecting system
JP2624803B2 (en) Method and apparatus for measuring eccentricity of pulling shaft
CN214333720U (en) Copper casting blank traction motion track instrument
JPH02216227A (en) Measurement of rotary bobbin diameter in roving frame
JPH0357901A (en) Apparatus for measuring eccentricity of stator of overhung motor
CN218847987U (en) High-speed on-line measuring machine
JPH01311213A (en) Position transmitting device
JP2003321244A (en) Optical fiber winding method and optical fiber winding apparatus
JP2585953B2 (en) Open blade thickness monitor for rotating machinery
JPH07218246A (en) Method and device for detecting backlash of rotational equipment