JPH0357901A - Apparatus for measuring eccentricity of stator of overhung motor - Google Patents

Apparatus for measuring eccentricity of stator of overhung motor

Info

Publication number
JPH0357901A
JPH0357901A JP19069889A JP19069889A JPH0357901A JP H0357901 A JPH0357901 A JP H0357901A JP 19069889 A JP19069889 A JP 19069889A JP 19069889 A JP19069889 A JP 19069889A JP H0357901 A JPH0357901 A JP H0357901A
Authority
JP
Japan
Prior art keywords
stator
eccentricity
detection sensor
motor
overhung
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19069889A
Other languages
Japanese (ja)
Inventor
Wahei Inoue
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP19069889A priority Critical patent/JPH0357901A/en
Publication of JPH0357901A publication Critical patent/JPH0357901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain an apparatus capable of measuring eccentricity of a stator easily with good sensitivity in a short time without contact in the stator by a method whereby a value of eccentricity is detected from the change of inductance generated in the gap between an eccentric center at an inner periphery of a stator core and a sensor. CONSTITUTION:An overhung motor 3 is coupled to a driven body 1 having a rotary shaft 2. A stator core 4 wound with a coil 5 is mounted in the motor 3, and a rotor 6 is fitted into the rotary shaft 2 inside the stator core 4. The coil 5 is wound in a coil groove 7 formed in the stator 4 of the motor 3. A stator tooth 8 is formed between the coils. Before the rotor 6 is fitted in the rotary shaft 2, a detecting sensor 9 of inductance coil type for detecting eccentricity of the stator is installed with a small gap kept from the inner periphery of the stator core 4 at an end of the overhung rotary shaft 2. Therefore, the sensor 9 is installed without contacting the stator core 4. When the rotary shaft 2 is rotated, the inductance is changed by the gap difference. The eccentricity of the inner periphery of the stator to the rotary shaft 2 can be accordingly detected by the sensor 9 from this change of the inductance.

Description

【発明の詳細な説明】 本発明ば、例えば圧縮機やボンブなどの密封型被駆動械
の回転軸をこれと一体化される駆動側モーターの回転子
に共用されるオーバーハング型モーターにおいて、回転
軸に対するモーター固定子内周の偏心値を測定し、モー
ターの回転子と固定子との空隙の一定値を確認し、或は
空隙不同の場合に條正するためのものである. 通常のモーターは被駆動機と分離独立ざれ、その[+1
転子は少なくとも2点で軸支される構造となるが、オー
バーハング構造では両者が一体化し、回転軸は被駆動機
側のものが利用される.モーターの固定子内周と回転子
外周との空隙は0.3−1mm程度の極めて小さな値の
ために回転子の僅かな偏心でも固定子内周と回転子面と
が接触し勝ちで、これが生ずると接触部分が摩擦熱で加
熱して高温に達し、線輪の焼損を招き、まk.機械的変
形などで致命的な障害を生ずることになる. もちろん、組立後にはその空隙に厚みゲージを挿入し、
′g!隙寸法の確認作業が行なわれることは言うまでも
ないが、生産の途上では回転子の組み込み前に駆動軸に
装着したダイヤルゲージなどで軸を中心とした固定子内
周の偏心測定が行われる.従来は接触型のために固定子
内周には線輪溝があり、これを飛び越えて線輪間の歯端
面のみを測定することになるが、 容量の大な,るa器
或はピストン型圧IIi!機のような墳゜合には静止時
の摩擦熱が特に大きく、しかも一旦回勤し始めるとil
l,t擦になって軽快となるものの、狭いta端部分に
ダイヤルゲージの接触針を正しく停止さようとすると慣
性力などのめたに行き過ぎが生じたりして、この作業に
は予想外に困難を伴うものである.この回動速度を急速
にすると6jr記ゲージの接触針は線輪R4のために烈
しく振動し、ダイイヤルゲージそのものを摩耗させたり
、その装着を狂わせたりすることがある. 本発明はこのような点に鑑み行われたもので、これらを
図面に基づいて説明する. 第II2Iは回転軸2を有する被駆動体1にオーバーハ
ングモーター3が結合し、一体化した構造を示す.前記
モーター3には線輪5の巻装された固定子鉄心、その内
側には回転軸2に回転子6が嵌合し取り付けられている
.第2図は前記モーター3の詳R1図で固定子4には線
輪5の巻装される線輪溝7、線輪間に固定子歯8が設け
られている.回転軸2に回転千6が嵌合される前にオー
バーハング状の回転軸2の軸端にインダクタンスコイル
型の固定子偏心値検出センサー9が固定子鉄心4の内周
に対して僅かな空隙を隔てて被接触状態に装着され、回
転軸2を回動させ、前記空隙差で生ずるインダクタンス
の変化により前記回転@2に対する固定子内周の偏心埴
をセンサー9により検出する.10はセンサー出力表示
装置、1lはその記録Vi11を示す. 第3[i1m(イ)はコの字状検出センサーの平面図、
(口〉はその側面図で、II!鉄となる鉄心2にはイン
ダクタンス線輪13が巻装されている. 第4図は■字状検出センサーの略図で(イ)は平酉図,
(口)はその側面図を示す.固定子鉄心への歯端8はセ
ンサーとなるインダクタンス腺輪13の鉄心12に対す
る可vJ鉄心に相当し、歯端8と継鉄l2の空隙変化を
偏心値検出センサー9の線輪!3でインダクタンス変化
として検出することになる.この場合に前記検出セン?
−9の鉄新l2による磁気回路では前記検出センサー9
に固定子I!t#i8が対向した場合に磁気抵抗が小さ
くなってインダクタンスが大きくなり、その結果出力電
流は小さくなる.線輪溝5に対向した場合には出力電流
は大きくなり、線輪溝により脈1ll電流が生ずる.こ
れをDnとし、第5図に示す.図に於で横軸は固定子4
の偏心位置を示す角度θ0で、縦軸は偏心値検出センサ
ーの出力電流 であるが、これは前記モーター3の固定
子4と回転子6との721!隙を示すことにもなる. 図のDn曲線のような線vs溝5で生ずる脈動出力は、
このような偏心値に重ね合わさり好ましいことではない
が、検出センサー9の磁極端の形状を工夫することで前
述のような脈動を縮小させ、滑かな特性曲L4Dが得ら
れる. 即ち、固定子半径面に平行になる前記センサー9の磁極
端の幅Wを多数の線輪溝とfM端部に対向する幅の構造
とすることで滑かな特性曲線を得ることができるが、こ
れはセンサーの形状をいたずらに大きくし、支持するア
ームやその他の部分の構造も大きくなり、その取扱上に
不便さを感ずることにもなるので、これは最小形状とす
ることが最も好ましい. 脈動と前記センサーの磁F!!幅の関係を調べると固定
子歯幅LA)t.よりセンサーの磁極幅Wが小さい場合
は脈動電流は太き値となるが、Wtより僅かに大きな値
となって脈動電流は減少し、これに線@満幅LIJsが
加われば脈lIl電流の位相は逆転し、また増大する.
更に、線輪溝躯Wsが加われば脈U電流の10相がil
■び逆転し、脈動電流は次第に小さくなる. ここで、@!jI電流の位相が最初に逆転する場合の前
記センサーの磁極幅Wを求めれば最も小型のものとなり
、構造的にも測定上にも有利である.この値を実験によ
って求めれば最選の磁極幅Wは次の範囲になる.即ち、
ψg’ + tJ) t > W > (1) sとな
る。これはモーターの容量などにより線輪口の人口、歯
端などのそれぞれの幅や、それらの形状が異なるがそれ
らに対する晟適値を求めればよい. 次に、線輪溝による脈動を逆に利用し、偏心値の位置の
検出が可能となるもので、この場合は1!I端@u)L
に対して狭い磁極幅ωを有する他の偏心位置検出用の脈
動出力センサーを用意し、偏心値検出センサーと共に装
着し、両者の出力を同時に出力、記録することで固定子
偏心値の大きさ及び位置を一括して容易に知ることがで
きる.従来の回転位置を示すことの出来るエンコーダー
のごときものを使用しなくてもよい゜ことになる.この
ように前記センサー出力はインダクタンスの変化量より
求めるためにこれに使用される電源は定電圧の安定した
高周波粗圧と交流ブリツヂを使用することで電流変化と
して高粘度に求められる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an overhung type motor in which the rotating shaft of a sealed driven machine such as a compressor or a bomb is shared with the rotor of a driving motor that is integrated with the rotating shaft of a sealed driven machine such as a compressor or a bomb. This is used to measure the eccentricity of the inner circumference of the motor stator with respect to the shaft, to confirm the constant value of the gap between the motor rotor and stator, or to correct the gap if it is inconsistent. A normal motor is separated and independent from the driven machine, and its [+1
The trochanter has a structure in which it is pivotally supported at at least two points, but in an overhang structure, both are integrated and the rotating shaft on the driven machine side is used. The air gap between the inner periphery of the stator and the outer periphery of the rotor of a motor is extremely small, about 0.3-1 mm, so even a slight eccentricity of the rotor tends to cause the inner periphery of the stator and the rotor surface to come into contact. When this happens, the contact area heats up due to frictional heat and reaches a high temperature, which may cause burnout of the wire and cause damage. Mechanical deformation may cause fatal failures. Of course, after assembly, insert a thickness gauge into the gap,
'g! It goes without saying that clearance dimensions are checked, but during production, the eccentricity of the stator's inner periphery around the shaft is measured using a dial gauge attached to the drive shaft before the rotor is assembled. Conventionally, since the stator is a contact type, there is a wire ring groove on the inner periphery of the stator, and it is necessary to jump over this to measure only the tooth end surface between the wire rings. Pressure IIi! For mounds like airplanes, the frictional heat is particularly large when they are stationary, and once they begin to move around, they become ill.
Although the contact needle of the dial gauge is easily stopped at the narrow TA end, the inertia force often causes the contact needle to go too far, and this work requires unexpected effort. It is difficult. If this rotation speed is increased rapidly, the contact needle of the 6jr gauge will vibrate violently due to the ring R4, which may wear out the dial gauge itself or disturb its installation. The present invention has been made in view of these points, and will be explained based on the drawings. No. II2I shows an integrated structure in which an overhang motor 3 is coupled to a driven body 1 having a rotating shaft 2. The motor 3 has a stator core around which a wire ring 5 is wound, and a rotor 6 fitted to the rotating shaft 2 inside the stator core. FIG. 2 is a detailed R1 diagram of the motor 3, in which the stator 4 is provided with a wire groove 7 around which a wire ring 5 is wound, and stator teeth 8 between the wire wheels. Before the rotary shaft 2 is fitted to the rotary shaft 2, an inductance coil type stator eccentricity value detection sensor 9 is installed at the shaft end of the overhanging rotary shaft 2 so that there is a slight gap with respect to the inner circumference of the stator core 4. The rotary shaft 2 is rotated, and the sensor 9 detects eccentricity of the inner circumference of the stator with respect to the rotation @2 by the change in inductance caused by the gap difference. 10 is a sensor output display device, and 1l is its record Vi11. 3rd [i1m (a) is a plan view of the U-shaped detection sensor,
(A) is a side view of the iron core 2, which is the iron core 2, and an inductance wire 13 is wound around it.
(mouth) shows its side view. The tooth end 8 to the stator core corresponds to the vJ core for the iron core 12 of the inductance gland ring 13 serving as a sensor, and the change in the air gap between the tooth end 8 and the yoke l2 is detected as the wire ring of the eccentric value detection sensor 9! 3, it will be detected as an inductance change. Detection sensor in this case?
-9 in the magnetic circuit based on iron new l2, the detection sensor 9
Stator I! When t#i8 faces each other, the magnetic resistance becomes smaller and the inductance becomes larger, and as a result, the output current becomes smaller. When facing the coil groove 5, the output current becomes large, and a pulse 1ll current is generated by the coil groove. This is designated as Dn and is shown in Figure 5. In the figure, the horizontal axis is stator 4.
The vertical axis is the output current of the eccentricity value detection sensor, which is 721! between the stator 4 and rotor 6 of the motor 3. It also shows gaps. The pulsating output generated by the line vs groove 5 like the Dn curve in the figure is:
Although it is not preferable to overlap with such an eccentric value, by devising the shape of the magnetic pole tip of the detection sensor 9, the above-mentioned pulsation can be reduced and a smooth characteristic curve L4D can be obtained. That is, a smooth characteristic curve can be obtained by making the width W of the magnetic pole tip of the sensor 9 parallel to the stator radial surface to be such that it faces a large number of coil grooves and the fM end. This would make the shape of the sensor unnecessarily large, and the structure of the supporting arm and other parts would also become large, making it inconvenient to handle, so it is most preferable to minimize the shape. Pulsation and the magnetic F of said sensor! ! When examining the relationship between widths, stator tooth width LA) t. When the magnetic pole width W of the sensor is smaller, the pulsating current becomes a thicker value, but it becomes a value slightly larger than Wt, and the pulsating current decreases.If the line @full width LIJs is added to this, the phase of the pulsating current changes. reverses and increases again.
Furthermore, if the line groove body Ws is added, the 10 phases of the pulse U current become il
■and reverse, and the pulsating current gradually becomes smaller. here,@! If the magnetic pole width W of the sensor is determined when the phase of the jI current is first reversed, the sensor will be the smallest, which is advantageous both in terms of structure and measurement. If this value is determined by experiment, the optimal magnetic pole width W will be in the following range. That is,
ψg' + tJ) t > W > (1) s. This will vary depending on the capacity of the motor, the width of the ring opening, the width of the tooth end, etc., and the shapes thereof will vary, but it is sufficient to find the appropriate value for them. Next, by using the pulsation caused by the ring groove, it is possible to detect the position of the eccentricity value, which in this case is 1! I end @u)L
A pulsating output sensor for detecting the eccentricity position having a narrow magnetic pole width ω is prepared and installed together with the eccentricity value detection sensor, and by outputting and recording the outputs of both at the same time, the magnitude of the stator eccentricity value and You can easily know the location all at once. This eliminates the need to use conventional encoders that can indicate rotational position. As described above, since the sensor output is determined from the amount of change in inductance, the power source used for this is determined to have a high viscosity as a current change by using a stable high frequency rough pressure with a constant voltage and an AC bridge.

本発明は、従来の接触法に於ける構造上、取扱上の煩わ
しさが非接触法により解消し、高感度であって、その使
用は容易で測定、表示の自動記録も可能であり、更に短
時間でこれらの操作を8易に行うことができる.
The present invention eliminates the structural and handling troubles of conventional contact methods by using a non-contact method, is highly sensitive, easy to use, and allows automatic recording of measurements and displays. You can easily perform these operations in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被駆動体とオーバーハングモーターの一体化さ
れた正面図、第2図はオーバーハングモーターの詳,I
I図で、固定子偏心値センサーの取り付け説明図、第3
図及び第4図は固定子偏心値センサーの略図、v.5図
は特性曲線の一例を示す。 1:被駆動体、2:回転軸、3:オーバーハングモータ
ー  4:固定子、5:固定子線輪、6:回転子、7:
固定子線輪溝、  8:固定子歯、9:VA定子偏心値
  検出センナ− 10:出力表示H置、 11:記録
  H置、12:鉄心、!3 :インダクタンス線輪.
Figure 1 is a front view of the integrated driven body and overhang motor, Figure 2 is a detailed view of the overhang motor, I
In Figure I, installation explanatory diagram of stator eccentricity value sensor, 3rd
4 and 4 are schematic diagrams of stator eccentricity value sensors, v. Figure 5 shows an example of a characteristic curve. 1: Driven body, 2: Rotating shaft, 3: Overhang motor 4: Stator, 5: Stator wire, 6: Rotor, 7:
Stator wire groove, 8: Stator tooth, 9: VA stator eccentricity value detection sensor - 10: Output display H position, 11: Record H position, 12: Iron core,! 3: Inductance wire.

Claims (5)

【特許請求の範囲】[Claims] (1)オーバーハングモーター回転子軸端にインダクタ
ンス線輪型の固定子偏心値検出センサーを前記モーター
の固定子鉄心内周に対して僅かの空隙を保ち、非接触状
態に装着し、固定子鉄心内周の偏心と前記センサーとの
空隙で生ずるインダクタンス変化より前記回転子軸に対
する固定子鉄心内周の偏心値を検出することを特徴とす
るオーバーハングモーター固定子の偏心値測定装置。
(1) An inductance wire type stator eccentricity detection sensor is installed at the end of the overhang motor rotor shaft in a non-contact state with a slight gap between the stator core and the inner periphery of the stator core of the motor. An overhung motor stator eccentricity value measuring device, characterized in that an eccentricity value of an inner circumference of the stator core with respect to the rotor shaft is detected from an inductance change occurring in a gap between the eccentricity of the inner circumference and the sensor.
(2)前記偏心値検出センサーを固定子線輪に影響され
ることなく固定子歯端によるインダクタンスの値を出力
させることのできる磁極形状にすることを特徴とする請
求項1記載のオーバーハングモーター固定子の偏心値測
定装置。
(2) The overhung motor according to claim 1, wherein the eccentricity value detection sensor has a magnetic pole shape that can output the value of inductance due to the stator tooth end without being affected by the stator coil. Stator eccentricity measurement device.
(3)前記偏心値検出センサーの鉄心形状をコの字型ま
たはIの字型とし、固定子半径面に平行な磁極幅を線輪
間の歯端幅より僅かに大きい値にすることを特徴とする
請求項1記載のオーバーハングモーター固定子の偏心値
測定装置。
(3) The iron core shape of the eccentricity value detection sensor is U-shaped or I-shaped, and the magnetic pole width parallel to the stator radial surface is set to a value slightly larger than the tooth end width between the wire rings. The overhung motor stator eccentricity value measuring device according to claim 1.
(4)前記偏心値検出センサーと線輪溝で生ずる脈動を
出力させる偏心位置検出センサーの両者を固定子軸端に
装着させ、偏心値検出センサーと偏心位置検出センサー
の出力を同時に検出するように構成した請求項1記載の
オーバーハングモーター固定子の偏心値測定装置。
(4) Both the eccentricity value detection sensor and the eccentricity position detection sensor that outputs the pulsation generated in the raceway are mounted on the stator shaft end, and the outputs of the eccentricity value detection sensor and the eccentricity position detection sensor are simultaneously detected. An overhung motor stator eccentricity value measuring device according to claim 1.
(5)前記偏心値検出センサー出力と偏心位置検出セン
サーの出力を同時に記録、図示するように構成した請求
項1記載のオーバーハングモーター固定子の偏心値測定
装置。
(5) The overhung motor stator eccentricity value measuring device according to claim 1, wherein the overhang motor stator eccentricity value measuring device is configured to simultaneously record and illustrate the outputs of the eccentricity value detection sensor and the eccentricity position detection sensor.
JP19069889A 1989-07-27 1989-07-27 Apparatus for measuring eccentricity of stator of overhung motor Pending JPH0357901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19069889A JPH0357901A (en) 1989-07-27 1989-07-27 Apparatus for measuring eccentricity of stator of overhung motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19069889A JPH0357901A (en) 1989-07-27 1989-07-27 Apparatus for measuring eccentricity of stator of overhung motor

Publications (1)

Publication Number Publication Date
JPH0357901A true JPH0357901A (en) 1991-03-13

Family

ID=16262366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19069889A Pending JPH0357901A (en) 1989-07-27 1989-07-27 Apparatus for measuring eccentricity of stator of overhung motor

Country Status (1)

Country Link
JP (1) JPH0357901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254519A (en) * 2005-03-08 2006-09-21 Honda Motor Co Ltd Measuring device of stator core
US7742881B2 (en) 2007-08-02 2010-06-22 General Electric Company System and method for detection of rotor eccentricity baseline shift
EP2431753A1 (en) * 2009-05-13 2012-03-21 Jing-Jin Electric Technologies (Beijing) Co., Ltd. Apparatus and method for testing number of turns on coil
CN110500948A (en) * 2019-08-29 2019-11-26 麦格雷博电子(深圳)有限公司 A kind of identification of rotor table Magnetic testi bias and modification method
CN113075295A (en) * 2021-03-26 2021-07-06 上海易流机电设备有限公司 Detection device and processing method for electromechanical equipment shell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254519A (en) * 2005-03-08 2006-09-21 Honda Motor Co Ltd Measuring device of stator core
US7742881B2 (en) 2007-08-02 2010-06-22 General Electric Company System and method for detection of rotor eccentricity baseline shift
EP2431753A1 (en) * 2009-05-13 2012-03-21 Jing-Jin Electric Technologies (Beijing) Co., Ltd. Apparatus and method for testing number of turns on coil
EP2431753A4 (en) * 2009-05-13 2012-12-05 Jing Jin Electric Technologies Beijing Co Ltd Apparatus and method for testing number of turns on coil
CN110500948A (en) * 2019-08-29 2019-11-26 麦格雷博电子(深圳)有限公司 A kind of identification of rotor table Magnetic testi bias and modification method
CN110500948B (en) * 2019-08-29 2021-02-26 麦格雷博电子(深圳)有限公司 Eccentricity identification and correction method for rotor surface magnetic detection
CN113075295A (en) * 2021-03-26 2021-07-06 上海易流机电设备有限公司 Detection device and processing method for electromechanical equipment shell
CN113075295B (en) * 2021-03-26 2023-07-28 上海易流机电设备有限公司 Detection device and processing method for electromechanical equipment shell

Similar Documents

Publication Publication Date Title
JP4691313B2 (en) Rotational position sensor
JP3278452B2 (en) Adjustment support device for connecting the rotating body
JP3501016B2 (en) Apparatus and method for measuring dynamic magnetic characteristics of motor stator core
US20040212392A1 (en) Measuring device and measuring method for electric motors
JPH0357901A (en) Apparatus for measuring eccentricity of stator of overhung motor
JP4602628B2 (en) Distance measuring method and apparatus
US4821561A (en) Method of metering an air-gap in an electric rotating machine
US7235965B2 (en) Motor bearing wear detecting device
JP3903383B2 (en) Eccentricity detection device
JPH04351979A (en) Test apparatus of linear motor
CN217036984U (en) Motor
SU1332466A1 (en) Method of measuring the dynamic eccentricity of an electric machine
JPS58208667A (en) Speed detector for rotating shaft
CN216622417U (en) Rotating speed measuring device, magnetic suspension motor and turbine motor system
JP2880217B2 (en) Motor load detection device
JPS61124835A (en) Apparatus for detecting torque
JP2688607B2 (en) Seed wire position deviation detection device for CZ lifting device
JP2945762B2 (en) Axial displacement detector for rotating machinery
JPH0720075U (en) Rotor coil end monitor
JPH07260902A (en) Rotor core loss measuring device and method for the measurement
JPH076857B2 (en) Bearing sorting device
KR100631020B1 (en) Apparatus for diagnosing concentricity state in induction motor
JPS61259132A (en) Method and device for measuring torque of shaft
JP2585953B2 (en) Open blade thickness monitor for rotating machinery
JPH076704Y2 (en) Motor rotation inspection device