JPH0480658A - Method and apparatus for measuring velocity - Google Patents

Method and apparatus for measuring velocity

Info

Publication number
JPH0480658A
JPH0480658A JP19437490A JP19437490A JPH0480658A JP H0480658 A JPH0480658 A JP H0480658A JP 19437490 A JP19437490 A JP 19437490A JP 19437490 A JP19437490 A JP 19437490A JP H0480658 A JPH0480658 A JP H0480658A
Authority
JP
Japan
Prior art keywords
image
light
dimensional
moving object
pulsed light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19437490A
Other languages
Japanese (ja)
Inventor
Koji Ichie
更治 市江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP19437490A priority Critical patent/JPH0480658A/en
Publication of JPH0480658A publication Critical patent/JPH0480658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable immediate measurement of velocity of a moving object by a method wherein the moving object is irradiated with a pulse light to form a two-dimensional multiple image of the moving object on a spatial light modulation means and the image is read out optically to undergo a Fourier transform optically. CONSTITUTION:A pulse light source 2 emits light at a time interval (t) to light a road surface 1. An image of the road surface 1 is formed on an input surface 71 of a spatial light modulator 7 and a position thereof shifts with the passage of time. The modulator 7 forms a phase difference image of the multiple image on an output surface 72. Reading light from a reading light source 12 is emitted to the output surface 72 as coherent linearly polarized light passing through a polarization beam splitter 9. The reflected light thus obtained is turned to an oval polarized light and impinged into a Fourier transform lens 13 being reflected with the splitter 9 according to a degree of modulation. A Fourier spectrum is formed on the output surface 72 of a camera 14 corresponding to the multiple image. Intervals between fringes of the spectrum correspond to a velocity of the road surface 1 and a direction of an array of the fringes corresponds to the direction of motion of the road surface 1. Thus, by performing a computation processing 15 of the intervals and the direction, the velocity of the road surface 1 can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は速度測定方法と装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a speed measuring method and device.

〔従来の技術〕[Conventional technology]

移動物体の速度測定方法として、空間フィルタを用いる
ものが知られている。これは、例えば特開昭53−52
473号、同52−15377号公報等に示されている
。この方式では、格子構造とされた受光面を有するセン
サが用いられ、この受光面に移動物体の像が結像される
。これにより、上記の格子構造は移動物体の有する表面
の情報に対して空間フィルタとして働き、センサの出力
の繰り返し周波数が移動物体の速度に比例した信号が得
られる。
A method using a spatial filter is known as a method for measuring the speed of a moving object. This is, for example, JP-A-53-52
No. 473, No. 52-15377, etc. In this method, a sensor having a light-receiving surface having a grating structure is used, and an image of a moving object is formed on the light-receiving surface. As a result, the above-mentioned lattice structure acts as a spatial filter for information on the surface of the moving object, and a signal whose repetition frequency of the sensor output is proportional to the speed of the moving object is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来技術によれば、センサの格子構造の
向きが移動物体の移動方向と一定の関係にあるときは測
定可能となるか、その関係は特定できない。また、格子
の配列方向に垂直な方向の移動については、一般的に測
定不能となる。そして、あらゆる方向の動きを検出しよ
うとすると、格子構造等に特別の工夫を加えることが必
要となる。
However, according to the above-mentioned prior art, when the orientation of the lattice structure of the sensor has a certain relationship with the moving direction of the moving object, it is not possible to determine whether measurement is possible or the relationship cannot be determined. Further, movement in a direction perpendicular to the direction in which the gratings are arranged generally cannot be measured. In order to detect movement in all directions, it is necessary to add special measures to the grid structure, etc.

本発明は、かかる従来技術の欠点を解決するためになさ
れたもので、空間フィルタ方式とは原理が異なる新しい
方式の速度測定方法と装置を提供することを目的として
いる。
The present invention has been made to solve the drawbacks of the prior art, and aims to provide a new method and device for speed measurement whose principle is different from the spatial filter method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る速度測定方式は、移動速度を測定すべき移
動物体にパルス光を間欠的に照射し、このパルス光の少
なくとも2回の照射による移動物体の二次元的な像を空
間光変調手段に多重像として記録し、この多重像を光学
的に読出して、読出し光像をフーリエ変換することによ
りフーリエスペクトル像を形成し、このフーリエスペク
トル像の間隔と方向およびパルス光の照射時間間隔にも
とづき移動速度を測定することを特徴とする。
The speed measuring method according to the present invention intermittently irradiates a moving object whose moving speed is to be measured with pulsed light, and generates a two-dimensional image of the moving object by irradiating the pulsed light at least twice with a spatial light modulator. A Fourier spectrum image is formed by optically reading out this multiple image and Fourier transforming the readout light image, and based on the interval and direction of this Fourier spectrum image and the irradiation time interval of the pulsed light. It is characterized by measuring moving speed.

また、本発明に係る速度測定装置は、移動速度を測定す
べき移動物体にパルス光を間欠的に照射するパルス光源
と、このパルス光で照射された移動物体からの光像を所
定の二次元結像面に結像する結像光学系と、所定の二次
元結像面に配設され、移動物体の像を少なくとも2つの
パルス光の照射について重畳して蓄積する空間光変調手
段と、この空間光変調手段の出力光像からフーリエスペ
クトル像を形成するフーリエ変換光学系と、このフーリ
エスペクトル像の間隔と方向およびパルス光の照射時間
間隔から移動速度を検出する検出手段とを備える。
The speed measuring device according to the present invention also includes a pulsed light source that intermittently irradiates a moving object whose moving speed is to be measured with pulsed light, and an optical image from the moving object irradiated with the pulsed light into a predetermined two-dimensional image. an imaging optical system that forms an image on an imaging surface; a spatial light modulation means that is disposed on a predetermined two-dimensional imaging surface and that superimposes and accumulates an image of a moving object for irradiation of at least two pulsed lights; It includes a Fourier transform optical system that forms a Fourier spectrum image from the output light image of the spatial light modulation means, and a detection means that detects the moving speed from the interval and direction of the Fourier spectrum image and the irradiation time interval of the pulsed light.

〔作用〕[Effect]

本発明の方法によれば、空間光変調手段に移動物体の二
次元的な多重像が形成されるが、パルス光の照射時間間
隔は所定幅であるため、多重像の凸像の位置関係は、移
動物体の速度と一定の関係を持っている。そして、この
多重像は照射パルス光によって等価的に二次元的格子構
造として処理されたものであるため、光学的に読み出し
て、かつ光学的にフーリエ変換することにより、移動物
体の速度および方向と一定の関係をもったフーリエスペ
クトル像が得られる。
According to the method of the present invention, two-dimensional multiple images of a moving object are formed on the spatial light modulation means, but since the irradiation time interval of the pulsed light is a predetermined width, the positional relationship of the convex images of the multiple images is , has a certain relationship with the speed of a moving object. Since this multiple image is equivalently processed as a two-dimensional lattice structure by the irradiated pulsed light, it can be read out optically and optically Fourier transformed to determine the velocity and direction of the moving object. A Fourier spectral image with a certain relationship is obtained.

本発明の速度測定装置によれば、移動物体の多重像はパ
ルス光と結像光学系により形成され、これは読出手段で
出力光像として読み出され、フーリエ変換光学系で移動
物体の速度と一定の関係をもったフーリエスペクトル像
が得られる。
According to the speed measuring device of the present invention, multiple images of a moving object are formed by the pulsed light and the imaging optical system, which are read out as an output optical image by the reading means, and are converted into the velocity of the moving object by the Fourier transform optical system. A Fourier spectral image with a certain relationship is obtained.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は実施例に係る速度測定装置の斜視図で、車載の
速度測定装置で対地速度を測定する場合の概念的な構成
を示している。また、第2図はその光学的な構成を示し
ている。図示の通り、移動物体である路面1は矢印A方
向に、所定の速さで移動しているとする。パルス光源2
にはドライバ3から波形Bのような等間隔で繰り返され
るパルス電圧が供給されており、従ってパルス光源2は
時間間隔tて間欠的に発光して路面1を照明する。
FIG. 1 is a perspective view of a speed measuring device according to an embodiment, showing a conceptual configuration when measuring ground speed with a vehicle-mounted speed measuring device. Moreover, FIG. 2 shows its optical configuration. As shown in the figure, it is assumed that a road surface 1, which is a moving object, is moving in the direction of arrow A at a predetermined speed. Pulsed light source 2
A pulse voltage that is repeated at equal intervals as shown in waveform B is supplied from the driver 3, and therefore the pulse light source 2 emits light intermittently at time intervals t to illuminate the road surface 1.

路面1の照明位置の上方には、テレセントリック結像レ
ンズ4、絞り6が順次配設され、結像光学系が構成され
ている。空間光変調器7は入力面71がテレセントリッ
ク結像レンズ4による路面1の結像位置となるよう設け
られ、空間光変調器7の出力面72の上方には、偏光ビ
ームスプリッタ9が配設されている。偏光ビームスプリ
ッタ9の上方にはレーザーダイオード10およびコリメ
ータレンズ11からなる読出光源12が設けられ、偏光
ビームスプリッタ9の側方にはフーリエ変換レンズ13
および撮像装置14が順に配設されている。そして、撮
像装置14の出力は演算処理装置15に与えられている
Above the illumination position of the road surface 1, a telecentric imaging lens 4 and a diaphragm 6 are sequentially arranged to form an imaging optical system. The spatial light modulator 7 is provided so that the input surface 71 is the imaging position of the road surface 1 by the telecentric imaging lens 4, and a polarizing beam splitter 9 is provided above the output surface 72 of the spatial light modulator 7. ing. A reading light source 12 consisting of a laser diode 10 and a collimator lens 11 is provided above the polarizing beam splitter 9, and a Fourier transform lens 13 is provided on the side of the polarizing beam splitter 9.
and an imaging device 14 are arranged in this order. The output of the imaging device 14 is given to an arithmetic processing device 15.

上記の構成によれば、路面1の像は空間光変調器7の入
力面71に形成されるが、速度測定装置が移動している
ので、形成される像は時間と共に位置がシフトする像と
なる。そして、パルス発光は間欠的であってその時間間
隔tは一定であるため、この多重像の各機の間隔と並び
の方向は、路面1の移動の速さと方向に対して、一定の
関係を有している。ここで、空間光変調器7は光電面と
ニオブ酸リチウムのような電気光学結晶を含み、これは
光電面によって光に応じて発生した電荷により光学的異
方性、たとえば電気光学結晶のある偏光方向の屈折率を
変化させるものであるため、路面1からの光学像を蓄積
して、多重像の位相差像を出力面72に形成する機能を
有する。そして、このスペックル多重像はコヒーレント
な読出し光に対して、等価的に等間隔多重スリット(回
折格子)として機能する。なお、空間光変調器7の具体
的な構成や作用は、例えば特開昭58−64742号な
どで公知である。
According to the above configuration, an image of the road surface 1 is formed on the input surface 71 of the spatial light modulator 7, but since the speed measuring device is moving, the formed image is an image whose position shifts over time. Become. Since the pulsed light emission is intermittent and the time interval t is constant, the interval and alignment direction of each aircraft in this multiple image have a certain relationship with the speed and direction of movement of the road surface 1. have. Here, the spatial light modulator 7 includes a photocathode and an electro-optic crystal such as lithium niobate, which has an optical anisotropy due to the charge generated in response to light by the photocathode, for example, a polarized light with an electro-optic crystal. Since it changes the refractive index in the direction, it has a function of accumulating optical images from the road surface 1 and forming a phase difference image of multiple images on the output surface 72. This speckle multiple image functions equivalently as equally spaced multiple slits (diffraction grating) for the coherent readout light. Note that the specific configuration and operation of the spatial light modulator 7 are known, for example, from Japanese Patent Laid-Open No. 58-64742.

読出光源12からの読出し光は、偏光ビームスプリッタ
9を通ってコヒーレントな直線偏光光となって空間光変
調器7の出力面72に入射される。
The readout light from the readout light source 12 passes through the polarization beam splitter 9 and becomes coherent linearly polarized light, which is incident on the output surface 72 of the spatial light modulator 7 .

ここで、空間光変調器7は多重像としての屈折率情報あ
るいは位相差情報をもっているため、上記読出光の反射
光として生成される出力光は、上記屈折率情報に対応し
た楕円偏光となる。
Here, since the spatial light modulator 7 has refractive index information or phase difference information as multiple images, the output light generated as reflected light of the readout light becomes elliptically polarized light corresponding to the refractive index information.

このため、この楕円偏光光は偏光ビームスプリッタ9て
一部か反射され、フーリエ変換レンズ13に入射される
。すなわち、空間光変調器7の出力面72上で位相差が
半波長以下の変調を受けた反射光は、一般に楕円偏光と
なり、変調度に応して偏光ビームスプリッタ9により反
射されて、残りは透過する。このようにして、偏光ビー
ムスプリッタ9を反射した光束は、出力面72上の二次
元的屈折率情報あるいは位相差情報が、二次元的な振幅
情報に変換されたコヒーレント光となる。
Therefore, this elliptically polarized light is partially reflected by the polarizing beam splitter 9 and enters the Fourier transform lens 13. That is, the reflected light that has been modulated with a phase difference of less than half a wavelength on the output surface 72 of the spatial light modulator 7 generally becomes elliptically polarized light, is reflected by the polarizing beam splitter 9 according to the degree of modulation, and the rest is elliptically polarized light. To Penetrate. In this way, the light beam reflected by the polarizing beam splitter 9 becomes coherent light in which two-dimensional refractive index information or phase difference information on the output surface 72 is converted into two-dimensional amplitude information.

フーリエ変換レンズ13の前側焦点は空間光変調器7の
出力面72であり、後側焦点は撮像装置14であるため
、撮像装置14には出力面72上の多重像に対応したフ
ーリエスペクトルが形成される。このフーリエスペクト
ルの各編の間隔は・路面1の速さに対応し、各編の並び
の方向は路面1の動き方向と対応するため、これを演算
処理装置15で処理することにより、路面1の速度が測
定できる。
The front focal point of the Fourier transform lens 13 is the output surface 72 of the spatial light modulator 7, and the rear focal point is the imaging device 14, so a Fourier spectrum corresponding to the multiple images on the output surface 72 is formed on the imaging device 14. be done. The interval between each section of this Fourier spectrum corresponds to the speed of the road surface 1, and the direction in which each section is arranged corresponds to the movement direction of the road surface 1. The speed of can be measured.

第3図および第4図を参照して、上記の事情をより詳し
く説明する。
The above situation will be explained in more detail with reference to FIGS. 3 and 4.

いま、第3図(a)に示すように、時間間隔tでパルス
光P1〜P4が路面1に間欠的に照射されたとすると、
第3図(b)に示すように路面1上の点の像は空間光変
調器7に形成される。すなわち、パルス光P  −P4
に対応して、点の像■ a  −a  が形成されていく。ここで、像a1〜a
4を結ぶ線と基準線の傾き角θは、路面1の進行方向の
傾きと対応しており、像a  −a4の間■ 隔は移動の速さと対応している。
Now, suppose that the road surface 1 is intermittently irradiated with pulsed lights P1 to P4 at time intervals t, as shown in FIG. 3(a).
As shown in FIG. 3(b), an image of a point on the road surface 1 is formed on the spatial light modulator 7. That is, pulsed light P −P4
Corresponding to this, a point image ■ a −a is formed. Here, images a1 to a
The inclination angle θ between the line connecting 4 and the reference line corresponds to the inclination of the road surface 1 in the traveling direction, and the distance between images a-a4 corresponds to the speed of movement.

この像a  −84の出力光像はフーリエ変換しンズ1
3を通ることで撮像装置14にフーリエスペクトル像を
形成する。すなわち、第4図に示すように、空間光変調
器7の出力面72における像a1〜a4により、撮像装
置14において直線等間隔縞が形成される。このフーリ
エスペクトル像は光電変換によって電気信号として読み
取られ、演算処理装置15に入力される。演算処理装置
15は一定の時間間隔で縞の並び方向と間隔を認識し、
移動の速さと方向を求める。
The output optical image of this image a-84 is Fourier transformed and the lens 1
3, a Fourier spectrum image is formed on the imaging device 14. That is, as shown in FIG. 4, the images a1 to a4 on the output surface 72 of the spatial light modulator 7 form linear equally spaced stripes in the imaging device 14. This Fourier spectrum image is read as an electrical signal by photoelectric conversion and is input to the arithmetic processing unit 15. The arithmetic processing unit 15 recognizes the direction and spacing of the stripes at regular time intervals,
Find the speed and direction of movement.

ここで、移動物体である路面1の動く速さは、縞の間隔
と反比例しており、かつパルス光の発せられる時間間隔
tと反比例している。従って、路面1の速さは計算によ
り算出できる。また、移動する方向が基準線に対して、
どれだけ傾いているかについても、縞の傾きから求める
ことができる本発明については、上記実施例に限定され
ず種々の変形が可能である。
Here, the moving speed of the road surface 1, which is a moving object, is inversely proportional to the interval between stripes, and is also inversely proportional to the time interval t between pulsed light emissions. Therefore, the speed of the road surface 1 can be calculated by calculation. Also, if the direction of movement is relative to the reference line,
The present invention, in which the degree of inclination can also be determined from the inclination of the stripes, is not limited to the above embodiments and can be modified in various ways.

例えば、結像光学系はテレセントリック結像レンズを用
いたものに限られず、移動物体の像を空間光変調器の入
力面に結像できれば、いかなる構成であってもよい。ま
た、多重像の読み取りも、例えば、撮像装置14に代え
て極座標目盛が刻まれたすりガラスのようなスクリーン
で行なってもよい。スクリーンに形成されたフーリエス
ペクトル像から、その間隔と方向は読み取れる。よって
、空間光変調器の出力面に形成された像のフーリエスペ
クトルを生成できるものであれば、種々の構成にするこ
とができる。用い得る空間光変調手段には、種々のもの
があり、例えば「光学」第14巻第1号(1985年2
月)の第19〜第27頁に具体例が示されている。
For example, the imaging optical system is not limited to one using a telecentric imaging lens, and may have any configuration as long as it can form an image of a moving object on the input surface of the spatial light modulator. Further, the reading of multiple images may be performed, for example, by using a screen such as ground glass on which a polar coordinate scale is carved in place of the imaging device 14. The distance and direction can be read from the Fourier spectrum image formed on the screen. Therefore, various configurations can be used as long as the Fourier spectrum of the image formed on the output surface of the spatial light modulator can be generated. There are various types of spatial light modulation means that can be used.
Specific examples are shown on pages 19 to 27 of ``Month''.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り、本発明の構成によれば、空
間光変調手段に移動物体の二次元的な多重像が形成され
るが、パルス光の照射は間欠的でその間隔は所定幅であ
るため、多重像の多像の位置関係は、移動物体の速度と
一定の関係を持っている。そして、この多重像は空間光
変調手段に記録されるため、光学的に読み出してフーリ
エ変換することにより、移動物体の速度と一定の関係を
もったフーリエスペクトル像が得られる。このため、移
動物体の動きがいかなる方向であっても、これを正確に
測定することができる。
As explained above in detail, according to the configuration of the present invention, a two-dimensional multiple image of a moving object is formed on the spatial light modulation means, but the irradiation of pulsed light is intermittent and the intervals are a predetermined width. Therefore, the positional relationship of the multiple images has a certain relationship with the speed of the moving object. Since this multiple image is recorded in the spatial light modulation means, by optically reading it out and Fourier transforming it, a Fourier spectrum image having a certain relationship with the velocity of the moving object can be obtained. Therefore, regardless of the direction in which the moving object moves, it can be accurately measured.

また、本発明の速度測定装置によれば、移動物体の多重
像はパルス光と結像光学系により形成され、これは読出
手段で読み出される。従って、フーリエ変換光学系で移
動物体の速度と一定の関係をもったフーリエスペクトル
像が得られるので、このフーリエスペクトル像の方向お
よび間隔を演算処理することで、移動物体の速度をリア
ルタイムに測定できる。
Further, according to the speed measuring device of the present invention, multiple images of a moving object are formed by pulsed light and an imaging optical system, and this is read out by the reading means. Therefore, the Fourier transform optical system can obtain a Fourier spectrum image that has a certain relationship with the speed of the moving object, so by calculating the direction and interval of this Fourier spectrum image, the speed of the moving object can be measured in real time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る速度測定装置の構成を概念的に示
す斜視図、第2図はその構成を示す側面図、第3図およ
び第4図はその作用を示す図である。 1・・・路面、2・・・パルス光源、3・・・ドライバ
、4・・・テレセントリック結像レンズ、6・・・絞り
、7・・・空間光変調器、9・・・偏光ビームスプリッ
タ、12・・・読出光源、13・・・フーリエ変換レン
ズ、14・・・撮像装置、15・・・演算処理装置。 代理人弁理士   長谷用  芳  樹第 図 第2図 → ÷ 第3図
FIG. 1 is a perspective view conceptually showing the structure of a speed measuring device according to the present invention, FIG. 2 is a side view showing the structure, and FIGS. 3 and 4 are diagrams showing its operation. DESCRIPTION OF SYMBOLS 1... Road surface, 2... Pulse light source, 3... Driver, 4... Telecentric imaging lens, 6... Aperture, 7... Spatial light modulator, 9... Polarizing beam splitter , 12... Reading light source, 13... Fourier transform lens, 14... Imaging device, 15... Arithmetic processing device. Representative Patent Attorney Yoshiki Hase Figure 2 → ÷ Figure 3

Claims (1)

【特許請求の範囲】 1、移動速度を測定すべき移動物体にパルス光を間欠的
に照射し、このパルス光の少なくとも2回の照射による
前記移動物体の二次元的な像を空間光変調手段に多重像
として記録し、前記多重像を読出して、読出し光像を光
学的にフーリエ変換することによりフーリエスペクトル
像を形成し、このフーリエスペクトル像の間隔と方向お
よび前記パルス光の照射時間間隔にもとづき前記移動速
度を測定することを特徴とする速度測定方法。 2、移動速度を測定すべき移動物体にパルス光を間欠的
に照射するパルス光源と、 このパルス光で照射された移動物体からの光を所定の二
次元結像面に結像する結像光学系と、前記所定の二次元
結像面に配設され、前記移動物体の像を少なくとも2つ
の前記パルス光の照射について二次元的に蓄積する空間
光変調手段と、この空間光変調手段の出力光像からフー
リエスペクトル像を形成するフーリエ変換光学系と、こ
のフーリエスペクトル像の間隔と方向および前記パルス
光の照射時間間隔から移動速度を検出する検出手段とを
備えることを特徴とする速度測定装置。 3、前記所定の二次元結像面に配設され、前記移動物体
の像を少なくとも前記パルス光の照射について二次元的
に入力面上に蓄積し、その二次元強度分布情報を二次元
透過率分布、二次元反射率分布または二次元位相差分布
に変換して出力側に出力する空間光変調手段と、 この空間光変調手段の出力側にコヒーレント光を照射し
、前記二次元透過率分布、二次元反射率分布または二次
元位相差分布をコヒーレントな二次元振幅情報として読
出す読出手段と、 を更に備え、 前記フーリエ変換光学系は、前記二次元振幅情報を有す
る出力光像からフーリエスペクトル像を形成することを
特徴とする請求項2記載の速度測定装置。
[Claims] 1. A spatial light modulator that intermittently irradiates a moving object whose moving speed is to be measured with pulsed light and generates a two-dimensional image of the moving object by irradiating the pulsed light at least twice. A Fourier spectrum image is formed by reading out the multiple image and optically Fourier transforming the readout light image, and the interval and direction of the Fourier spectrum image and the irradiation time interval of the pulsed light are A speed measuring method characterized in that the moving speed is measured based on the movement speed. 2. A pulsed light source that intermittently irradiates pulsed light onto a moving object whose moving speed is to be measured, and imaging optics that images the light from the moving object irradiated with this pulsed light onto a predetermined two-dimensional imaging plane. a spatial light modulation means disposed on the predetermined two-dimensional imaging plane and two-dimensionally accumulates an image of the moving object for at least two pulsed light irradiations; and an output of the spatial light modulation means. A speed measuring device comprising: a Fourier transform optical system that forms a Fourier spectrum image from a light image; and a detection means that detects a moving speed from the interval and direction of the Fourier spectrum image and the irradiation time interval of the pulsed light. . 3. Arranged on the predetermined two-dimensional imaging plane, accumulates an image of the moving object two-dimensionally on the input plane at least for irradiation with the pulsed light, and converts the two-dimensional intensity distribution information into two-dimensional transmittance. spatial light modulation means for converting the distribution into a two-dimensional reflectance distribution or a two-dimensional phase difference distribution and outputting it to the output side; and irradiating the output side of the spatial light modulation means with coherent light, It further comprises: reading means for reading out the two-dimensional reflectance distribution or the two-dimensional phase difference distribution as coherent two-dimensional amplitude information, and the Fourier transform optical system converts the output optical image having the two-dimensional amplitude information into a Fourier spectrum image. 3. The speed measuring device according to claim 2, wherein the speed measuring device comprises:
JP19437490A 1990-07-23 1990-07-23 Method and apparatus for measuring velocity Pending JPH0480658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19437490A JPH0480658A (en) 1990-07-23 1990-07-23 Method and apparatus for measuring velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19437490A JPH0480658A (en) 1990-07-23 1990-07-23 Method and apparatus for measuring velocity

Publications (1)

Publication Number Publication Date
JPH0480658A true JPH0480658A (en) 1992-03-13

Family

ID=16323532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19437490A Pending JPH0480658A (en) 1990-07-23 1990-07-23 Method and apparatus for measuring velocity

Country Status (1)

Country Link
JP (1) JPH0480658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057953A (en) * 1999-12-23 2001-07-05 신현준 Velocity measurer and its method of sheet material using laser
KR100307794B1 (en) * 1992-07-29 2001-12-15 윌리엄 비. 켐플러 Speckle-free display system using coherent light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187605A (en) * 1981-05-14 1982-11-18 Ricoh Co Ltd Measuring device for optical movement distance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187605A (en) * 1981-05-14 1982-11-18 Ricoh Co Ltd Measuring device for optical movement distance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307794B1 (en) * 1992-07-29 2001-12-15 윌리엄 비. 켐플러 Speckle-free display system using coherent light
KR20010057953A (en) * 1999-12-23 2001-07-05 신현준 Velocity measurer and its method of sheet material using laser

Similar Documents

Publication Publication Date Title
JP2538456B2 (en) Optical displacement measuring device
JP3491969B2 (en) Displacement information measuring device
US4091281A (en) Light modulation system
JP3264469B2 (en) Measurement device of refractive index distribution information of light scattering medium
JPS60243514A (en) Photoelectric measuring device
JPS60243515A (en) Photoelectric measuring device
EP0488416B1 (en) Displacement or velocity measuring apparatus
US5166742A (en) Optical deformation measuring apparatus by double-writing speckle images into a spatial light modulator
EP2500687A2 (en) Structured light projector
US5754282A (en) Optical device detecting displacement information using a device for frequency-shifting an incident beam and a system for reducing beam diameter in an application direction
NL8005258A (en) INTERFEROMETER.
EP0396257B1 (en) Method and apparatus for measuring the velocity of a fluid
JP2001504592A (en) Distance measuring method and distance measuring device
US6504605B1 (en) Method and apparatus for determining the coordinates of an object
JPH0480658A (en) Method and apparatus for measuring velocity
US5184014A (en) Opto-electronic scale reading apparatus
US3652162A (en) Complex data processing system employing incoherent optics
JPH046884B2 (en)
JP3960427B2 (en) Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film
US3549260A (en) Spatially dispersive correlation interferometer
RU2092787C1 (en) Method determining short distances to diffusion-reflecting objects and gear for its realization
JPH03115920A (en) Zero-point position detector
JPH0812049B2 (en) Optical displacement measuring device
CN111886471A (en) Distance measuring device and method
JP2564835B2 (en) Optical diffraction angle of optical disc, position deviation, and warp detection method