JP2564835B2 - Optical diffraction angle of optical disc, position deviation, and warp detection method - Google Patents

Optical diffraction angle of optical disc, position deviation, and warp detection method

Info

Publication number
JP2564835B2
JP2564835B2 JP62182751A JP18275187A JP2564835B2 JP 2564835 B2 JP2564835 B2 JP 2564835B2 JP 62182751 A JP62182751 A JP 62182751A JP 18275187 A JP18275187 A JP 18275187A JP 2564835 B2 JP2564835 B2 JP 2564835B2
Authority
JP
Japan
Prior art keywords
light
order
diffraction angle
diffracted light
position deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62182751A
Other languages
Japanese (ja)
Other versions
JPS6425028A (en
Inventor
謙一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62182751A priority Critical patent/JP2564835B2/en
Publication of JPS6425028A publication Critical patent/JPS6425028A/en
Application granted granted Critical
Publication of JP2564835B2 publication Critical patent/JP2564835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ディスク等の回折格子的性質を有するもの
の計測に関し、特に回折角度位置ぶれ、反りの計測検出
方法に関する。
Description: TECHNICAL FIELD The present invention relates to measurement of optical discs and the like having diffraction grating properties, and more particularly to a method for measuring and detecting diffraction angle position deviation and warpage.

〔従来の技術〕[Conventional technology]

従来、この種の回折角度の検出方法は、透過回折光を
利用して第5図に示す様にフォトマルチプライヤ(以下
フォトマルとする)を円弧上に移動する機構の上に設置
して、フォトマル受光量のピークを示す位置を求めて回
折角度、およびピーク強度を求める方法があった。この
場合は第5図に示す様に光ディスク5−1にレーザ光5
−2を照射して+1次回折光5−3,0次回折光5−4,−
1次回折光5−5を回折角5−6に応じてフォトマルを
円弧上に移動して5−7,5−8,5−9の位置での各回折光
の各回折光の強度、角度(=回折角)を求めていた。フ
ォトマルを移動させる必要があるためあらかじめ受光面
の大きいフォトマルを5−7〜5−9の位置に設置する
方式も存在するが、この方式では回折方向の角度θの角
度分解能がよくない(=フォトマルのサイズ5−10をPD
回折点からフォトマルまでの距離をrPとすれば)、即ち
θの分解能はPO/rP(rad)であった。
Conventionally, this type of diffraction angle detection method uses a transmitted diffracted light to install a photomultiplier (hereinafter referred to as “photomul”) on a mechanism that moves on an arc, as shown in FIG. There has been a method of obtaining the diffraction angle and the peak intensity by obtaining the position showing the peak of the amount of received light of Photomul. In this case, as shown in FIG.
-2 and + 1st order diffracted light 5-3, 0th order diffracted light 5-4,-
Intensity and angle of each diffracted light of each diffracted light at the positions of 5-7, 5-8, 5-9 by moving Photomar on the arc according to the diffraction angle 5-6 (= Diffraction angle) was sought. There is also a method in which the photomultiplier having a large light-receiving surface is installed in advance at positions 5-7 to 5-9 because the photomultiplier needs to be moved, but in this method, the angular resolution of the angle θ in the diffraction direction is not good ( = Photomal size 5-10 P D
If the distance from the diffraction point to photomultipliers and r P), i.e. the resolution of θ was P O / r P (rad) .

次にフォトマルを単純に一次元又は二次元固体撮像素
子6−1に置換した方式を第6図に示す。−2次回折光
6−3,−1次回折光6−4,0次回折光6−5,1次回折光6
−6、2次回折光6−7を一度に受光しようとすればHe
−Neレーザ6−2,CDディスク6−8の場合は固体撮像素
子6−1の長さを14μ×2048画素の時、CDディスク6−
8と固体撮像素子との間の距離lDは7mmしかとれないこ
ととなる。これからlDの変動ΔlDはθの計測値に対して
θ(=一次回折角)の計測誤差ΔθでありlDが小さいとΔlDの変動が計測に大きく影響し、
θの計測はよほどlDの変動を抑えないと実用に耐えなか
った。又、θの角度分解能がrP(θ)=lDtan(θ)の
時画素サイズをPDとすればPD/(lDtanθ)(rad)であ
るためlDが小さいと角度分解能が悪くなるという欠点が
あった。これは特にデバイスサイズの小さい二次元固体
撮像素子などでは影響が大きかった。このため場合よっ
ては受光素子を複数配置して受光部サイズを大きくして
lDをかせぐ第7図の様な方式があった。なお第7図のフ
ィルタ7−1〜7−5はレーザの受光量を調整するため
の減光フィルタであり、7−6〜7−10は一次元撮像素
子、7−11がHe−Neレーザビーム7−12がCDディスクで
ある。
Next, FIG. 6 shows a system in which the photomultiplier is simply replaced by the one-dimensional or two-dimensional solid-state imaging device 6-1. -2nd order diffracted light 6-3, -1st order diffracted light 6-4, 0th order diffracted light 6-5, 1st order diffracted light 6
-6,2 if you try to light at a time-order diffracted light 6-7 H e
-N e laser 6-2, when 14 microns × 2048 pixels the length of the solid-state imaging device 6-1 when the CD disc 6-8, CD disc 6-
The distance l D between 8 and the solid-state image sensor is only 7 mm. From this, the fluctuation Δl D of l D is the measurement error Δθ 1 of θ 1 (= first-order diffraction angle) with respect to the measured value of θ. Therefore, when l D is small, the fluctuation of Δl D has a large effect on the measurement.
The measurement of θ could not be put to practical use unless the fluctuation of l D was suppressed. Further, the angular resolution of theta is r P (θ) = l D tan P if the pixel size and P D when (θ) D / (l D tanθ) (rad) angle resolution and l D is small because it is There was a drawback that it became worse. This has a great influence particularly on a two-dimensional solid-state imaging device having a small device size. For this reason, it is possible to increase the size of the light receiving part by arranging multiple light receiving elements.
Such a method of FIG. 7 to earn a l D there is. Incidentally filter 7-1 to 7-5 of Figure 7 is a neutral density filter for adjusting the light amount of the laser, the one-dimensional image sensor 7-6~7-10, 7-11 H e -N The e- laser beam 7-12 is a CD disc.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来のフォトマル及び固体撮像素子を利用し
た計測方法では角度分解能が十分出なかったり、手間が
かかったり、又は回折格子の位置条件が厳しい等の欠点
があった。又、光ディスクの計測では同時に他のセンサ
により反り位置ぶれ量の計測,回折光の強度計測,透過
率,反射率計測を行う必要があった。
The above-described conventional measurement method using the photomultiplier and the solid-state image sensor has drawbacks such as insufficient angular resolution, labor, and strict position conditions of the diffraction grating. Further, in the measurement of the optical disk, it is necessary to simultaneously measure the warp position blurring amount, the intensity measurement of the diffracted light, the transmittance and the reflectance by another sensor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の回折角度,位置ぶれ,反り検出方法は、ディ
スクを中間にはさみ、平行な受光面を有する固体撮像素
子と、前記ディスクにレーザ光を照射する機構とを有す
る。
The diffraction angle, position deviation, and warp detection method of the present invention has a solid-state image sensor having a parallel light-receiving surface with a disc sandwiched in the middle, and a mechanism for irradiating the disc with laser light.

〔実施例〕〔Example〕

次、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(A),(B)は本発明の一実施例を示す光学
系ブロック図であり、同図(A)は正面図、同図(B)
は側面図である。He−Neレーザ発振装置(図示せず)よ
り出力されたレーザ光1−1は光ディスク1−2に照射
される。この際直角プリズムによるハーフミラ1−3に
よってレーザ光1−1は光ディスク1−2の面に垂直に
照射される。なお、レーザ光1−1は図面上、理解を容
易にするため0次回折光をずらして示している。ここで
透過回折光1−4,1−5,1−6,1−7,1−8は適当な減光率
を有する減光フィルタ1−9,1−10,1−11,1−12,1−13
を通過して、第1の固体撮像素子1−14で受光される。
又、同時に反射回折光(−2次,−1次,1次,2次)1−
15,1−16,1−17,1−18は適当な減光率を有する減光フィ
ルタ1−20,1−21,1−22,1−23を通過して透過回折光用
固体撮像素子1−24で受光される。更に、0次反射回折
光1−25は、ハーフミラ1−3及び適当な減光率を有す
る減光フィルタ1−26で減光後反射回折光用の第2の固
体撮像素子1−24で受光する。
1 (A) and 1 (B) are optical system block diagrams showing an embodiment of the present invention. FIG. 1 (A) is a front view and FIG. 1 (B).
Is a side view. H e -N e laser oscillator laser beam 1-1 outputted from the (not shown) is applied to the optical disk 1-2. At this time, the laser light 1-1 is applied perpendicularly to the surface of the optical disk 1-2 by the half mirror 1-3 formed by the rectangular prism. The laser light 1-1 is shown with the 0th-order diffracted light shifted in order to facilitate understanding. Here, the transmitted diffracted lights 1-4, 1-5, 1-6, 1-7, 1-8 are neutral density filters 1-9, 1-10, 1-11, 1-12 having an appropriate extinction ratio. , 1-13
And is received by the first solid-state imaging device 1-14.
At the same time, reflected diffracted light (-2nd order, -1st order, 1st order, 2nd order) 1-
15,1-16,1-17,1-18 are solid-state image pickup devices for transmitted diffracted light after passing through the neutral density filters 1-20,1-21,1-22,1-23 having an appropriate extinction ratio. It is received by 1-24. Further, the 0th-order reflected diffracted light 1-25 is received by the second solid-state imaging device 1-24 for the diffracted light after the diffracted reflected light by the half mirror 1-3 and the neutral density filter 1-26 having an appropriate dimming rate. To do.

以上で光ディスクのすべての回折光の強度及び、その
位置が固体撮像素子のピークレベル,ピーク位置として
第2図に示される様に分かる。即ち、2−1,2−2,2−3,
2−4,2−5が−2次,−1次,0次,1次,2次反射回折光の
ピーク値であり、かつ、その位置である。又、同時に2
−6,2−7,2−8,2−9,2−10が−2次,−1次,0次,1次,2
次透過回折光のピーク値であり、かつ、その位置であ
る。なお、この状態で各回折光に対する減光率をδij
すれば(0次反射回折光についてはハーフミラとの合成
減光率)、又はそのピークレベルをPij又はその画素をd
ijとする。ここでiは回折光次数、jは反射回折光、透
過回折光の区別(0:反射,,1:透過)とする。又、lD0,l
D1は、第3図に示すように各々光ディスク3−3と反射
回折光受光用の第1の固体撮像素子3−1および透過回
折光受光用の第2の固体撮像素子3−2と光ディスク3
−3との距離とする。この場合、i次回折角度θiは画
素サイズDP,lD0+lD1=2lD(=−定値)を利用して、ta
n-1({|di0−d00|+|di1−d01|}・DP/2lD)=θ 位置ぶれ量ΔlDで求まる。
From the above, the intensities of all the diffracted lights of the optical disc and their positions can be understood as shown in FIG. 2 as the peak level and peak position of the solid-state image pickup device. That is, 2-1,2-2,2-3,
2-4 and 2-5 are peak values of the −2nd order, −1st order, 0th order, 1st order, and 2nd order reflected diffracted light, and their positions. Also, 2 at the same time
−6,2−7,2−8,2−9,2−10 is −2nd, −1st, 0th, 1st, 2
It is the peak value of the next transmitted diffracted light and its position. In this state, if the extinction ratio for each diffracted light is δ ij (the combined extinction ratio with the half mirror for the 0th-order reflected diffracted light), or its peak level is P ij or its pixel is d ij.
ij . Here, i is the diffracted light order, j is the difference between the reflected diffracted light and the transmitted diffracted light (0: reflection, 1: transmission). Also, l D0 , l
As shown in FIG. 3, D1 is an optical disk 3-3, a first solid-state image sensor 3-1 for receiving reflected diffracted light, a second solid-state image sensor 3-2 for receiving transmitted diffracted light, and an optical disk 3.
-3 and the distance. In this case, the i-th order diffraction angle θi is calculated by using the pixel size D P , l D0 + l D1 = 2l D (= -constant value)
n -1 ({| d i0 −d 00 | + | d i1 −d 01 |} ・ D P / 2l D ) = θ i Position blurring amount Δl D is Can be obtained with.

又、ここで対称性が成立すれば即ち、レーザ照射方向
が撮像素子の受光面と垂直ならばより高精度のi次回折
角度θを次の式のようにして求めることが出来る。
Further, if the symmetry is satisfied, that is, if the laser irradiation direction is perpendicular to the light receiving surface of the image sensor, the i-th order diffraction angle θ i with higher accuracy can be obtained by the following equation.

又、レーザ照射方向と撮像素子の受光面が垂直でない
場合傾きΘ′の補正も実効的なlDが2倍の為、従来のも
のよりも高精度に行える。即ち、{|di0−d00|+|di1
d01|}/{|d-i0−d00|+|di1−d01|} を利用して、0次光は角度の2等分線であることを利用
すれば、Θ′も求まる。
Further, when the laser irradiation direction and the light receiving surface of the image sensor are not perpendicular, the correction of the inclination Θ ′ can be performed with higher accuracy than the conventional one because the effective ID is doubled. That is, {| d i0 −d 00 | + | d i1
Using d 01 |} / {| d -i0 −d 00 | + | d i1 −d 01 |}, we can also obtain Θ ′ by using the fact that the 0th-order light is an angle bisector. .

更に回折光強度Powerijは第4図に示す様に、斜め入
射のため で求まる。(実効的には補正フィルタを乗じる必要があ
る)なお、実効的な減光率はδij/Sinθiとなる。反り
については2次元固定体撮像素子を利用すれば同様にし
て計測可能である。
Further, the diffracted light intensity Powerij is obliquely incident as shown in FIG. Can be obtained with. (It is necessary to multiply by the correction filter effectively) Note that the effective extinction ratio is δ ij / Sin θi. The warp can be similarly measured by using a two-dimensional fixed body image pickup device.

なお、光量調整用減光フィルタとしてフィルタの側面
に光吸収性の物質を塗ることにより各次数の回折光の分
離度を向上させることができる。
It should be noted that the light attenuating filter for adjusting the light amount can be coated with a light absorbing substance on the side surface of the filter to improve the degree of separation of diffracted light of each order.

〔発明の効果〕〔The invention's effect〕

以上説明した様に本発明はディスクを受光面が平行で
あって対向させた、固体撮像素子の間に配置することに
より、実効的に測定のための撮像素子の配置距離lDが2
倍取れ、かつディスクの位置ずれが完全に回折角度算出
の際に補償されると同時に、位置ずれ量が比例配分によ
り求まるという効果がある。更に、固体撮像素子の出力
がピークを示す画素(=回折角度算出で利用)のピーク
強度を斜受光(=回折角度)角度、減光フィルタの透過
率等から補正すれば、今回折光の強度計測が、透過及び
反射回折光で求まる。同時に透過回折光、反射回折光の
強度からディスクの透過率等も求まる。更に2次元の固
体撮像素子を利用すればディスクの反り等の影響の計測
が同時に行えるという効果がある。
As described above, according to the present invention, by disposing the disk between the solid-state image pickup devices whose light-receiving surfaces are parallel and face each other, the arrangement distance l D of the image pickup device for measurement is effectively 2
There is an effect that the double displacement can be obtained, and the positional deviation of the disk can be completely compensated when the diffraction angle is calculated, and at the same time, the positional deviation amount can be obtained by proportional distribution. Furthermore, if the peak intensity of the pixel (= used for calculating the diffraction angle) where the output of the solid-state image sensor shows a peak is corrected from the oblique light receiving (= diffraction angle) angle, the transmittance of the dark filter, etc. Is determined by the transmitted and reflected diffracted light. At the same time, the transmittance of the disk can be obtained from the intensity of the transmitted diffracted light and the reflected diffracted light. Furthermore, if a two-dimensional solid-state image pickup device is used, there is an effect that the influence of the warp of the disk can be measured at the same time.

【図面の簡単な説明】[Brief description of drawings]

第1図(A),(B)は本発明の一実施例を示す光学系
ブロック図、第2図は回折光,受光部の模式図、第3図
は光ディスクと撮像素子の位置関係を示す図、第4図は
ピーク値の角度補正の説明図。第5図は従来のフォトマ
ルを使用する方法の模式図、第6図は従来の撮像素子を
用いる方法の模式図、第7図は第6図で測定精度を上げ
る場合の例を示す図である。 1−1……He−Neレーザ光、1−2……光ディスク、1
−3……ハーフミラ、1−4〜1−8……透過回折光、
1−9〜1−13……減光フィルタ、1−14……第1の固
体撮像素子、1−15〜1−18……反射回折光、1−20〜
1−23,26……減光フィルタ、1−24……第2の固体撮
像素子、1−25……0次反射回折光。
1 (A) and 1 (B) are optical system block diagrams showing an embodiment of the present invention, FIG. 2 is a schematic diagram of diffracted light and a light receiving portion, and FIG. 3 is a positional relationship between an optical disc and an image sensor. FIG. 4 and FIG. 4 are explanatory diagrams of the angle correction of the peak value. FIG. 5 is a schematic diagram of a method of using a conventional photomultiplier, FIG. 6 is a schematic diagram of a method of using a conventional image sensor, and FIG. 7 is a diagram showing an example of improving measurement accuracy in FIG. is there. 1-1 ... He- Ne laser light, 1-2 ... Optical disc, 1
-3 ... Half mirror, 1-4 to 1-8 ... Transmitted diffracted light,
1-9 to 1-13 ... neutral density filter, 1-14 ... first solid-state image sensor, 1-15 to 1-18 ... reflected diffracted light, 1-20 to
1-23, 26 ... neutral density filter, 1-24 ... second solid-state image sensor, 1-25 ... 0th-order reflected diffracted light.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】受光面が平行であって互に対向して配置さ
れた一次元、又は二次元の第1および第2の固体撮像素
子の中間に光ディスクを配置するとともに前記光ディス
クの面に垂直にレーザ光を照射することにより前記光デ
ィスクからの透過回折光および反射回折光を前記撮像素
子により計測することを特徴とする光ディスクの光回折
角度及び位置ぶれ反り検出方法。
1. An optical disk is arranged in the middle of a one-dimensional or two-dimensional first and second solid-state image pickup device having light-receiving surfaces parallel to each other and opposed to each other, and perpendicular to the surface of the optical disk. A method for detecting the optical diffraction angle and position deviation of an optical disc, wherein the transmitted diffraction light and the reflected diffraction light from the optical disc are measured by irradiating a laser beam on the optical disc.
【請求項2】前記レーザ光の照射方法として、直角プリ
ズムを使用する特許請求の範囲第1項記載の光ディスク
の光回折角度及び位置ぶれ、反り検出方法。
2. A method for detecting a light diffraction angle, a position deviation, and a warp of an optical disk according to claim 1, wherein a right-angle prism is used as the laser light irradiation method.
【請求項3】前記撮像素子の受光面側にレーザ回折光の
反射回折光(−2次,−1次,0次,1次,2次−)に応じて
光量調整用の減光フィルタを配置する特許請求の範囲第
1項記載の回折角度及び位置ぶれ、反り検出方法。
3. An attenuating filter for adjusting a light amount according to reflected diffracted light (-2nd order, −1st order, 0th order, 1st order, 2nd order −) of laser diffracted light on the light receiving surface side of the image pickup device. The method for detecting the diffraction angle, position deviation, and warpage according to claim 1, which is arranged.
【請求項4】前記撮像素子の受光面側にレーザ回折光の
透過回折光(−−2次,−1次,0次,1次,2次…)に応じ
て光量調整用の減光フィルタを配置する特許請求の範囲
第1項記載の回折角度及び位置ぶれ、反り検出方法。
4. A neutral density filter for adjusting the amount of light according to the transmitted diffracted light of the laser diffracted light (--2nd order, -1st order, 0th order, 1st order, 2nd order ...) On the light receiving surface side of the image pickup device The diffraction angle, the position deviation, and the warp detection method according to claim 1.
【請求項5】前記減光フィルタがその側面に光の吸収物
質を塗られてなる特許請求の範囲第3項,第4項記載の
回折角度及び位置ぶれ、反り検出方法。
5. A method for detecting a diffraction angle, a position deviation, and a warp according to claim 3, wherein the neutral density filter has a side surface coated with a light absorbing substance.
【請求項6】前記減光フィルタの透過率を既知として、
各次数の回折光の強度計測も同時に行う特許請求の範囲
第3項ないし5項記載の回折角度及び位置ぶれ、反り検
出方法。
6. A known transmittance of the neutral density filter,
The diffraction angle, position deviation, and warp detection method according to claim 3, wherein the intensity of diffracted light of each order is also measured at the same time.
JP62182751A 1987-07-21 1987-07-21 Optical diffraction angle of optical disc, position deviation, and warp detection method Expired - Fee Related JP2564835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62182751A JP2564835B2 (en) 1987-07-21 1987-07-21 Optical diffraction angle of optical disc, position deviation, and warp detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62182751A JP2564835B2 (en) 1987-07-21 1987-07-21 Optical diffraction angle of optical disc, position deviation, and warp detection method

Publications (2)

Publication Number Publication Date
JPS6425028A JPS6425028A (en) 1989-01-27
JP2564835B2 true JP2564835B2 (en) 1996-12-18

Family

ID=16123798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62182751A Expired - Fee Related JP2564835B2 (en) 1987-07-21 1987-07-21 Optical diffraction angle of optical disc, position deviation, and warp detection method

Country Status (1)

Country Link
JP (1) JP2564835B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806247A (en) * 2016-05-23 2016-07-27 南京林业大学 Wood board warping online detection device and detection method

Also Published As

Publication number Publication date
JPS6425028A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
US8604413B2 (en) Optical encoder including displacement sensing normal to the encoder scale grating surface
JP3144143B2 (en) Optical displacement measuring device
JP7278363B2 (en) diffraction biosensor
JPH0534173A (en) Encoder and system with encoder
JP2564835B2 (en) Optical diffraction angle of optical disc, position deviation, and warp detection method
JP3034899B2 (en) Encoder
JPH046884B2 (en)
JPH0625675B2 (en) Averaged diffraction moire position detector
JP2810281B2 (en) Polarization detector
JP3294684B2 (en) Photoelectric encoder
JP4492309B2 (en) Inclination measuring method and apparatus
TWI841029B (en) Phase detection method of reflective resonance sensor
JPH0480658A (en) Method and apparatus for measuring velocity
JP2004239855A (en) Reflex photoelectric encoder
JPH03115920A (en) Zero-point position detector
JP2514957B2 (en) Sun sensor
TW202419816A (en) Phase detection method of reflective resonance sensor
JPH0212017A (en) Detector for detecting position of averaged diffraction moire
JPS6365430A (en) Main reflecting mirror for single-lens reflex camera
JPH0318720A (en) Displacement measuring instrument
JP2619555B2 (en) Parallel light measuring device
JPH01417A (en) optical encoder
JP3441501B2 (en) Ellipsometer
JPH01121708A (en) Shape measuring instrument
JPS6011810A (en) Focus detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees