JPH0480652A - Apparatus for measuring moisture and oxygen simultaneously and continuously - Google Patents
Apparatus for measuring moisture and oxygen simultaneously and continuouslyInfo
- Publication number
- JPH0480652A JPH0480652A JP2194010A JP19401090A JPH0480652A JP H0480652 A JPH0480652 A JP H0480652A JP 2194010 A JP2194010 A JP 2194010A JP 19401090 A JP19401090 A JP 19401090A JP H0480652 A JPH0480652 A JP H0480652A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- measured
- oxygen
- measurement
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 115
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 115
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 239000007789 gas Substances 0.000 claims abstract description 170
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000000523 sample Substances 0.000 claims abstract description 33
- 238000005259 measurement Methods 0.000 claims description 74
- 238000010276 construction Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、気体中の水分ならびに酸素濃度の同時連続測
定装置に関するものであり、1本のプローブ管に同一構
造の酸素センサを2個配設することにより、それぞれの
酸素センサにおいて水分およびに酸素濃度を同時連続測
定できる装置に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a device for simultaneously and continuously measuring moisture and oxygen concentrations in gas, in which two oxygen sensors of the same structure are arranged in one probe tube. The present invention relates to a device that can simultaneously and continuously measure moisture and oxygen concentrations in each oxygen sensor.
(従来の技術およびその問題点)
従来から、ジルコニア等の酸素イオン伝導性のある固体
電解質を用いた酸素濃淡電池の原理によって各種工業炉
およびボイラ等から排出される燃焼排ガス中の酸素濃度
(若しくは酸素分圧)を検知し、それを工業炉、ボイラ
の燃焼側価にフィードバックする技術は既に知られてい
る。(Prior art and its problems) Conventionally, oxygen concentration (or The technology of detecting oxygen partial pressure and feeding it back to the combustion side pressure of industrial furnaces and boilers is already known.
各種工業炉およびボイラ、とりわけ微粉炭ボイラの燃焼
排ガス中の水分測定は、使用石炭の性状のバラツキ等に
起因して、その定量的把握が極めて困難であるか、ボイ
ラの日常熱効率管理を充実し、熱効率の維持向上を資す
るために重要である。Moisture measurement in the combustion exhaust gas of various industrial furnaces and boilers, especially pulverized coal boilers, is extremely difficult to quantitatively understand due to variations in the properties of the coal used, or the daily thermal efficiency management of the boiler must be improved. , is important for maintaining and improving thermal efficiency.
また、燃焼排ガス中の酸素濃度は、省エネルギーの観点
から低酸素運転を行う目的のためにも必要不可欠なもの
である。Further, the oxygen concentration in the combustion exhaust gas is essential for the purpose of low-oxygen operation from the viewpoint of energy saving.
この目的で、例えば特開昭57−178154号公報に
水分測定方法が開示されている。この方法は、酸素イオ
ン伝導性を示す固体電解質素子の一方の側の電極に測定
ガスを接触させるとともに、他方の側の電極に水分除去
後の測定ガスを接触させ、これら両電極間に発生する起
電力により測定ガス中の水分濃度を測定するものである
。For this purpose, a moisture measuring method is disclosed, for example, in Japanese Patent Application Laid-Open No. 57-178154. In this method, a measurement gas is brought into contact with an electrode on one side of a solid electrolyte element exhibiting oxygen ion conductivity, and a measurement gas after water removal is brought into contact with an electrode on the other side, and the gas generated between these two electrodes is brought into contact with the measurement gas. It measures the moisture concentration in the measurement gas using electromotive force.
しかし、この方法では水分を除去した測定ガスを基準ガ
スとして用いるだけてあり、測定ガス中の酸素濃度を連
続的に、しかも同時に測定てきないという欠点があった
。However, this method only uses the measurement gas from which moisture has been removed as a reference gas, and has the disadvantage that the oxygen concentration in the measurement gas cannot be measured continuously and simultaneously.
(発明が解決しようとする課題)
本発明の課題は、非常に簡便な構成を有し、経済的にコ
ストが低く、しかも燃焼排ガス等の被測定ガス中の水分
濃度と酸素濃度(分圧)とを同時に、しかも連続的に測
定できる装置を提供することである。(Problems to be Solved by the Invention) It is an object of the present invention to have a very simple configuration, economically low cost, and to provide moisture concentration and oxygen concentration (partial pressure) in a gas to be measured such as combustion exhaust gas. An object of the present invention is to provide a device that can measure both simultaneously and continuously.
(課題を解決するための手段)
本発明は、ダクト内の被測定ガスの流れに接触するよう
に固定された測定プローブと:前記被測定ガスから前記
水分を実質的に除去して乾燥被測定ガスとする除湿器と
;
前記被測定ガスを吸引して前記除湿器へと送り、更に前
記乾燥被測定ガスを前記測定プローブの内部へと送るた
めの吸引ポンプと;
前記被測定ガスと接触する測定電極と、前記測定プロー
ブの内部へと面して前記乾燥被測定ガスに接触する基準
電極とを有し、前記被測定ガスの酸素濃度と前記乾燥被
測定ガスの酸素濃度との差によって生ずる起電力から前
記被測定ガスの水分濃度を測定できるように構成され、
かつ前記測定プローブに固定された水分濃度測定用ジル
コニアセンサ部と;
酸素濃度か既知である外部基準ガスと接触する測定電極
と、前記測定プローブの内部へと面して前記乾燥被測定
ガスに接触する基準電極とを有し、前記外部基準ガスの
酸素濃度と前記乾燥被測定ガスの酸素濃度との差によっ
て生ずる起電力から前記被測定ガスの酸素濃度を測定で
きるように構成され、かつ前記水分濃度測定用ジルコニ
アセンサ部と所定間隔をもって測定プローブに固定され
た酸素濃度測定用ジルコニアセンサ部と
を有する水分および酸素の同時連続測定装置に係るもの
である。(Means for Solving the Problems) The present invention includes a measurement probe fixed so as to be in contact with the flow of a gas to be measured in a duct; a dehumidifier that converts the gas into gas; a suction pump that sucks the gas to be measured and sends it to the dehumidifier, and further sends the dry gas to be measured into the inside of the measurement probe; and a suction pump that makes contact with the gas to be measured. comprising a measurement electrode and a reference electrode facing into the measurement probe and in contact with the dry gas to be measured, the electrode being caused by a difference between the oxygen concentration of the gas to be measured and the oxygen concentration of the dry gas to be measured. configured to be able to measure the moisture concentration of the gas to be measured from the electromotive force,
and a zirconia sensor unit for measuring moisture concentration fixed to the measurement probe; a measurement electrode in contact with an external reference gas whose oxygen concentration is known; and a measurement electrode facing into the measurement probe and in contact with the dry gas to be measured. a reference electrode that is configured to be able to measure the oxygen concentration of the gas to be measured from an electromotive force generated due to the difference between the oxygen concentration of the external reference gas and the oxygen concentration of the dry gas to be measured; This invention relates to a simultaneous and continuous measuring device for moisture and oxygen, which has a zirconia sensor section for measuring concentration and a zirconia sensor section for measuring oxygen concentration fixed to a measurement probe at a predetermined interval.
(実施例)
第1図は本発明の一実施例に係る水分および酸素の同時
連続測定装置を示す構成説明図である。(Example) FIG. 1 is a configuration explanatory diagram showing an apparatus for simultaneously and continuously measuring moisture and oxygen according to an example of the present invention.
この図において、lは被測定ガスである燃焼排ガスの流
れの中へ挿入、設置される測定プローブであり、この測
定プローブ1には、所定間隔て同一構造の酸素センサか
らなる酸素濃度測定用ジルコニアセンサ部26と水分濃
度測定用ジルコニアセンサ部27とか設けられている。In this figure, l is a measurement probe that is inserted and installed into the flow of combustion exhaust gas, which is the gas to be measured. A sensor section 26 and a zirconia sensor section 27 for measuring water concentration are provided.
これらの各センサ部26.27においては、それぞれ第
2図に示す酸素センサlOかフィルタカバー2の内側に
取付けられている。またこの酸素センサ10を測定プロ
ーブ1に取付け、さらに交換できるようにフィルタカバ
ー2の対向部分に、センサ裏蓋3か設けられている。酸
素センサlOの脱着の際にはセンサ裏蓋3か取り外され
、その開口を通じて酸素センサの脱着が行なわれる。測
定プローブ1の取付は部には、取付フランジ5および端
子箱8が設けられ、取付フランジ5によって炉壁7に設
けられた炉壁フランジ6に固定される。端子箱8には配
線、配線孔9が設けられている。In each of these sensor sections 26 and 27, an oxygen sensor 1O shown in FIG. 2 is attached to the inside of the filter cover 2, respectively. Further, a sensor back cover 3 is provided on the opposite side of the filter cover 2 so that the oxygen sensor 10 can be attached to the measurement probe 1 and replaced. When attaching and detaching the oxygen sensor IO, the sensor back cover 3 is removed, and the oxygen sensor is attached and detached through its opening. A mounting flange 5 and a terminal box 8 are provided in the mounting section of the measurement probe 1, and the measurement probe 1 is fixed to a furnace wall flange 6 provided on a furnace wall 7 by the mounting flange 5. The terminal box 8 is provided with wiring and a wiring hole 9.
酸素濃度測定用ジルコニアセンサ部26と水分濃度測定
用ジルコニアセンサ部27との中間部に、ガス吸引管2
8のガス吸引口を位置させ、吸引ポンプ29によって矢
印へのように被測定ガスを吸引し、ダクトの外側へと取
り出す。取り出された被測定ガスは、除湿器30によっ
て含有水分を除去され、乾燥被測定ガスとして測定プロ
ーブ1内部へと通気される。その後、測定プローブ1の
先端に位置する放出口4より矢印Bのようにダクト内部
へと放出させる。この一連の動作(被測定ガスの外部へ
の取り出し〜吸引ボンプル除湿器〜測定プローブ内部通
気〜放出)は連続して行われる。A gas suction pipe 2 is installed between the zirconia sensor section 26 for oxygen concentration measurement and the zirconia sensor section 27 for water concentration measurement.
The gas suction port 8 is positioned, and the gas to be measured is sucked in the direction of the arrow by the suction pump 29 and taken out to the outside of the duct. The extracted gas to be measured has its moisture content removed by the dehumidifier 30, and is vented into the measurement probe 1 as a dry gas to be measured. Thereafter, it is discharged into the duct as shown by arrow B from the discharge port 4 located at the tip of the measurement probe 1. This series of operations (extraction of the gas to be measured to the outside - suction bomb dehumidifier - ventilation inside the measurement probe - discharge) is performed continuously.
従って、測定プローブ内部、すなわち酸素センサの基準
電極側では、常に乾燥被測定ガスの雰囲気で満たされて
おり、また一連の動作は連続して行われているので、乾
燥ガス中の各成分濃度は被測定ガス中の濃度変化に常に
対応することになる。Therefore, the inside of the measurement probe, that is, the reference electrode side of the oxygen sensor, is always filled with an atmosphere of dry gas to be measured, and the series of operations is performed continuously, so the concentration of each component in the dry gas is This means that it constantly responds to changes in concentration in the gas to be measured.
酸素濃度測定用ジルコニアセンサ部26と水分濃度測定
用ジルコニアセンサ部27との間の間隔は煙道ダクトの
ガス濃度の偏在の影響を小さくするために100 mm
以内とすることが好ましく、かつガス吸引管28のガス
吸引口は上記各センサ部26.27の中間に位置させる
ことか好ましい。即ち、燃焼排ガス等のダクト内ではそ
の幅、深さ方向において各成分ガス濃度の濃度分布が存
在している。The distance between the zirconia sensor section 26 for oxygen concentration measurement and the zirconia sensor section 27 for water concentration measurement is 100 mm in order to reduce the influence of uneven distribution of gas concentration in the flue duct.
The gas suction port of the gas suction pipe 28 is preferably located between the sensor portions 26 and 27. That is, within a duct for carrying combustion exhaust gas, etc., there is a concentration distribution of the concentration of each component gas in the width and depth directions.
このため、酸素センサの間隔距離を極力短くし、かつ前
記ガス吸引口を2個の酸素センサの中間位置とすること
によって、各濃度の偏在の影響をなくし、水分および酸
素濃度の測定の高精度化を確保できるからである。Therefore, by making the distance between the oxygen sensors as short as possible and placing the gas suction port in the middle position between the two oxygen sensors, the influence of uneven distribution of each concentration can be eliminated and the measurement of moisture and oxygen concentrations can be performed with high accuracy. This is because it is possible to ensure the
次に、酸素濃度測定用ジルコニアセンサ部26、水分濃
度測定用ジルコニアセンサ部27をそれぞれ構成する酸
素センサの構造の詳細について、第2図〜第5図を参照
しつつ説明する。Next, details of the structures of the oxygen sensors that constitute the zirconia sensor section 26 for measuring oxygen concentration and the zirconia sensor section 27 for measuring water concentration will be explained with reference to FIGS. 2 to 5.
第2図には測定プローブ1に対する酸素センサの取付構
造が示されている。この図において、固体電解質より成
る有底円筒状の酸素センサ10は、有底円筒内の空間と
被測定ガス流の空間とか連通ずるように(即ち有底円筒
の開口部か燃焼排ガス流に向けて)配置されている。こ
の酸素センサ10の測定プローブ1への取付けは、まず
有底円筒状の酸素センサ10の開口部周辺にセンサ留金
具11を例えば焼嵌め法により気密に固定し、このセン
サ留金具11の測定プS−ブ1に嵌合されたセンサ保持
具12に金属性の0リング17を介して締め付は固定す
ることにより為されている。このように取付けられた酸
素センサlOにはさらに、ヒータ13を内蔵する二重円
筒状のヒータ保持具14(これらかヒータユニットを構
成する)がセンサ留金具11に内側から嵌合され、セメ
ント接着によって一体的に固定されている。従って、酸
素センサ10およびセンサ留金具11並びにヒータ13
およびヒータ保持具14 (即ちヒータユニット)か一
体構造となってセンサユニットを構成する。FIG. 2 shows the mounting structure of the oxygen sensor on the measurement probe 1. As shown in FIG. In this figure, an oxygen sensor 10 in the shape of a cylinder with a bottom made of a solid electrolyte is arranged so that the space inside the cylinder with a bottom communicates with the space of the gas flow to be measured (that is, the opening of the cylinder with a bottom is directed toward the combustion exhaust gas flow). ) are located. To attach the oxygen sensor 10 to the measurement probe 1, first, the sensor clasp 11 is airtightly fixed around the opening of the bottomed cylindrical oxygen sensor 10 by, for example, a shrink-fitting method. Tightening is achieved by fixing the sensor holder 12 fitted to the S-bulb 1 via a metal O-ring 17. Further, in the oxygen sensor lO mounted in this manner, a double cylindrical heater holder 14 (these constitute a heater unit) containing a built-in heater 13 is fitted from the inside to the sensor fastener 11, and cemented. is integrally fixed by. Therefore, the oxygen sensor 10, the sensor fastener 11 and the heater 13
and the heater holder 14 (that is, the heater unit) are integrated to form a sensor unit.
このような酸素センサ10の被測定ガスに接触する側に
はダストの流入を阻止するため、フィルタ15およびフ
ィルタ保持具16より構成されるフィルタユニットが連
結され、さらにその外側にフィルタカバー2か設けられ
て、ダストのフィルタ15への直撃を回避し、フィルタ
15の目詰まりを防止できるようにしている。このフィ
ルタカバー2には、被測定ガス流入孔24が例えば4個
、90度の角度て等分されて設けられて(第3図参照)
、被測定ガスをフィルタ15を介して酸素センサへ導入
している。さらに酸素センサ10の出力(起電力)を校
正するための外部基準ガス(酸素濃度既知)を導入する
ため、炉壁外部から導入された外部ガス導入管18を測
定プローブ1の外側に沿って配設し、この外部ガス導入
管18の開口部19をセンサ保持具12に設けた外部ガ
ス導入口20と結合し、これとフィルタ保持具16に設
けられたガス出入口25と内部空間21か連通ずること
によってガス通路を形成し、内部空間に上記の校正ガス
又は外部基準ガスか導入されるようにしている。また、
センサ保持具12には、外部ガス導入口20が設けられ
た側とは反対側にガス排出口22が設けられている。さ
らにフィルタ保持具16のセンサ留金具11と接する隅
部に加工を施してフィルタ保持具16の円周上にガス通
路23を形成している(第4図参照)。In order to prevent the inflow of dust, a filter unit consisting of a filter 15 and a filter holder 16 is connected to the side of the oxygen sensor 10 that comes into contact with the gas to be measured, and a filter cover 2 is further provided on the outside thereof. This prevents dust from directly hitting the filter 15 and prevents the filter 15 from clogging. The filter cover 2 is provided with, for example, four gas inflow holes 24 divided equally at an angle of 90 degrees (see Fig. 3).
, the gas to be measured is introduced into the oxygen sensor via the filter 15. Furthermore, in order to introduce an external reference gas (with known oxygen concentration) for calibrating the output (electromotive force) of the oxygen sensor 10, an external gas introduction pipe 18 introduced from outside the furnace wall is arranged along the outside of the measurement probe 1. The opening 19 of the external gas inlet pipe 18 is connected to the external gas inlet 20 provided in the sensor holder 12, and this communicates with the gas inlet/outlet 25 provided in the filter holder 16 and the internal space 21. This forms a gas passage through which the above-mentioned calibration gas or external reference gas can be introduced into the internal space. Also,
The sensor holder 12 is provided with a gas exhaust port 22 on the side opposite to the side where the external gas inlet 20 is provided. Furthermore, a corner portion of the filter holder 16 that contacts the sensor fastener 11 is machined to form a gas passage 23 on the circumference of the filter holder 16 (see FIG. 4).
このガス通路23は、内部空間21と、ダクト内の被測
定ガス空間とをガス出入口25およびガス排出口22を
介して連通させており、また、外部ガス導入管18の内
部空間にも外部ガス導入口20を介して連通している。This gas passage 23 communicates the internal space 21 with the measured gas space in the duct via the gas inlet/outlet 25 and the gas exhaust port 22, and also communicates the external gas with the internal space of the external gas introduction pipe 18. It communicates via an inlet 20.
したかって、内部空間21に存在する被測定ガス、校正
ガス又は外部基準ガスを迅速に外部へ排出することがで
きる。Therefore, the gas to be measured, the calibration gas, or the external reference gas existing in the internal space 21 can be quickly discharged to the outside.
なお、第2図に示される酸素センサ10は、有底円筒状
の他、平板状等を採用することかでき、適宜用途に応じ
て選択することができる。Note that the oxygen sensor 10 shown in FIG. 2 may have a flat plate shape or the like in addition to a cylindrical shape with a bottom, and can be appropriately selected depending on the application.
水分濃度測定用ジルコニアセンサ部27においては(第
1〜2図参照)、酸素センサ10の有底円筒内面側(測
定電極側)には被測定ガスか流入、接触し、基準電極側
には乾燥被測定ガスが接触する。In the zirconia sensor section 27 for water concentration measurement (see Figures 1 and 2), the gas to be measured flows into and comes into contact with the inner surface of the bottomed cylinder (measuring electrode side) of the oxygen sensor 10, and the dry gas flows into the reference electrode side. The gas to be measured comes into contact with it.
一方、酸素濃度測定用ジルコニアセンサ部26において
は、酸素センサ10の測定電極側には、外部ガス導入管
18から導入された酸素濃度既知の外部基準ガス(例え
ば大気)が流入、接触し、基準電極側には乾燥被測定ガ
スが接触する。また、両センサ部26.27はともに、
適宜の外部ガス導入管18を通して校正ガスを導入し、
校正を行う。On the other hand, in the zirconia sensor section 26 for oxygen concentration measurement, an external reference gas (for example, atmospheric air) with a known oxygen concentration, introduced from the external gas introduction pipe 18, flows into and comes into contact with the measurement electrode side of the oxygen sensor 10. The dry gas to be measured comes into contact with the electrode side. Moreover, both sensor parts 26 and 27 are
Introducing a calibration gas through a suitable external gas introduction pipe 18,
Perform proofreading.
次いて、水分濃度測定用ジルコニアセンサ部27の測定
電極側への被測定ガスの流入、排出について更に述べる
。Next, the inflow and discharge of the gas to be measured to the measurement electrode side of the zirconia sensor section 27 for measuring water concentration will be further described.
被測定ガスは、第3図(A)および(B)のフィルタカ
バーを取付けた状態の平面図およびその断面図に示され
るように、まずフィルタカバー2の4個所に設けられた
被測定ガス流入孔24から入り、フィルタ15を通過し
て、酸素センサ10の上部の内部空間21に流入する。As shown in the plan view and cross-sectional view of the state in which the filter cover is attached in FIGS. It enters through the hole 24 , passes through the filter 15 , and flows into the internal space 21 above the oxygen sensor 10 .
この内部空間21から有底円筒状の酸素センサ10の内
側深部に設けられた測定電極までは、測定ガスの濃度差
によるガス拡散および熱対流によってガス置換か行われ
る。その他の被測定ガスは、第4図(A)および(B)
に(フィルタカバーを省略して)示すように、ガス出入
口25、ガス通路23およびガス排出口22を通り外部
へ放出される。From this internal space 21 to the measurement electrode provided deep inside the bottomed cylindrical oxygen sensor 10, gas replacement is performed by gas diffusion and thermal convection due to the difference in concentration of the measurement gas. Other gases to be measured are shown in Figure 4 (A) and (B).
As shown in (omitting the filter cover), the gas is discharged to the outside through the gas inlet/outlet 25, the gas passage 23, and the gas outlet 22.
次いで、酸素濃度測定用ジルコニアセンサ部26での測
定電極側への外部基準ガスの流入、排出について、第5
図(A)、(B)を参照して述へる。Next, regarding the inflow and discharge of the external reference gas to the measurement electrode side in the zirconia sensor section 26 for oxygen concentration measurement, the fifth
This will be described with reference to Figures (A) and (B).
ただし、図面を明瞭にするためフィルタカバーを省略し
て図示している。まず、外部基準ガスは、炉壁外部から
外部ガス導入管18を通り、外部ガス導入口20および
ガス出入口25を経て、内部空間21に充満される。こ
のとき、内部空間21は正圧状態になるため、被測定ガ
スの流入は阻止される。内部空間2Iに充満した外部基
準ガスの一部は加圧導入により徐々に酸素センサ10の
深部へ達し、測定電極と接触する。その他の外部基準ガ
スは、第5図(A)に示すように、内部空間か被測定ガ
ス雰囲気の圧力に対し負圧状態になった時点で、ガス通
路23を経てガス排出口22から排出される。However, in order to clarify the drawing, the filter cover is omitted from the illustration. First, the external reference gas passes through the external gas inlet pipe 18 from outside the furnace wall, passes through the external gas inlet 20 and the gas inlet/outlet 25, and fills the internal space 21. At this time, since the internal space 21 is in a positive pressure state, the inflow of the gas to be measured is blocked. A part of the external reference gas filling the internal space 2I gradually reaches the deep part of the oxygen sensor 10 by being introduced under pressure and comes into contact with the measurement electrode. As shown in FIG. 5(A), other external reference gases are discharged from the gas outlet 22 through the gas passage 23 when the internal space becomes a negative pressure state with respect to the pressure of the gas atmosphere to be measured. Ru.
次に、本実施例の装置により得られる作用効果につき、
順次説明する。Next, regarding the effects obtained by the device of this example,
I will explain them one by one.
(1)水分濃度測定用ジルコニアセンサ部27(第1図
参照)においては、測定電極側に連続的に流入、接触す
る被測定ガスと、基準電極側に連続的に通気される乾燥
被測定ガスの酸素濃度差から、これに対応して酸素セン
サに出力(起電力)か生じ、被測定ガス中の水分濃度を
測定できる。(1) In the zirconia sensor section 27 for water concentration measurement (see Figure 1), a gas to be measured continuously flows into and comes into contact with the measurement electrode side, and a dry gas to be measured is continuously vented to the side of the reference electrode. Based on the difference in oxygen concentration, an output (electromotive force) is generated in the oxygen sensor correspondingly, and the moisture concentration in the gas to be measured can be measured.
このときの酸素センサの出力は次の通りである。The output of the oxygen sensor at this time is as follows.
ここで、Eに酸素センサの出力
に:定数
T:酸素センサ加熱温度(絶対温度)
PO2(W) :被測定ガス中の酸素分圧PO2(D)
:乾燥被測定ガス中の酸素分圧また、水分濃度を(H
2O) (vo1%)、被測定ガス中の酸素濃度を〔0
□(W) ) (vo1%)、乾燥被測定ガス中の酸素
濃度を〔0□(D) ) (vo1%)とすると、下記
の関係か成り立つ。Here, E is the output of the oxygen sensor: Constant T: Oxygen sensor heating temperature (absolute temperature) PO2 (W): Oxygen partial pressure in the measured gas PO2 (D)
:Oxygen partial pressure in dry measured gas and moisture concentration (H
2O) (vo1%), the oxygen concentration in the measured gas was set to [0
□(W) ) (vo1%), and the oxygen concentration in the dry gas to be measured is [0□(D) ) (vo1%), then the following relationship holds true.
〔0□(W) ) 100− (H2O)従って
、
従って、上記■、2式より、
(H2O) = (110”” ) X100(Vo1
%)このように、被測定ガス中の酸素分圧と乾燥被測定
ガス中の酸素分圧との差から、被測定ガス中の水分濃度
を算出できる。[0□(W) ) 100- (H2O) Therefore, from the above ■, equation 2, (H2O) = (110"") X100(Vo1
%) In this way, the moisture concentration in the gas to be measured can be calculated from the difference between the oxygen partial pressure in the gas to be measured and the partial pressure of oxygen in the dry gas to be measured.
(2)酸素濃度測定用ジルコニアセンサ部26(第1図
参照)においては、測定電極側に外部ガス導入管I8を
通じて連続的に流入する外部基準ガス(大気、乾燥大気
等)と、基準電極側に連続的に通気される乾燥被測定ガ
スとの酸素濃度差から、これに対応して酸素センサに出
力か生じ、被測定ガス中の酸素濃度を測定できる。(2) In the zirconia sensor section 26 for oxygen concentration measurement (see Fig. 1), an external reference gas (air, dry air, etc.) continuously flows into the measurement electrode side through the external gas introduction pipe I8, and an external reference gas (air, dry air, etc.) flows into the measurement electrode side. Due to the difference in oxygen concentration between the dry gas to be measured and the dry gas to be measured which is continuously vented, a corresponding output is generated to the oxygen sensor, and the oxygen concentration in the gas to be measured can be measured.
このときの酸素センサの出力は以下の通りである。The output of the oxygen sensor at this time is as follows.
E2:酸素センサの出力
0.206 :大気中の酸素濃度
従って、乾燥被測定ガス中の酸素濃度は02(D) =
(0,206/10”′K”) X100(vo1%)
ここで測定された酸素濃度0□(D)は、乾燥被測定ガ
ス中の酸素濃度であるが、乾燥前の被測定ガス中の酸素
濃度も、上記3式を利用し、下式演算から容易に求める
ことができる。E2: Oxygen sensor output 0.206: Oxygen concentration in the atmosphere Therefore, the oxygen concentration in the dry measured gas is 02 (D) =
(0,206/10”'K”) X100 (vo1%)
The oxygen concentration 0□(D) measured here is the oxygen concentration in the dried gas to be measured, but the oxygen concentration in the gas to be measured before drying can also be easily calculated by the following formula using the above three formulas. can be asked for.
UU
(3) ここで重要なことは、第1図に示すように、
−本の測定プローブに酸素センサを2個取付は測定プロ
ーブ内に乾燥被測定ガスを通気し、一方の酸素センサに
湿りガス状態にある被測定ガス、もう一方の酸素センサ
には外部基準ガスを導入するという極めて簡便な構成で
水分と酸素との同時測定を実現したことである。これに
より、測定プローブのダクト壁への取付座か1つとなり
、設備費、コストを低減できるので極めて有利である。UU (3) The important thing here is that, as shown in Figure 1,
- When attaching two oxygen sensors to a measuring probe, dry gas to be measured is vented into the measuring probe, one oxygen sensor is connected to the gas to be measured in a wet gas state, and the other oxygen sensor is connected to an external reference gas. This makes it possible to simultaneously measure moisture and oxygen using an extremely simple configuration. This is extremely advantageous because only one mounting seat is required for the measurement probe on the duct wall, and equipment costs and costs can be reduced.
従って、本実施例の装置を各種工業炉およびボイラ、と
りわけ微粉炭ボイラの燃焼排ガス中の水分、酸素濃度測
定に適用すると、低廉なコストで、ボイラの熱効率管理
の充実、熱効率の維持向上、電気集塵器の高効率運転、
煙道等の腐蝕防止に絶大な効果がある。Therefore, if the device of this embodiment is applied to the measurement of moisture and oxygen concentrations in the flue gas of various industrial furnaces and boilers, especially pulverized coal boilers, it will be possible to improve boiler thermal efficiency management, maintain and improve thermal efficiency, and improve electricity consumption at low cost. Highly efficient operation of dust collectors,
It is extremely effective in preventing corrosion of flues, etc.
(4)シかも、本実施例の装置では、水分濃度測定用ジ
ルコニアセンサ部においては、測定電極側に被測定ガス
の流入から流出へと至る測定ガス流通路を設けており、
また酸素濃度測定用ジルコニアセンサ部においては、測
定電極側に、外部ガス導入管から導入された外部基準ガ
スか流入から流出へと至るガス流通路を設けている。従
って、被測定ガス又は外部基準ガスか内部空間21(第
2図参照)へと速やかに導入され、しかも、酸素センサ
の測定電極へはほぼ平衡状態を保ちながらガス置換を行
えるので、酸素センサの応答性を高く維持しながら、熱
衝撃に対する保護をも同時に行うことができる。そして
、このように酸素センサの応答性か高まる結果、水分お
よび酸素を同時に、しかも連続的に測定する際、時間的
な遅延やズレを有効に防止できる。(4) In the device of this embodiment, in the zirconia sensor section for measuring water concentration, a measurement gas flow path from the inflow to the outflow of the gas to be measured is provided on the measurement electrode side.
Further, in the zirconia sensor section for measuring oxygen concentration, a gas flow path is provided on the measuring electrode side from the inflow to the outflow of the external reference gas introduced from the external gas introduction pipe. Therefore, the gas to be measured or the external reference gas is quickly introduced into the internal space 21 (see Figure 2), and gas replacement can be performed while maintaining a nearly balanced state at the measurement electrode of the oxygen sensor. While maintaining high responsiveness, protection against thermal shock can be provided at the same time. As a result of increasing the responsiveness of the oxygen sensor in this way, time delays and deviations can be effectively prevented when measuring moisture and oxygen simultaneously and continuously.
上述の例では、第1図において、酸素濃度測定用ジルコ
ニアセンサ部26を水分濃度測定用ジルコニアセンサ部
27の上側に設けたか、この位置関係を逆にしてもよく
、また各センサ部26.27をそれぞれ複数個設けるこ
とも可能である。In the above example, in FIG. 1, the zirconia sensor section 26 for oxygen concentration measurement is provided above the zirconia sensor section 27 for water concentration measurement, but this positional relationship may be reversed, and each sensor section 26, 27 It is also possible to provide a plurality of each.
(発明の効果)
本発明に係る水分および酸素の同時連続測定装置によれ
ば、被測定ガスと接触する測定電極と、測定プローブの
内部へと面して乾燥被測定ガスに接触する基準電極とを
有し、被測定ガスの酸素濃度と乾燥被測定ガスの酸素濃
度との差によって生ずる起電力から被測定ガスの水分濃
度を測定できるように構成された水分濃度測定用ジルコ
ニアセンサ部を有しているので、被測定ガス中の水分濃
度を連続的に測定できる。(Effects of the Invention) According to the simultaneous and continuous measurement device for moisture and oxygen according to the present invention, the measurement electrode contacts the gas to be measured, and the reference electrode faces the inside of the measurement probe and contacts the dry gas to be measured. and has a zirconia sensor section for measuring moisture concentration configured to be able to measure the moisture concentration of the gas to be measured from the electromotive force generated by the difference between the oxygen concentration of the gas to be measured and the oxygen concentration of the dry gas to be measured. Therefore, the water concentration in the gas to be measured can be measured continuously.
また、酸素濃度か既知である外部基準ガスと接触する測
定電極と、測定プローブの内部へと面して乾燥被測定ガ
スに接触する基準電極とを有し、外部基準ガスの酸素濃
度と乾燥被測定ガスの酸素濃度との差によって生ずる起
電力から被測定ガスの酸素濃度を測定できるように構成
された酸素濃度測定用ジルコニアセンサ部を有している
ので、被測定ガス中の酸素濃度を連続的に測定できる。It also has a measurement electrode that contacts an external reference gas whose oxygen concentration is known, and a reference electrode that faces the inside of the measurement probe and contacts the dry gas to be measured. It has a zirconia sensor for measuring oxygen concentration that is configured to measure the oxygen concentration of the gas to be measured from the electromotive force generated due to the difference between the oxygen concentration of the gas to be measured, so the oxygen concentration in the gas to be measured can be continuously measured. Can be measured accurately.
そして、水分濃度測定用ジルコニアセンサ部と酸素濃度
測定用ジルコニアセンサ部とを所定間隔をもって測定プ
ローブの管壁に固定しておりこれにより、プローブ管の
取付座か−って済むので、設備費、コストを著しく低減
できる。The zirconia sensor section for measuring water concentration and the zirconia sensor section for oxygen concentration measurement are fixed to the tube wall of the measurement probe at a predetermined interval, which eliminates the need for a mounting seat for the probe tube, reducing equipment costs. Costs can be significantly reduced.
第1図は本発明に係る装置の構成概要図、第2図は酸素
センサの取付は状態を示す要部断面図、
第3図(A)は酸素センサに被測定ガスが流入する状態
を示す正面図、同図(B)は同じく縦断面図、
第4図(A)は酸素センサから被測定ガスを流出する状
態を示す正面図、同図(B)は同じく縦断面図、
第5図(A)は酸素センサへと外部基準ガスか流入、流
出する状態を示す断面図、同図(B)は同じく縦断面図
である。
1・・・測定プローブ 2・・・フィルタカバー
3・・・センサ裏蓋 4・・・空気放出口5・
・・取付フランジ 6・・・炉壁フランジ7・・
・炉壁 8・・・端子箱9・・・配線・
配管孔 10・・・酸素センサ11・・・センサ
留金具 12・・・センサ保持具13・・・ヒー
タ 14・・・ヒータ保持具15・・・フ
ィルタ
17・・・0リング
19・・・開口
21・・・内部空間
23・・・ガス通路
25・・・ガス出入口
26・・・酸素濃度測定用ジルコニアセンサ部27・・
・水分濃度測定用ジルコニアセンサ部28・・・ガス吸
引管 29・・・吸引ポンプ30・・・除湿器
16・・・フィルタ保持具
18・・・外部ガス導入管
20・・・外部ガス導入口
22・・・ガス排出口
24・・・測定ガス流入孔
第2図
第3図
(A)
(B)
第4図
(A)
(A)Fig. 1 is a schematic diagram of the configuration of the device according to the present invention, Fig. 2 is a sectional view of the main part showing the installation state of the oxygen sensor, and Fig. 3 (A) shows the state in which the gas to be measured flows into the oxygen sensor. 4 (A) is a front view showing the state in which the gas to be measured flows out from the oxygen sensor; FIG. 5 (B) is a longitudinal sectional view; (A) is a cross-sectional view showing a state in which the external reference gas flows into and out of the oxygen sensor, and (B) is a longitudinal cross-sectional view. 1...Measuring probe 2...Filter cover 3...Sensor back cover 4...Air outlet 5.
...Mounting flange 6...Furnace wall flange 7...
・Furnace wall 8...Terminal box 9...Wiring・
Piping hole 10...Oxygen sensor 11...Sensor clasp 12...Sensor holder 13...Heater 14...Heater holder 15...Filter 17...0 ring 19...Opening 21... Internal space 23... Gas passage 25... Gas inlet/outlet 26... Zirconia sensor section for oxygen concentration measurement 27...
- Zirconia sensor section for measuring water concentration 28...Gas suction pipe 29...Suction pump 30...Dehumidifier 16...Filter holder 18...External gas introduction pipe 20...External gas introduction port 22...Gas outlet 24...Measurement gas inflow hole Fig. 2 Fig. 3 (A) (B) Fig. 4 (A) (A)
Claims (1)
された測定プローブと; 前記被測定ガスから前記水分を実質的に除去して乾燥被
測定ガスとする除湿器と; 前記被測定ガスを吸引して前記除湿器へと送り、更に前
記乾燥被測定ガスを前記測定プローブの内部へと送るた
めの吸引ポンプと; 前記被測定ガスと接触する測定電極と、前記測定プロー
ブの内部へと面して前記乾燥被測定ガスに接触する基準
電極とを有し、前記被測定ガスの酸素濃度と前記乾燥被
測定ガスの酸素濃度との差によって生ずる起電力から前
記被測定ガスの水分濃度を測定できるように構成され、
かつ前記測定プローブに固定された水分濃度測定用ジル
コニアセンサ部と;酸素濃度が既知である外部基準ガス
と接触する測定電極と、前記測定プローブの内部へと面
して前記乾燥被測定ガスに接触する基準電極とを有し、
前記外部基準ガスの酸素濃度と前記乾燥被測定ガスの酸
素濃度との差によって生ずる起電力から前記被測定ガス
の酸素濃度を測定できるように構成され、かつ前記水分
濃度測定用ジルコニアセンサ部と所定間隔をもって測定
プローブに固定された酸素濃度測定用ジルコニアセンサ
部と を有する水分および酸素の同時連続測定装置。[Claims] 1. A measurement probe fixed so as to be in contact with the flow of the gas to be measured in the duct; and a dehumidifier that substantially removes the moisture from the gas to be measured to dry the gas to be measured. a suction pump for sucking the gas to be measured and sending it to the dehumidifier and further sending the dry gas to be measured into the inside of the measurement probe; a measurement electrode in contact with the gas to be measured; a reference electrode that faces the inside of the measurement probe and contacts the dry gas to be measured; It is configured to be able to measure the moisture concentration of the measurement gas,
and a zirconia sensor unit for measuring moisture concentration fixed to the measurement probe; a measurement electrode that contacts an external reference gas with a known oxygen concentration; and a measurement electrode that faces into the measurement probe and contacts the dry gas to be measured. a reference electrode,
The oxygen concentration of the gas to be measured can be measured from the electromotive force generated due to the difference between the oxygen concentration of the external reference gas and the oxygen concentration of the dried gas to be measured, and A simultaneous and continuous measurement device for moisture and oxygen, which includes a zirconia sensor section for oxygen concentration measurement fixed to a measurement probe at intervals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2194010A JP2820783B2 (en) | 1990-07-24 | 1990-07-24 | Simultaneous continuous measurement of moisture and oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2194010A JP2820783B2 (en) | 1990-07-24 | 1990-07-24 | Simultaneous continuous measurement of moisture and oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0480652A true JPH0480652A (en) | 1992-03-13 |
JP2820783B2 JP2820783B2 (en) | 1998-11-05 |
Family
ID=16317462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2194010A Expired - Lifetime JP2820783B2 (en) | 1990-07-24 | 1990-07-24 | Simultaneous continuous measurement of moisture and oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2820783B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232749A (en) * | 2007-03-19 | 2008-10-02 | Hitachi Ltd | Gas sensor |
JP2020118487A (en) * | 2019-01-21 | 2020-08-06 | 東京窯業株式会社 | Gas sensor and method for using the gas sensor |
JP2020118486A (en) * | 2019-01-21 | 2020-08-06 | 東京窯業株式会社 | Gas sensor and method for using the gas sensor |
-
1990
- 1990-07-24 JP JP2194010A patent/JP2820783B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232749A (en) * | 2007-03-19 | 2008-10-02 | Hitachi Ltd | Gas sensor |
JP2020118487A (en) * | 2019-01-21 | 2020-08-06 | 東京窯業株式会社 | Gas sensor and method for using the gas sensor |
JP2020118486A (en) * | 2019-01-21 | 2020-08-06 | 東京窯業株式会社 | Gas sensor and method for using the gas sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2820783B2 (en) | 1998-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030127325A1 (en) | Method and apparatus for monitoring gases in a combustion system | |
US3869370A (en) | Method and apparatus for continuously sensing the condition of a gas stream | |
JP2007108018A (en) | Calibration method of gas analyzer | |
CN209745930U (en) | Flue gas hygrometer with drainage function | |
JPH0480652A (en) | Apparatus for measuring moisture and oxygen simultaneously and continuously | |
JP2009042165A (en) | Gas analyzing apparatus | |
JPS5678355A (en) | Cooling water system abnormality detector for hydrogen-gas cooling rotary electric machine | |
JP2007085869A (en) | Calibration method of gas sensor and gas analyzer | |
JP3081338B2 (en) | Oxygen analyzer | |
JP3081337B2 (en) | Oxygen analyzer | |
JPH0342351Y2 (en) | ||
JPH0714877Y2 (en) | Combustion air analyzer | |
JPS5852524Y2 (en) | Furnace wall-mounted oxygen detector | |
JPS63739B2 (en) | ||
JP4365796B2 (en) | Gas analyzer | |
JP3633745B2 (en) | Sensor device | |
JP2588282B2 (en) | Industrial furnace combustion control method | |
CN210862787U (en) | Flue gas working condition measuring instrument | |
JPH0249657B2 (en) | ||
USRE29209E (en) | Method and apparatus for continuously sensing the condition of a gas stream | |
CN220649610U (en) | Wet oxygen integrated detection equipment | |
JPH01250753A (en) | Oxygen analyzing apparatus | |
JPH08152383A (en) | Gas concentration measuring instrument | |
JPH07119733B2 (en) | Combustion air analyzer | |
JPH0241577Y2 (en) |