JPH01250753A - Oxygen analyzing apparatus - Google Patents

Oxygen analyzing apparatus

Info

Publication number
JPH01250753A
JPH01250753A JP63076439A JP7643988A JPH01250753A JP H01250753 A JPH01250753 A JP H01250753A JP 63076439 A JP63076439 A JP 63076439A JP 7643988 A JP7643988 A JP 7643988A JP H01250753 A JPH01250753 A JP H01250753A
Authority
JP
Japan
Prior art keywords
gas
measured
oxygen
main pipe
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63076439A
Other languages
Japanese (ja)
Other versions
JPH0799364B2 (en
Inventor
Katsuhei Tanemura
種村 勝平
Kaneya Misonoo
御園生 金哉
Katsuhiko Kimura
勝彦 木村
Toru Kodachi
小太刀 徹
Hiroshi Yamada
博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP63076439A priority Critical patent/JPH0799364B2/en
Publication of JPH01250753A publication Critical patent/JPH01250753A/en
Publication of JPH0799364B2 publication Critical patent/JPH0799364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To expedite the substitution of gas, to improve the responsiveness of measurement and to enable the protection of a measuring electrode from thermal impact, by providing a gas channel from inflow to outflow of a gas to be measured which passes in the vicinity of the base end part of an oxygen sensor formed of a solid electrolyte. CONSTITUTION:A plurality of oxygen sensors 10 fitted to a main pipe 1 are set in the flow of a gas to be measured. The gas enters an internal space 21 through a filter 15 from gas inflow ports 24 provided in four spots of a filter cover 2 of a sensor 10, and the substitution of the gas is implemented by gas diffusion and thermal convection due to a difference in concentration of the gas, in a place from the internal space to a measuring electrode. The other part of the gas passes through a gas inlet-outlet port 25, a gas passage and a gas exhaust port 22 and is released outside. When a calibration gas is introduced through an introduction pipe 18, it is passed through an introduction port 20 and the inlet-outlet port 25 and filled up in the space 21. Since the space 21 is put in a state of positive pressure on the occasion, the inflow of the gas to be measured is prevented. Part of the calibration gas is brought into contact with the measuring electrode by pressure introduction. The other part of the calibration gas is exhausted from the exhaust port 22 through the gas passage at the time point where the space 21 is put in a state of negative pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸素分圧若しくは酸素濃度の測定装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an apparatus for measuring oxygen partial pressure or oxygen concentration.

(従来の技術) 従来から、ジルコニア等の、高温において酸素イオン伝
導性のある固体電解質を用い、電気化学反応を利用した
酸素濃淡電池の原理により、製鋼における各種の炉、そ
の他の工業炉、ボイラー等から排出される燃焼排ガス中
の酸素濃度(若しくは酸素分圧)を検知し、それら炉、
ボイラーの燃焼状態を制御することが知られている。
(Prior Art) Conventionally, solid electrolytes such as zirconia that have oxygen ion conductivity at high temperatures have been used, and the principle of oxygen concentration batteries that utilize electrochemical reactions has been used in various steelmaking furnaces, other industrial furnaces, and boilers. Detects the oxygen concentration (or oxygen partial pressure) in the combustion exhaust gas emitted from the furnace, etc.
It is known to control the combustion state of a boiler.

このような電気化学反応を利用した従来からの酸素セン
サの測定対象となる、工業炉の燃焼排ガスの如き被測定
ガスは、煙道等の通路の中では層状に流れており、この
ため測定点の深さによって酸素濃度の値が大きく異なる
ことが認められている。
The gas to be measured, such as the combustion exhaust gas from industrial furnaces, which is measured by conventional oxygen sensors that utilize such electrochemical reactions, flows in a layered manner in passages such as flues. It is recognized that the value of oxygen concentration varies greatly depending on the depth.

特開昭60−85360号公報には、酸素センサを測定
ガスの流れに対してその深さ方向に所定の距離を隔てて
複数個配置し、測定法゛さ方向がそれぞれ異なる個所に
おける酸素分圧若しくは酸素濃度が効果的に求められる
測定装置が開示されている。
Japanese Unexamined Patent Publication No. 60-85360 discloses a measurement method in which a plurality of oxygen sensors are arranged at a predetermined distance in the depth direction of the flow of gas to be measured, and the oxygen partial pressure is determined at different locations in the longitudinal direction. Alternatively, a measuring device for effectively determining oxygen concentration has been disclosed.

(発明が解決しようとする問題点) しかしながら、この既知の測定装置において、被測定ガ
スの流入から流出に至るガス流路がないため、フィルタ
内部の空間でのガス置換が遅く、そのためガス測定の応
答性(時間)も悪く(遅く)なる。しかも校正時におい
て校正ガスが導入された場合には測定電極を急冷するた
め、測定時と校正ガス導入時とのセンサ温度の変化が大
きく、精度の高い校正が得られないという問題点を生じ
させていた。
(Problem to be Solved by the Invention) However, in this known measuring device, since there is no gas flow path from the inflow to the outflow of the gas to be measured, gas replacement in the space inside the filter is slow, and therefore gas measurement is difficult. Responsiveness (time) also becomes worse (slower). Moreover, when calibration gas is introduced during calibration, the measurement electrode is rapidly cooled, which causes a large change in sensor temperature between measurement and calibration gas introduction, creating the problem that highly accurate calibration cannot be obtained. was.

本発明は、このような問題点を解消する目的でなされた
ものである。
The present invention has been made to solve these problems.

(問題点を解決するための手段) 本発明の酸素分析装置では、有底円筒状の固体電解質の
基端部を被測定ガス雰囲気中に位置する姿勢で、その外
周部を気密に主管壁に装着し、さらに前記固体電解質の
基端部近傍を通過する被測定ガスの流路を設けたことを
要旨とするものである。
(Means for Solving the Problems) In the oxygen analyzer of the present invention, the base end of the bottomed cylindrical solid electrolyte is positioned in the gas atmosphere to be measured, and the outer periphery is airtightly attached to the main pipe wall. The gist is that a flow path for a gas to be measured passing through the vicinity of the proximal end of the solid electrolyte is provided.

(作 用) 本発明の酸素分析装置では、被測定ガスの流入から流出
に至るガス流路を設けたため、被測定ガスの置換が速く
、そのためガス測定の応答性(時間)が良く(速く)な
る。しかも固体電解質の基端部を被測定ガス雰囲気に接
触するように配置したため、固体電解質の内側深部に設
けられた測定電極へ、被測定ガスが直接吹きつけること
がなく、そのため測定電極が熱衝撃から良好に保護され
る。
(Function) In the oxygen analyzer of the present invention, since a gas flow path is provided from the inflow to the outflow of the gas to be measured, the replacement of the gas to be measured is fast, and therefore the responsiveness (time) of gas measurement is good (fast). Become. Moreover, because the base end of the solid electrolyte is placed in contact with the atmosphere of the gas to be measured, the gas to be measured does not blow directly onto the measurement electrode, which is located deep inside the solid electrolyte. well protected from

同様に、校正時における校正ガスが導入された場合でも
測定電極を象、冷することがない。したがって、°測定
時と校正ガス導入時との間の、センサ温度の変化が少な
くなり、より精度の高い校正が可能になる。
Similarly, even if a calibration gas is introduced during calibration, the measurement electrode will not be cooled down. Therefore, the change in sensor temperature between the time of ° measurement and the time of introducing the calibration gas is reduced, making it possible to perform calibration with higher accuracy.

(実施例) 本発明の実施例を図面に基づき説明する。(Example) Embodiments of the present invention will be described based on the drawings.

第1図は酸素センサを深さ方向の所定の距離を隔てて複
数個配置することができる主管の構成を示している。こ
の図において、1は被測定ガスである燃焼排ガスの流れ
の中へ挿入、設置される主管であり、この主管1には、
所定間隔で複数個の酸素センサ10がフィルタカバー2
の内側に取り付けられている。また、この酸素センサ1
0を主管lに取付けおよび交換を行い得るように、フィ
ルタカバー2に対向する主管部分に、開口を形成し、そ
れにセンサ裏蓋3が被せられている。酸素センサ10の
脱着の際にはセンサ裏蓋3が取り外され、その開口を通
じて酸素センサの脱着が行われる。
FIG. 1 shows the configuration of a main pipe in which a plurality of oxygen sensors can be arranged at predetermined distances apart in the depth direction. In this figure, 1 is a main pipe that is inserted and installed into the flow of combustion exhaust gas, which is the gas to be measured.
A plurality of oxygen sensors 10 are mounted on the filter cover 2 at predetermined intervals.
is installed inside. In addition, this oxygen sensor 1
An opening is formed in the main pipe portion facing the filter cover 2, and the sensor back cover 3 is placed over the opening so that the sensor 0 can be attached to the main pipe 1 and replaced. When attaching and detaching the oxygen sensor 10, the sensor back cover 3 is removed, and the oxygen sensor is attached and detached through its opening.

酸素センサ10は主管1に対して、その管軸方向に所定
路離隔てて配置され、この所定間隔としては一般に50
 cm以上が採用される。主管1の基部には、取付フラ
ンジ5及び端子箱8が設けられ、取付フランジ5によっ
て炉壁7に設けられた炉壁フランジ6に取り付けられて
固定される。端子箱8には配線、配管孔9が設けられて
いる。
The oxygen sensor 10 is arranged at a predetermined distance from the main pipe 1 in the pipe axis direction, and the predetermined distance is generally 50 m.
cm or more is accepted. A mounting flange 5 and a terminal box 8 are provided at the base of the main pipe 1, and the mounting flange 5 is attached and fixed to a furnace wall flange 6 provided on a furnace wall 7. The terminal box 8 is provided with wiring and piping holes 9.

なお、主管1の先端部には空気放出口4を設けて、図示
しない空気弁を介して主管1内に連続的に導入された標
準ガスとしての例えば空気(大気)がこの空気放出口4
から連続的に放出されるようにしている。
An air outlet 4 is provided at the tip of the main pipe 1, and a standard gas such as air (atmosphere) continuously introduced into the main pipe 1 through an air valve (not shown) is supplied to the air outlet 4.
It is made to be continuously released from.

第2図には主管1に対する酸素センサの取付構造が示さ
れている。この図において、固体電解質より成る有底円
筒状の酸素センサ10は、主管1の所定の取付は位置に
、有底円筒内の空間と燃焼排ガス流の空間とが連通ずる
ように(即ち有底円筒の開口部が燃焼排ガス流に向けて
)配置されている。この酸素センサ10の主管1への取
付けは、まず有底円筒状の酸素センサ10の開口部周辺
にセンサ留金RIIを例えば境域め法により気密に固定
し、このセンサ留金具11の主管lに嵌合されたセンサ
保持具12に金属性のOリング17を介して締め付は固
定することにより為されている。このように取付けられ
た酸素センサ10にはさらに、ヒータ13を内蔵する二
重円筒状のヒータ保持具14 (これらがヒータユニッ
トを構成する)がセンサ留金具11に内側から嵌合され
、セメント接着によって一体的に固定されている。した
がって、酸素センサ10およびセンサ留金具11並びに
ヒータ13およびヒータ保持具14 (即ちヒータユニ
ット)が一体構造となってセンサユニットを構成する。
FIG. 2 shows the mounting structure of the oxygen sensor on the main pipe 1. In this figure, a bottomed cylindrical oxygen sensor 10 made of a solid electrolyte is installed in a predetermined position on a main pipe 1 so that the space inside the bottomed cylinder communicates with the combustion exhaust gas flow space (i.e., the bottomed The cylindrical opening is oriented toward the flue gas flow. To attach the oxygen sensor 10 to the main pipe 1, first, the sensor clasp RII is airtightly fixed around the opening of the bottomed cylindrical oxygen sensor 10 by, for example, the boundary method. Tightening is achieved by fixing the fitted sensor holder 12 via a metal O-ring 17. The oxygen sensor 10 mounted in this manner is further fitted with a double cylindrical heater holder 14 containing a heater 13 (these constitute a heater unit), which is fitted into the sensor fastener 11 from the inside and cemented. is integrally fixed by. Therefore, the oxygen sensor 10, the sensor clasp 11, the heater 13, and the heater holder 14 (ie, the heater unit) are integrated into a sensor unit.

かかる酸素センサ10の被測定ガスに曝される側には、
ダストの流入を阻止するため、フィルタ15およびフィ
ルタ保持具16より成るフィルタユニットが嵌合され、
さらにその外側にフィルタカバー2が設けられて、ダス
トのフィルタ15への直撃を回避し、フィルタ15の目
詰まりを防止できるようにしている。ところで、このフ
ィルタカバー2には、被測定ガス流入孔24が例えば4
個、90度の角度で等分されて設けられて、被測定ガス
をフィルタ15を経て酸素センサへ導入し得るようにし
ている。さらに酸素センサ10の出力(即ち起電力)を
校正するため、炉壁外部から導入された校正ガス導入管
18を主管1の外側に沿って配設し、この校正ガス導入
管18の開口部19をセンサ保持具12に設けた校正ガ
ス導入口20と結合し、これとフィルタ保持具16に設
けられたガス出入口25とが相俟って内部空間21に連
通ずるガス通路を形成し、内部空間に校正ガスが導入さ
れるようにしている。センサ保持具12には、校正ガス
導入口20が設けられた側とは反対側にガス排出口22
が設けられている。
On the side of the oxygen sensor 10 exposed to the gas to be measured,
In order to prevent the inflow of dust, a filter unit consisting of a filter 15 and a filter holder 16 is fitted together.
Furthermore, a filter cover 2 is provided on the outside to prevent dust from directly hitting the filter 15 and to prevent the filter 15 from clogging. By the way, this filter cover 2 has, for example, four gas inflow holes 24 to be measured.
They are equally divided at an angle of 90 degrees so that the gas to be measured can be introduced into the oxygen sensor through the filter 15. Furthermore, in order to calibrate the output (i.e., electromotive force) of the oxygen sensor 10, a calibration gas introduction pipe 18 introduced from outside the furnace wall is arranged along the outside of the main pipe 1, and an opening 19 of this calibration gas introduction pipe 18 is provided. is connected to the calibration gas inlet 20 provided in the sensor holder 12, and this and the gas inlet/outlet 25 provided in the filter holder 16 together form a gas passage communicating with the internal space 21. The calibration gas is introduced into the The sensor holder 12 has a gas outlet 22 on the side opposite to the side where the calibration gas inlet 20 is provided.
is provided.

さらにフィルタ保持具16のセンサ留金具11と接する
隅部に加工を施してフィルタ保持具16の円周上にガス
通路23を形成している。
Further, a corner portion of the filter holder 16 in contact with the sensor fastener 11 is processed to form a gas passage 23 on the circumference of the filter holder 16.

このガス通路23は、内部空間21と、外部の被測定ガ
ス空間とをガス出入口25およびガス排出口22を介し
て連通させており、また、校正ガス導入管18の内部空
間にも校正ガス導入口20を介して連通している。した
がって、内部空間21に存在する被測定ガスおよび校正
ガスを迅速に外部へ排出することができる。
This gas passage 23 communicates the internal space 21 with an external measured gas space via a gas inlet/outlet 25 and a gas outlet 22, and also introduces a calibration gas into the internal space of the calibration gas inlet pipe 18. It communicates via the port 20. Therefore, the gas to be measured and the calibration gas existing in the internal space 21 can be quickly discharged to the outside.

なお、酸素センサ10は、すでに既知であるように、高
温において酸素イオン伝導性のある固体電解質の一方の
側に測定電極、他方の側に基準電極を設けた構成であり
、この固体電解質として、例えば酸化ジルコニウムに酸
化カルシウムを固溶させたもの、酸化ジルコニウムに酸
化イツトリウムを固溶させたもの、酸化トリウムに酸化
イツトリウムを固溶させたもの、酸化セリウムに酸化ラ
ンタンを固溶させたもの等がある。また、かかる固体電
解質の形状として、第2図に示されるような有底円筒状
の他、平板状等を採用することができ、適宜用途に応じ
て選択することができる。
As is already known, the oxygen sensor 10 has a structure in which a measurement electrode is provided on one side of a solid electrolyte that conducts oxygen ions at high temperatures, and a reference electrode is provided on the other side.As this solid electrolyte, For example, zirconium oxide with calcium oxide as a solid solution, zirconium oxide with yttrium oxide as a solid solution, thorium oxide with yttrium oxide as a solid solution, cerium oxide with lanthanum oxide as a solid solution, etc. be. In addition to the shape of a cylinder with a bottom as shown in FIG. 2, the shape of the solid electrolyte can be a flat plate or the like, and can be appropriately selected depending on the application.

また、かかる固体電解質に設けられる測定電極としては
、一般に多孔質の金属電極であり、例えば白金、白金・
ロジウム合金、白金・パラジウム合金、銀、白金・銀合
金等の金属材質より形成される。
In addition, the measurement electrode provided in such a solid electrolyte is generally a porous metal electrode, such as platinum, platinum, etc.
It is formed from metal materials such as rhodium alloy, platinum/palladium alloy, silver, and platinum/silver alloy.

斯様な所定形状の酸素センサに対して、その−方の側の
電極面に燃焼排ガス等の被測定ガスを接触するようにし
、その他方の側の電極面には、基準酸素分圧若しくは濃
度の標準比較ガス、または通常大気(空気)を接触させ
るようにする。例えば本例のように酸素センサが有底円
筒状である場合に、特に、その内側表面に被測定ガスを
接触させ、その外側表面に基準となる大気を接触させる
ように構成している。
For an oxygen sensor having such a predetermined shape, the gas to be measured such as combustion exhaust gas is brought into contact with the electrode surface on one side, and the reference oxygen partial pressure or concentration is placed on the electrode surface on the other side. Standard comparison gas, or normal atmosphere (air). For example, when the oxygen sensor has a cylindrical shape with a bottom as in this example, it is particularly configured so that the gas to be measured is brought into contact with its inner surface, and the reference atmosphere is brought into contact with its outer surface.

このように構成された酸素分析装置において、主管1の
長手方向に所定間隔で取り付けられた例えば4個の酸素
センサ10は、煙道内等の被測定ガスの流れの中に設置
され、深さのそれぞれ異なる個所における被測定ガスと
接触する。これを第3図に基づいてさらに詳しく説明す
る。被測定ガスは、第3図(A)および(B)のフィル
タカバーヲ取付けた状態の平面図およびその断面図に示
されるように、まずフィルタカバー2の4個所に設けら
れた被測定ガス流入孔24から入り、フィルタ15を通
過して、酸素センサ10の上部の内部空間21に流入す
る。
In the oxygen analyzer configured in this manner, for example, four oxygen sensors 10 are installed at predetermined intervals in the longitudinal direction of the main pipe 1, and are installed in the flow of gas to be measured such as in a flue. Each comes into contact with the gas to be measured at different locations. This will be explained in more detail based on FIG. As shown in the plan view and cross-sectional view of the filter cover with the filter cover attached in FIGS. It enters through the hole 24 , passes through the filter 15 , and flows into the internal space 21 above the oxygen sensor 10 .

この内部空間21から有底円筒状の酸素センサ10の内
側深部に設けられた測定電極までは、測定ガスの濃度差
によるガス拡散および熱対流によってガス置換が行われ
る。その他の被測定ガスは、第4図(八)および(B)
に(フィルタカバーを省略して)示すように、ガス出入
口25、ガス通路23およびガス排出口22を通り外部
へ放出される。したがって、本発明の装置において、被
測定ガスの流入から流出へ至るガス流通路を設けている
ため、被測定ガスが内部空間に速やかに導入され、しか
も酸素センサの測定電極へはほぼ平衡状態を保ちながら
ガス置換が行われることによって、酸素センサ10の応
答性を高く保ちつつ、熱衝撃に対する保護をも同時に行
うことができる。
From this internal space 21 to the measurement electrode provided deep inside the bottomed cylindrical oxygen sensor 10, gas replacement is performed by gas diffusion and thermal convection due to the difference in concentration of the measurement gas. Other gases to be measured are shown in Figure 4 (8) and (B).
As shown in (omitting the filter cover), the gas is discharged to the outside through the gas inlet/outlet 25, the gas passage 23, and the gas outlet 22. Therefore, in the device of the present invention, since the gas flow path is provided from the inflow to the outflow of the gas to be measured, the gas to be measured is quickly introduced into the internal space, and moreover, the gas to be measured is introduced into the measurement electrode of the oxygen sensor almost in an equilibrium state. By performing gas replacement while maintaining the temperature, the responsiveness of the oxygen sensor 10 can be maintained high and protection against thermal shock can be provided at the same time.

次に、酸素センサの出力を校正するため、校正ガスを導
入する場合について第5図(八)および(B)に基づい
て述べる。ただし図面を明瞭にするためフィルタカバー
を省略して図示している。まず、校正ガスは、炉壁外部
から校正ガス導入管18を通り、校正ガス導入口20お
よびガス出入口25を経て、内部空間21に充満される
。このとき、内部空間21は正圧状態になるため、被測
定ガスの流入は阻止される。内部空間21に充満した校
正ガスの一部は加圧導入により序々に酸素センサ10の
深部へ達し、測定電極と接触する。その他の校正ガスは
、第5図(八)に示すように、内部空間が被測定ガス雰
囲気の圧力に対し負圧状態になった時点で、ガス通路2
3を経てガス排出口22から排出される。したがって、
校正ガスは導入時に直接酸素センサ10の測定電極を直
撃することがなく、即ら急冷することがないため、被測
定ガスの測定時と、校正ガス導入時との酸素センサの測
定電極における温度変化が少なく、精度の高い校正を可
能にする。
Next, the case where a calibration gas is introduced in order to calibrate the output of the oxygen sensor will be described based on FIGS. 5(8) and 5(B). However, in order to clarify the drawing, the filter cover is omitted from the illustration. First, the calibration gas passes through the calibration gas inlet pipe 18 from outside the furnace wall, passes through the calibration gas inlet 20 and the gas inlet/outlet 25, and fills the internal space 21. At this time, since the internal space 21 is in a positive pressure state, the inflow of the gas to be measured is blocked. A part of the calibration gas filling the internal space 21 gradually reaches the deep part of the oxygen sensor 10 by being introduced under pressure and comes into contact with the measurement electrode. As shown in Figure 5 (8), other calibration gases are added to the gas passage 2 when the internal space becomes a negative pressure state with respect to the pressure of the gas atmosphere to be measured.
3 and is discharged from the gas outlet 22. therefore,
Since the calibration gas does not directly hit the measurement electrode of the oxygen sensor 10 when introduced, and therefore is not rapidly cooled, the temperature change at the measurement electrode of the oxygen sensor between when measuring the gas to be measured and when the calibration gas is introduced. This allows for highly accurate calibration.

(効 果) 以上の説明から明らかなように、本発明では、被測定ガ
スのダストを有効に除去しつつ、被測定ガスを固体電解
質の基端部を通り再び被測定ガスの流れの中に排出する
ガス流路を設けたことにより、被測定ガスのガス置換が
迅速に行われ、しかも固体電解質の基端部から内側深部
まではガス拡散および熱対流等により序々に行われるた
め、急加熱および急冷等の熱衝撃から酸素センサの測定
電極を有効に保護し、且つ被測定ガスに対する応答性を
良くし、しかも酸素センサの温度分布の変化が少なくな
ったことにより酸素センサの精度を高くすることができ
る。
(Effects) As is clear from the above description, in the present invention, while effectively removing dust from the gas to be measured, the gas to be measured passes through the base end of the solid electrolyte and enters the flow of the gas to be measured again. By providing a gas flow path for discharging, gas replacement of the gas to be measured is performed quickly, and furthermore, it is gradually performed from the base end of the solid electrolyte to the deep inside by gas diffusion and thermal convection, so rapid heating is possible. It effectively protects the measurement electrode of the oxygen sensor from thermal shocks such as rapid cooling, improves responsiveness to the gas being measured, and increases the accuracy of the oxygen sensor by reducing changes in the temperature distribution of the oxygen sensor. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一例を示す外観図、第2図
は斯る装置の酸素センサ設置部分を示す縦断面図、 第3乃至5図は酸素センサに被測定ガスが流入乃至流出
する様子および校正ガスの流入乃至流出する様子を示す
夫々樅断面図である。 ■・・・主管       2・・・フィルタカバー3
・・・センサ裏蓋    4・・・空気放出口5・・・
取付フランジ   6・・・炉壁フランジ7・・・炉壁
       8・・・端子箱9・・・配線・配管孔 
  10・・・酸素センサ11・・・センサ留金具  
 12・・・センサ保持具13・・・ヒータ     
  14・・・ヒータ保持具15・・・フィルタ   
  16・・・フィルタ保持具17・・・0リング  
   18・・・校正ガス導入管19・・・開口   
    20・・・校正ガス導入口21・・・内部空間
     22・・・ガス排出口23・・・ガス通路 
    24・・・測定ガス流入孔25・・・ガス出入
口 特許出願人   東京電力株式会社 同出願人   日本碍子株式会社 第1図 第2図 第3図 (A) (B)
Fig. 1 is an external view showing an example of a device according to the present invention, Fig. 2 is a vertical cross-sectional view showing the oxygen sensor installation part of such a device, and Figs. 3 to 5 show how gas to be measured flows into and out of the oxygen sensor. FIG. 3 is a cross-sectional view of a fir tree showing how the calibration gas flows and how the calibration gas flows in and out. ■... Main pipe 2... Filter cover 3
...Sensor back cover 4...Air release port 5...
Mounting flange 6... Furnace wall flange 7... Furnace wall 8... Terminal box 9... Wiring/piping hole
10...Oxygen sensor 11...Sensor clasp
12...Sensor holder 13...Heater
14... Heater holder 15... Filter
16... Filter holder 17... 0 ring
18...Calibration gas introduction pipe 19...Opening
20... Calibration gas inlet 21... Internal space 22... Gas outlet 23... Gas passage
24...Measurement gas inlet hole 25...Gas inlet/outlet Patent applicant: Tokyo Electric Power Co., Ltd. Same applicant: Nippon Insulator Co., Ltd. Figure 1 Figure 2 Figure 3 (A) (B)

Claims (1)

【特許請求の範囲】 1、被測定ガスの流れに対してその深さ方向に挿入、設
置せしめられる一方、連続的に導入される標準比較ガス
を、放出口より前記被測定ガスの流れ内に連続的に放出
せしめて、管内の標準比較ガスの圧力が被測定ガスの圧
力にほぼ等しくなるように構成した少なくとも1本の主
管と、 先端部が閉鎖され、基端部が開口せしめられた有底円筒
状の酸素イオン伝導性のある固体電解質と、その一方の
側に設けられた測定電極と、その他方の側に設けられた
基準電極とを有し、前記測定電極が前記主管外を流れる
被測定ガスに接触せしめられる一方、前記基準電極が前
記主管内を流通せられる標準比較ガスに接触せしめられ
るように、前記主管の管壁に、管軸方向に所定の距離を
隔てて取り付けられた複数個の酸素センサとを具え、そ
れら複数個の酸素センサによって、測定深さ方向のそれ
ぞれ異なる個所における酸素分圧若しくは濃度を測定す
る酸素分析装置において、 前記酸素センサの基端部が被測定ガス雰囲気中に位置す
る姿勢で、その外周部を気密に主管壁に装着し、さらに
前記酸素センサの基端部近傍を通過する被測定ガスの流
路を設けるようにしたことを特徴とする酸素分析装置。 2、前記酸素センサが加熱手段を具え、該加熱手段によ
って前記固体電解質が所定の温度に加熱せられるように
一体構造にした特許請求の範囲第1項記載の酸素分析装
置。
[Claims] 1. A standard comparison gas that is inserted and installed in the depth direction of the flow of the gas to be measured and is continuously introduced into the flow of the gas to be measured through the discharge port. At least one main pipe configured to discharge continuously so that the pressure of the standard comparison gas in the pipe is approximately equal to the pressure of the gas to be measured, and a main pipe whose distal end is closed and whose proximal end is open. It has a bottom cylindrical solid electrolyte with oxygen ion conductivity, a measurement electrode provided on one side thereof, and a reference electrode provided on the other side, and the measurement electrode flows outside the main pipe. The reference electrode is attached to the wall of the main pipe at a predetermined distance in the pipe axis direction so that it is brought into contact with the gas to be measured, and the reference electrode is brought into contact with a standard comparison gas flowing through the main pipe. In an oxygen analyzer that includes a plurality of oxygen sensors and measures oxygen partial pressure or concentration at different locations in the measurement depth direction using the plurality of oxygen sensors, the proximal end of the oxygen sensor is connected to the gas to be measured. Oxygen analysis characterized in that the outer circumferential portion of the oxygen sensor is airtightly attached to the main pipe wall in a posture located in an atmosphere, and further a flow path for the gas to be measured passing near the base end of the oxygen sensor is provided. Device. 2. The oxygen analyzer according to claim 1, wherein the oxygen sensor is provided with a heating means and has an integral structure so that the solid electrolyte is heated to a predetermined temperature by the heating means.
JP63076439A 1988-03-31 1988-03-31 Oxygen analyzer Expired - Lifetime JPH0799364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076439A JPH0799364B2 (en) 1988-03-31 1988-03-31 Oxygen analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076439A JPH0799364B2 (en) 1988-03-31 1988-03-31 Oxygen analyzer

Publications (2)

Publication Number Publication Date
JPH01250753A true JPH01250753A (en) 1989-10-05
JPH0799364B2 JPH0799364B2 (en) 1995-10-25

Family

ID=13605181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076439A Expired - Lifetime JPH0799364B2 (en) 1988-03-31 1988-03-31 Oxygen analyzer

Country Status (1)

Country Link
JP (1) JPH0799364B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599525A1 (en) * 1992-11-25 1994-06-01 Edinburgh Sensors Limited Gas sensor
JP2005181331A (en) * 2003-12-18 2005-07-07 General Electric Co <Ge> System for monitoring combustible gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204448A (en) * 1981-06-11 1982-12-15 Yokogawa Hokushin Electric Corp Solid electrolyte oxygen meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204448A (en) * 1981-06-11 1982-12-15 Yokogawa Hokushin Electric Corp Solid electrolyte oxygen meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599525A1 (en) * 1992-11-25 1994-06-01 Edinburgh Sensors Limited Gas sensor
JP2005181331A (en) * 2003-12-18 2005-07-07 General Electric Co <Ge> System for monitoring combustible gas

Also Published As

Publication number Publication date
JPH0799364B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US7413641B2 (en) Gas sensor with improved structure of protective cover
US6948353B2 (en) Quick response structure of gas sensor
US4098653A (en) Oxygen sensor having protective hood and method of using same
US4784728A (en) Oxygen measuring apparatus and method with automatic temperature compensation
US4591422A (en) Electrochemical oxygen sensor
JP6158792B2 (en) Gas sensor
JPH01250753A (en) Oxygen analyzing apparatus
JP3081338B2 (en) Oxygen analyzer
EP1063519A1 (en) Gas sensor
JPH02298859A (en) Oxygen sensor
JP3081337B2 (en) Oxygen analyzer
JP3875164B2 (en) Gas sensor
JP3649544B2 (en) Gas analyzer
US6752002B2 (en) Sensor
JPH0249657B2 (en)
JP3633745B2 (en) Sensor device
JPH0714877Y2 (en) Combustion air analyzer
JPH0233167Y2 (en)
JPH0480652A (en) Apparatus for measuring moisture and oxygen simultaneously and continuously
JPS62147355A (en) Method and apparatus for calibrating gas of oxygen detector
JPH07119733B2 (en) Combustion air analyzer
JPS6385352A (en) Apparatus for measuring concentration of industrial gas
JPS5852524Y2 (en) Furnace wall-mounted oxygen detector
JPS60233542A (en) Instrument for measuring oxygen partial pressure
JP2000501512A (en) Inert cell protector for solid electrolyte gas analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13