JPH0479479B2 - - Google Patents

Info

Publication number
JPH0479479B2
JPH0479479B2 JP58194820A JP19482083A JPH0479479B2 JP H0479479 B2 JPH0479479 B2 JP H0479479B2 JP 58194820 A JP58194820 A JP 58194820A JP 19482083 A JP19482083 A JP 19482083A JP H0479479 B2 JPH0479479 B2 JP H0479479B2
Authority
JP
Japan
Prior art keywords
resistance
wire
ptc
heating wire
metal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58194820A
Other languages
Japanese (ja)
Other versions
JPS6086790A (en
Inventor
Yoshio Kishimoto
Masayuki Terakado
Shuji Yamamoto
Hideho Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19482083A priority Critical patent/JPS6086790A/en
Publication of JPS6086790A publication Critical patent/JPS6086790A/en
Publication of JPH0479479B2 publication Critical patent/JPH0479479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気採暖具などに用いる大きな正の抵
抗温度係数(以下PTCと略す。)を有する可撓性
発熱線に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flexible heating wire having a large positive temperature coefficient of resistance (hereinafter abbreviated as PTC) for use in electric heating devices and the like.

従来例の構成とその問題点 従来、PTC発熱線は、定電圧印加により、一
定温度まで温度上昇し、それ以上の温度へはその
大きなPTC特性により昇温しないという自己温
度制御性を有するため、電気採暖具のヒータとし
て、適したものであつた。そしてその構造は平行
ケーブル状の1対の電極間にPTC層が形成され
たものが普及している。
Conventional configuration and its problems Conventionally, PTC heating wires have self-temperature control in which the temperature rises to a certain temperature by applying a constant voltage and does not rise above that temperature due to its large PTC characteristics. It was suitable as a heater for electric heating equipment. The most common structure is one in which a PTC layer is formed between a pair of parallel cable-shaped electrodes.

しかしながら、このPTC発熱線は、PTC特性
のため低温時に抵抗が小さいため、大形採暖具へ
の適用においては極度に突入電力が大きくなりす
ぎ、電気カーペツトの施工床暖システムなどにお
いては電源電圧などへの影響が大きく、PTC発
熱線の大きな欠点ともなつていた。
However, this PTC heating wire has low resistance at low temperatures due to its PTC characteristics, so the inrush power is extremely large when applied to large heating devices, and the power supply voltage is This had a large effect on the PTC heating wire, and was a major drawback of the PTC heating wire.

発明の目的 本発明は、従来の低温時における突入電流を制
限し、電源電圧への影響を少なくしたPTC発熱
体を主構成要件とする可撓性発熱線を得ることを
目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to obtain a flexible heating wire whose main component is a PTC heating element, which limits the conventional inrush current at low temperatures and reduces the influence on the power supply voltage.

発明の構成 本発明は、少く共1対の可撓芯糸に金属導体線
を装着した電極間に大きな正の抵抗温度係数をも
つ発熱体を配設し、絶縁性外被を被覆してなる可
撓性発熱線において、前記金属導体線を銅合金線
とし表面を金属酸化物の高抵抗体とし、前記発熱
体に直接接触するよう構成したり、また前記金属
導体電極の表面に有機金属キレート結合を被覆層
厚を制御し、トンネル伝導、ホツピング伝導など
の伝導を生ずるよう高抵抗体を設けたものであ
る。
Structure of the Invention The present invention is constructed by disposing a heating element having a large positive temperature coefficient of resistance between at least one pair of electrodes in which a metal conductor wire is attached to a flexible core thread, and covering the electrode with an insulating jacket. In the flexible heating wire, the metal conductor wire is made of a copper alloy wire and the surface is made of a high-resistance metal oxide material so as to be in direct contact with the heating element, or the surface of the metal conductor electrode is made of an organic metal chelate. A high-resistance element is provided to control the thickness of the coating layer and to generate conduction such as tunnel conduction or hopping conduction.

実施例の説明 本発明はPTC発熱線の電極である金属導体線
の表面を高抵抗化し、前記高抵抗化した層を直接
PCT発熱線に接触し、PTC発熱体が低温のとき
突入電流を制限するものである。PTC発熱線は
1対の電極間にPTC層がその長さ方向に並列に
構成されるため、電極表面上の高抵抗層はPTC
層と直列接続されることになる。それ故、PTC
層の低温時の突入電流をこの高抵抗層の抵抗によ
り制限することができる。本発明に用いる金属導
体線としては導電率の高い金属が適し、銅合金線
が実用的である。銅合金線の表面を高抵抗化する
方法としては、表面を金属酸化物、高抵抗金属な
どで被覆し半導体化、高抵抗化することができ
る。また、金属導体電極の表面を高抵抗化する方
法としては、有機金属キレート結合を利用し、金
属表面に抵抗層を形成できる。この場合、有機部
分が絶縁性構造分子であれば、被覆層厚を制御
し、トンネル伝導、ホツピング伝導などの伝導を
生じる状態にして高抵抗化することが必要であ
る。一方、有機部分が有機半導体構造を有する導
電チヤネルを有する分子層であれば、この膜厚は
この限りでない。金属キレートは、金属チタネー
ト、シランカツプリング剤、カルボン酸、水酸基
などにより形成できる。
Description of Examples The present invention makes the surface of a metal conductor wire, which is an electrode of a PTC heating wire, have a high resistance, and directly connects the high resistance layer to a high resistance layer.
It contacts the PCT heating wire and limits inrush current when the PTC heating element is at low temperature. PTC heating wires have PTC layers arranged in parallel in the length direction between a pair of electrodes, so the high resistance layer on the electrode surface is
It will be connected in series with the layers. Therefore, PTC
The inrush current when the layer is at a low temperature can be limited by the resistance of this high resistance layer. As the metal conductor wire used in the present invention, a metal with high electrical conductivity is suitable, and a copper alloy wire is practical. As a method for increasing the resistance of the surface of a copper alloy wire, the surface can be coated with a metal oxide, a high-resistance metal, etc. to make it a semiconductor and increase the resistance. Furthermore, as a method for increasing the resistance of the surface of a metal conductor electrode, a resistance layer can be formed on the metal surface by utilizing an organic metal chelate bond. In this case, if the organic portion is an insulating structural molecule, it is necessary to control the thickness of the coating layer and create a state in which conduction such as tunneling conduction or hopping conduction occurs to increase the resistance. On the other hand, if the organic portion is a molecular layer having a conductive channel having an organic semiconductor structure, the film thickness is not limited to this. Metal chelates can be formed from metal titanates, silane coupling agents, carboxylic acids, hydroxyl groups, and the like.

本発明におけるこのような高抵抗層を形成した
PTC発熱線を実施例に基づいて説明する。
In the present invention, such a high resistance layer is formed.
The PTC heating wire will be explained based on an example.

第1図に本発明の可撓性発熱線の一部破断側面
図を示す。
FIG. 1 shows a partially cutaway side view of the flexible heating wire of the present invention.

図において、1は芯糸、2は銅箔、3はPTC
発熱層、4は外被、を示す。
In the figure, 1 is core thread, 2 is copper foil, 3 is PTC
4 indicates a heat generating layer and an outer cover.

本発明の可撓性発熱線の構成を説明する。 The structure of the flexible heating wire of the present invention will be explained.

2000デニールのポリエステル芯糸1にすず入り
銅箔2(箔幅0.55mm、箔厚0.08mm)をピツチ0.9mm
でスパイラル状に形成した。この線を2個の電極
線とするため2つに分け、次の(A)、(B)の2通りの
高抵抗化処理をそれぞれに施すことができる。
2000 denier polyester core thread 1 with tinned copper foil 2 (foil width 0.55mm, foil thickness 0.08mm) at a pitch of 0.9mm
It was formed into a spiral shape. This wire can be divided into two parts to form two electrode wires, and each can be subjected to the following two high-resistance treatments (A) and (B).

(A) 前記銅箔付き芯糸を120℃炉中にて酸化処理
を施しCu2O層を形成した。膜厚は約5μ程度で
あつた。
(A) The core yarn with copper foil was oxidized in a 120° C. furnace to form a Cu 2 O layer. The film thickness was about 5μ.

(B) 前記銅箔付き芯糸をシランカツプリング剤中
への浸漬をくり返し、約50mμの膜厚を形成し
た。
(B) The core yarn with copper foil was repeatedly dipped into the silane coupling agent to form a film thickness of about 50 mμ.

前記(A)、(B)の処理を施した高抵抗化電極付芯糸
の何れかを用いて、第1図のような構造のPTC
発熱線を構成した。スパイラル電極間隔は0.9mm
であつた。外被4に軟質ポリ塩化ビニル組成物を
被覆した。PTC発熱線3はカーボンブラツク21
%を含有するポリエチレン−酢酸ビニル共重合体
を用いた。このようにして得られたPTC発熱線
を120℃で10時間熱アニールしたのち、これらの
PTC発熱線の抵抗−温度特性を測定したところ、
(A)処理、(B)処理を施した銅箔電極と銅箔電極をそ
のまま用いた従来例の曲線Cに比べ、第2図のよ
うに低温側で抵抗値の比較的高い、すなわち突入
電流を制限した本発明のすぐれた発熱線がえられ
た。なお、本発明における高抵抗層5の等価回路
は第3図のように表わされる。ここで熱による可
変抵抗6がPTC層の抵抗である。なお、ここで
は電極導体線内部の抵抗は表面の高抵抗層に比
べ、格段に低いため、無視して等価回路を描いて
いるが、20m〜50mなどの長尺で用いる場合は、
無視できなくなることは当然である。
Using either of the high-resistance electrode-attached core threads treated in (A) or (B) above, a PTC with a structure as shown in Figure 1 is produced.
A heating wire was constructed. Spiral electrode spacing is 0.9mm
It was hot. The outer jacket 4 was coated with a soft polyvinyl chloride composition. PTC heating wire 3 is carbon black 21
% polyethylene-vinyl acetate copolymer was used. After thermally annealing the PTC heating wires obtained in this way at 120℃ for 10 hours, these
When we measured the resistance-temperature characteristics of the PTC heating wire, we found that
Compared to curve C of the conventional example using (A) treated and (B) treated copper foil electrodes and copper foil electrodes as they are, as shown in Figure 2, the resistance value is relatively high on the low temperature side, that is, the inrush current An excellent exothermic wire of the present invention with limited heat generation was obtained. Incidentally, the equivalent circuit of the high resistance layer 5 in the present invention is expressed as shown in FIG. Here, the variable resistance 6 due to heat is the resistance of the PTC layer. Note that the resistance inside the electrode conductor wire is much lower than the high-resistance layer on the surface, so the equivalent circuit is ignored here, but when using a long wire such as 20 m to 50 m,
Of course, it cannot be ignored.

このPTC発熱線Aを約40m長を2本2畳用カ
ーペツト中へ配線したところ、10℃での突入電力
が100Vにおいて1.13KWであつた。従来のPTC
発熱線では同様の実験で突入電力は2.5KWであ
り、あまりにも大きかつた。
When we wired two approximately 40m long PTC heating wires A into a 2-tatami carpet, the inrush power at 10°C was 1.13KW at 100V. Traditional PTC
In a similar experiment with a heating wire, the inrush power was 2.5KW, which was too large.

発明の効果 本発明は、金属導体電極線の表面を高抵抗化す
ることにより突入電流を制限するものであり、
PTC発熱線を配線した高容量の採暖具の製品に
おいて、電源電圧への影響を大幅に低減できる。
また1対の電極線の長手方向に並列に配置されて
いるPTC発熱層のどの部分にも、金属導体電極
線表面の高抵抗層が介在するので、突入電流の制
限が均一になされ、昇温速度が不均一にならず局
部的に電極線が発熱することも解消できる、など
の効果を生ずる。
Effects of the Invention The present invention limits inrush current by increasing the resistance of the surface of a metal conductor electrode wire.
For high-capacity heating equipment products that are wired with PTC heating wires, the effect on the power supply voltage can be significantly reduced.
In addition, since a high resistance layer on the surface of the metal conductor electrode wire is present in every part of the PTC heating layer arranged in parallel in the longitudinal direction of a pair of electrode wires, inrush current is uniformly restricted and the temperature rises. Effects such as preventing the speed from becoming non-uniform and eliminating local heat generation of the electrode wire are produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の可撓性発熱線の一実施例の一
部破断側面図、第2図は本発明の一実施例におけ
るPTC発熱線の抵抗−温度特性図、第3図は本
発明のPTC発熱線の等価回路図、を示す。 1:芯糸、2:金属導体線、3:PTC発熱層、
4:外被。
Fig. 1 is a partially cutaway side view of an embodiment of the flexible heating wire of the present invention, Fig. 2 is a resistance-temperature characteristic diagram of a PTC heating wire in an embodiment of the invention, and Fig. 3 is a diagram of the resistance-temperature characteristic of the PTC heating wire in an embodiment of the invention. The equivalent circuit diagram of the PTC heating wire is shown. 1: Core yarn, 2: Metal conductor wire, 3: PTC heating layer,
4: Outer covering.

Claims (1)

【特許請求の範囲】 1 少く共1対の可撓芯糸に金属導体線を装着し
た電極間に大きな正の抵抗温度係数をもつ発熱体
を配設し、絶縁性外被を被覆してなる可撓性発熱
線において、前記金属導体線を銅合金線とし表面
を金属酸化物の高抵抗体とし、前記発熱体に直接
接触するよう構成したことを特徴とする可撓性発
熱線。 2 前記金属導体電極の表面に有機金属キレート
結合を被覆層厚を制御し、トンネル伝導、ホツピ
ング伝導などの伝導を生ずるよう高抵抗体を設け
ることを特徴とする特許請求の範囲第1項記載の
可撓性発熱線。
[Scope of Claims] 1 A heating element having a large positive temperature coefficient of resistance is disposed between at least one pair of electrodes in which a metal conductor wire is attached to a flexible core thread, and the heating element is covered with an insulating jacket. 1. A flexible heating wire, characterized in that the metal conductor wire is a copper alloy wire, the surface is made of a high-resistance metal oxide material, and the flexible heating wire is configured to directly contact the heating element. 2. The method according to claim 1, wherein a high-resistance material is provided on the surface of the metal conductor electrode so as to control the layer thickness of the organometallic chelate bond to produce conduction such as tunnel conduction or hopping conduction. Flexible heating wire.
JP19482083A 1983-10-18 1983-10-18 Flexible heating wire Granted JPS6086790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19482083A JPS6086790A (en) 1983-10-18 1983-10-18 Flexible heating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19482083A JPS6086790A (en) 1983-10-18 1983-10-18 Flexible heating wire

Publications (2)

Publication Number Publication Date
JPS6086790A JPS6086790A (en) 1985-05-16
JPH0479479B2 true JPH0479479B2 (en) 1992-12-16

Family

ID=16330795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19482083A Granted JPS6086790A (en) 1983-10-18 1983-10-18 Flexible heating wire

Country Status (1)

Country Link
JP (1) JPS6086790A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740891A (en) * 1980-06-24 1982-03-06 Sunbeam Corp Heating cable for electric carpet
JPS57119947A (en) * 1981-01-19 1982-07-26 Toshiba Corp Epoxy resin composition
JPS57189409A (en) * 1981-05-19 1982-11-20 Hitachi Cable Method of producing split conductor for power cable
JPS57210517A (en) * 1981-06-22 1982-12-24 Furukawa Electric Co Ltd Method of producing strand insulated cable
JPS59226493A (en) * 1983-06-07 1984-12-19 日立電線株式会社 Self-temperature controllable heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740891A (en) * 1980-06-24 1982-03-06 Sunbeam Corp Heating cable for electric carpet
JPS57119947A (en) * 1981-01-19 1982-07-26 Toshiba Corp Epoxy resin composition
JPS57189409A (en) * 1981-05-19 1982-11-20 Hitachi Cable Method of producing split conductor for power cable
JPS57210517A (en) * 1981-06-22 1982-12-24 Furukawa Electric Co Ltd Method of producing strand insulated cable
JPS59226493A (en) * 1983-06-07 1984-12-19 日立電線株式会社 Self-temperature controllable heater

Also Published As

Publication number Publication date
JPS6086790A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
US4246468A (en) Electrical devices containing PTC elements
US4072848A (en) Electrical heating cable with temperature self-limiting heating elements
US3757086A (en) Electrical heating cable
US4314145A (en) Electrical devices containing PTC elements
ATE30825T1 (en) EXTENDED ELECTRIC HEATING ELEMENTS.
JPS6221235B2 (en)
KR880008690A (en) Electric heating assembly
JPH053120B2 (en)
JPH0479479B2 (en)
US971101A (en) Electric heating unit.
JPS5826796B2 (en) Electric film heater with multiple heater elements
JPS6231995Y2 (en)
JPS6230793Y2 (en)
JPS59226493A (en) Self-temperature controllable heater
JPS5838553Y2 (en) Hatsunetsu Thailand
JPH02270218A (en) Insulated wire
SU616911A1 (en) Resistive electric heater
JPS6235482A (en) Temperature controller
JPS63219102A (en) Ptc resistance material
CA2224022A1 (en) Self-limiting heaters
KR960003830B1 (en) Manufacturing process of electric wire
CA1187309A (en) Electrical device containing ptc element
JPS61239583A (en) Heat sensitive wire
JPS61135087A (en) Temperature self controlled heater
JPS58134892U (en) Self-temperature control heater wire