JPH0479301B2 - - Google Patents

Info

Publication number
JPH0479301B2
JPH0479301B2 JP61124741A JP12474186A JPH0479301B2 JP H0479301 B2 JPH0479301 B2 JP H0479301B2 JP 61124741 A JP61124741 A JP 61124741A JP 12474186 A JP12474186 A JP 12474186A JP H0479301 B2 JPH0479301 B2 JP H0479301B2
Authority
JP
Japan
Prior art keywords
pva
polyvinyl alcohol
sheet
biaxially stretched
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61124741A
Other languages
Japanese (ja)
Other versions
JPS62282930A (en
Inventor
Toshio Yamamura
Fukumi Kamizono
Masatoshi Furue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP61124741A priority Critical patent/JPS62282930A/en
Publication of JPS62282930A publication Critical patent/JPS62282930A/en
Publication of JPH0479301B2 publication Critical patent/JPH0479301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Protection Of Plants (AREA)
  • Greenhouses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は農業用、園芸用などの施設園芸用ハウ
ス、畜産用ハウス、屋外テント用などに利用され
る合成樹脂シートに係り、更に詳しくは結露防止
性、除湿性、保温性、耐久性に優れ、しかも寸法
安定性並びに強度に優れた施設園芸用ハウス、畜
産用ハウス、屋外テント用などに利用されるポリ
ビニルアルコール系シートに関するものである。 [従来の技術] 従来、上記のようなハウス用及びテント用に、
ポリエチレン、ポリ塩化ビニル、エチレン酢酸ビ
ニル共重合体、ポリエステルなどの合成樹脂から
なるシートが広く利用されており、安価であるこ
と、加工性及び作業性に優れるという利点があ
る。しかし、これらは下記の如き欠点を有する。 (1) 疎水性合成樹脂からなる故に、吸湿性・透湿
性が実質上なく、被覆内部が多湿になり、また
結露して落滴する。この為、施設園芸用ハウス
では作物の健全生育が妨げられて品質が低下
し、加えて病害が発生しやすい。畜産用ハウス
では、豚、ニワトリなどの動物の生育環境が悪
化し、食欲低下、生育不良、産卵率低下などの
欠点が生じる。更にまた、被覆内で作業する人
間にとつても、多湿環境は好ましくない。 (2) 保温性が必ずしも十分でない。特にポリエチ
レン、エチレン−酢酸ビニル共重合体など、長
波赤外線(いわゆる熱線)の透過率の大きいシ
ートは保温性に乏しく、場合によっては被覆内
部の温度の方が外部温度より低くなることもあ
る。従つて、施設園芸用ハウスでは作物の生育
が不良となり、悪いケースでは凍害、霜害によ
つて作物が全滅に至ることもある。暖房ハウス
では、温度維持のための重油、電力などのエネ
ルギー消費が大きい。畜産用ハウスでは、温度
環境が不良となり動物の活動が低下し生育上好
ましくない。 (3) 耐熱性、耐候性が不十分で、耐久性に欠け
る。特にポリエチレン、ポリ塩化ビニルまたは
エチレン−酢酸ビニル共重合体からなるシート
は、耐熱性が不良であり、かつ紫外線劣化しや
すいので耐久性に乏しく、通常、1年間の使用
にしか耐えられない。 テント用など、他の用途においても同様の問
題が生じる。 以上のような欠点のない、除湿性、結露防止
性、保温性及び耐久性のあるシートとして、ポリ
ビニルアルコール系合成樹脂から成るシートが提
案されているが、これには下記のような欠点があ
り、実用上大きな障害となつている。 寸法安定性が極めて悪く、また耐水性が不良
である。ポリビニルアルコール系合成樹脂は、
高い吸湿性、吸水性を有するので、水分によつ
て大きく膨潤し、通常のシートフイルムでは
150〜200%も伸縮する。これらの点を改良する
手段として、熱処理を施して結晶化度を高める
方法、二軸延伸及び熱処理により耐水性を向上
する方法があるが、いずれも不十分であり、伸
縮率を6〜10%程度に低下させうるのみであ
る。この伸縮率を持つシートは、上記したよう
なハウス及びテントのシートとして設工すると
き緊張して張ると、乾燥時に収縮して支柱を倒
し、あるいはシートが裂ける。逆に、タルミを
もたせて張ると、水分を吸つたときに伸びてタ
ルミが更に大きくなり、たとえば風を含んでバ
タつき、ついにはハウスが倒壊するまで到るこ
とがある。 実用的に強度が不十分である。ポリビニルア
ルコール系シートは、吸水するとブロツキング
し、また強度が低下する。また、低温下で脆化
しやすく、実用的強度に欠ける。この欠点も、
上述したような熱処理結晶化法、二軸延伸、熱
処理法などで若干の改良が達成されるが、ハウ
ス用及びテント用などへの実用に適するには到
らない。 [発明が解決しようとする問題点] 本発明は、除湿性、結露防止性、保温性、耐久
性に優れ、しかも寸法安定性及び強度にも優れた
シートを提供することを目的とする。 [問題点を解決するための手段] 本発明の目的は、 (a) 収縮処理を施されて収縮状態にあるポリビニ
ルアルコール系二軸延伸皮膜体、及び (b) ポリビニルアルコール系繊維構造体 を貼着一体化せしめてなる寸法安定性ならびに強
度に優れるポリビニルアルコール系シートによつ
て達成される。 本発明のポリビニルアルコール(以下では
PVAということがある)系シートにおいて、
PVA系二軸延伸皮膜体(a)は収縮処理を施されて
おり、シートの使用条件下で更に収縮することが
少なく、好ましくは収縮が実質上零である。従つ
て、このものはシートの実際の使用時には伸びる
一方であつて、収縮する方向への応力は生じな
い。 一方、PVA系繊維構造物(b)は、収縮処理を施
されていない。 このような(a)と(b)を貼着一体化すると、シート
の実際の使用時に、(a)の伸びようとする力と(b)の
収縮しようとする力が拮抗して、シート全体とし
ての伸縮が緩和されて、寸法安定性が改善され
る。 ただし、PVA系繊維構造体(b)は、寸法安定性
を改善したものでも、実用上2〜3%の伸縮性が
あるので、環境条件によつては(b)が収縮する方向
への応力を生じないこともある。そこで、PVA
系繊維構造体(b)は好ましくは膨潤処理を施された
ものを用い、より好ましくはシートの使用条件下
で更に膨潤することがなく実用時に縮む方向にの
み応力を生じるものである。かかる(b)と前記(a)を
貼着一体化することにより、寸法安定性が著しく
改善されることが見い出された。 本発明のシートは、皮膜体に繊維構造物を組合
せることにより、実用上好ましい強度を有する。 なお、未処理のPVA系二軸延伸皮膜体の収縮
率の方が、未処理のPVA系繊維構造体の収縮率
よりもかなり大きいので、上記と逆にPVA系二
軸延伸皮膜体を膨潤処理し、PVA系繊維構造体
を収縮処理しても十分な効果は達成されない。す
なわち、収縮力と伸長力とでは、貼着一体化した
構造体において収縮力の方が強く働くので、二軸
延伸皮膜体を収縮する一方にしたのでは寸法安定
性の改良が十分に得られない。 本発明に用いるPVA系二軸延伸皮膜体はPVA
系皮膜体を経及び緯方向に延伸した後熱処理を施
して得られるものであり、その方法は公知の如何
なる方法によつても良い。例えば平均重合度1400
以上、鹸化度98.5%以上のPVA皮膜体を180℃以
上で経及び緯方向に少くとも2.5倍以上、好適に
は2.8〜3.5倍に延伸し、次いで好適には200℃以
上で熱処理を行うことによつて容易に得ることが
できる。この場合、経及び緯方向に延伸する方法
としては先ず経方向に延伸を行い、次いで経方向
に延伸を行う所謂逐次二軸延伸方法でも良いし、
経及び緯方向に同時に延伸を行う所謂同時二軸延
伸方法でも良い。又、経及び緯方向の延伸倍率が
2.5倍以上であると得られる二軸延伸皮膜体の機
械的強度、寸法安定性の点で好ましい。経及び緯
方向の各々の延伸倍率は差があつても良いが略同
じ延伸倍率である方が経及び緯方向の物性がバラ
ンス化されるので好ましい。更に熱処理温度は
200℃より低いと熱セツト効果に乏しい為、実用
的な耐水性、寸法安定性の点で200℃以上である
ことが好ましい。延伸及び熱処理温度の上限は
PVA系皮膜体が熱分解を生じない温度、一般的
には220〜230℃までである。又、PVA系二軸延
伸皮膜体の厚みとしては、15〜50μであることが
好ましい。15μ以上であると実用的な強度の点で
又、50μ以下であると柔軟性の点で好適である。 PVA系二軸延伸皮膜体の収縮処理に関しては、
PVA系皮膜体は吸湿(湿潤)条件で膨潤し、そ
の状態に熱を加えて乾燥すると収縮する特性があ
り、温度が高い程、収縮が大きい。従つて、シー
トの使用条件下で収縮が少なく(好ましくは零)、
伸びる一方であるPVA系二軸延伸皮膜体は、皮
膜体を湿潤させ、次にシートの実用上の最高温度
程度、たとえば40〜50℃の温度下で皮膜体をオー
バーフイードしながら連続的に乾燥することによ
り得られる。乾燥は約100℃以下で行うことが好
ましく、湿潤状態のものを急に高温にさらすと融
解してしまうので不都合である。 本発明で用いられるPVA系繊維構造体は、例
えばビニロン繊維からなる織物、編物、不織布、
PVA系フイルムを延伸、割繊、熱処理、拡幅し
て得られる網状不織布或はこの網状不織布を経緯
に積層、接着して得られる積層体、PVA系スリ
ツトヤーンからなる織物、編物等である。 本発明で好ましく用いられる網状不織布は、
PVA系皮膜体を延伸、スプリツト、熱処理、拡
幅して得られるものであり、その方法は公知の如
何なる方法によつても良い。例えばPVA100%か
らなる皮膜体を使用する場合は、平均重合度1400
以上、鹸化度98.5%以上のPVAフイルムを、180
℃以上で少くとも5.5倍、好適には6〜6.5倍に延
伸し、スプリツト後200℃以上で熱処理を行い、
次いでクロスガイダー方式、スプリング方式等に
より拡幅することによつて得られる。この場合、
平均重合度が1400以下、鹸化度が98.5%以下の
PVA皮膜体では、得られる網状不織布の実用的
な寸法安定性及び強度の点で好ましくない。又、
延伸温度が180℃以下では延伸性の点で問題があ
り、延伸比が5.5倍より低いとスプリツト性及び
得られる網状不織布の強度及び実用的な寸法安定
性が不良となり好ましくない。更に又、熱処理温
度が200℃より低いと熱セツト効果に乏しく、実
用的な寸法安定性が不良となり同様に好ましくな
い。延伸及び熱処理温度の上限は熱分解を生じな
い温度、一般的には220〜230℃まで可能である。
PVA系皮膜体としてオレフイン変性PVA皮膜体
を使用する場合は、オレフインの含有量に比例的
に融点並びに熱分解温度が低下し且つ実用的寸法
安定性は向上するので前記PVA100%皮膜体の場
合より低い温度で前記方法と同様に延伸、スプリ
ツト、熱処理をすることにより実用的な寸法安定
性及び充分なる機械的強度を賦与せしめることが
出来る。 しかして本発明に用いる網状不織布を構成する
スプリツトフアイバーの少くとも80%が、一般に
0.5mm以上、更に好ましくは1.0mm以上の巾を有す
るものであることが好ましく、かかる網状不織布
は上記のスプリツト条件を適宜選定することによ
つて容易に得られる。スプリツトフアイバーの巾
が0.5mmより小さいとPVA系フイルムの低温・低
湿時の脆化に対する補強効果が不充分であり好ま
しくない。ハウス展張等高強度が要求される場合
は、1mm以上の巾にすることがより好ましい。 又、本発明の網状不織布を経緯に各1枚、場合
によつては更に多数枚、公知の方法で積層接着し
たものが好ましい。更には又補強用としてビニロ
ン系、PVA系延伸テープ等網状積層体と密着性
のある素材を適当な間隔で挿入しても良いが、い
ずれの場合もその空隙率を、通常70%以下にする
のが好ましい。 PVA系繊維構造体の膨潤処理は、水に浸漬す
るか、又は水をスプレーするなどにより簡単に行
うことができる。 PVA系二軸延伸皮膜体(a)とPVA系繊維構造体
(b)の貼着一体化は、バインダーにより接着して行
うのが簡便である。(a)及び(b)の各1枚を貼着す
る、又は(a)を(b)でサンドイツチ状にはさんで貼着
する、又は逆に(b)を(a)でサンドイツチ状にはさん
で貼着するなどの態様を適宜選択することができ
る。 貼り合せる為のバインダーとしては密着性、耐
候性、吸湿性、透明性の点で前記網状不織布の製
造に於けると同様のPVA系ポリマー、例えばビ
ニルアルコール単独重合体を用いるのが好適であ
る。 貼着の作業は、公知のいかなる方法によつても
良い。たとえば、PVA系繊維構造体を常温の水
中に浸漬して膨潤処理した後、PVA系バインダ
ー水溶液の中に浸漬してPVA系バインダーを塗
布し、予め収縮処理を施与したPVA系二軸延伸
皮膜体と合わせて50〜60℃の温度下で仮貼着し、
次に100℃位の温度で乾燥して完全に貼着一体化
する。この際、いきなり高温にさらすとPVAが
融解するので好ましくない。PVA系バインダー
の耐水性を向上する為に、次に140℃以上で熱処
理することが好ましい。 本発明で云う「ポリビニルアルコール系」と
は、PVA100%よりなるポリマー、或はたとえば
30%(モル%、以下同じ)以下の割合の他のモノ
マーもしくはポリマー、好適にはオレフイン類も
しくはそれらのポリマーを含む共重合体もしくは
ブレンド物などの変性PVAである。かゝるPVA
系皮膜体は、吸湿性、透明性、耐候性に優れると
共に6〜17μ波長域の赤外線透過度が極めて小さ
く保温性も良好であつて、被覆資材とした場合、
結露による病害中発生或は霜害、凍害発生の惧れ
が少なく、かつ長期間に亘つて充分なる透明性・
採光性を保持する。 網状不織布(b)を得る為のPVA系皮膜体と、網
状不織布に貼り合わせるPVA系皮膜体(a)の組成
が同一である必要は勿論なく、むしろ一方の組成
が例えばオレフイン類の共重合比或はブレンド比
が大きい場合、他方の組成をオレフイン類の共重
合比或はブレンド比を小さくしたもの、好ましく
はPVA100%よりなるものにする方が吸湿性、透
明性、6〜17μ波長域の赤外線透過の点で好まし
い。 本発明のPVA系シートは、PVA系ポリマー本
来の性質に由来する除湿性、結露防止性、保温
性、耐久性に優れ、かつ本発明の特徴である寸法
安定性及び強度の点でも優れている。 以下に本発明を実施例により更に説明する。 実施例 平均重合度1700、鹸化度99.9%のPVAフイル
ム(厚み60μを190℃で先ず経方向に3倍、次い
で緯方向に3倍、逐次2軸延伸方法で延伸した
後、210℃で30秒間熱処理を行つてPVA2軸延伸
皮膜体を得た。 次いで該PVA2軸延伸皮膜体を常温の水に15秒
間連続的に浸漬して湿潤させた後50℃のオーブン
室でオーバーフイードしながら連続的に乾燥する
ことにより、7%の収縮処理を行つた。 他方、平均重合度1700、鹸化度99.9%のPVA
フイルム(厚み70μ)を190℃で6倍に延伸、ス
プリツトした後210℃で30秒間熱処理を行い、延
伸方向と直角方向に拡幅して得られた網状不織布
を平均重合度1400、鹸化度99.9%のPVA10%水
溶液を用いて、経緯に各1枚積層接着してPVA
網状積層体を得た。 次いで同じく平均重合度1400鹸化度99.9%の
PVA10%水溶液を用いて前記収縮処理を施与し
たPVA2軸延伸フイルムとPVA網状積層体とを
貼着一体化せしめて、本発明品(1)を得た。更に
又、前記収縮処理を施与したPVA2軸延伸皮膜体
と常温の水に20秒間浸漬して膨潤処理を施与した
前記PVA網状積層体とを貼着一体化せしめて本
発明品(2)を得た。 本発明品(1)及び(2)と従来品について、第1表に
吸湿率、第2表に6〜17μ波長域の赤外線透過率
及び保温特性を、更に又、第3表にはPVA2軸延
伸皮膜体単独との物性比較を示す。この結果から
本発明品が従来品に比し吸湿性、保温性に優れ而
も機械的強度並びに寸法安定性に優れたPVAシ
ートであることが明らかである。
The present invention relates to a synthetic resin sheet used for agricultural and horticultural greenhouses, livestock houses, outdoor tents, etc., and more specifically, it has excellent dew condensation prevention, dehumidification, heat retention, and durability. Moreover, the present invention relates to a polyvinyl alcohol sheet that is used for greenhouses for greenhouse horticulture, livestock farms, outdoor tents, etc., and has excellent dimensional stability and strength. [Prior Art] Conventionally, for the above-mentioned houses and tents,
Sheets made of synthetic resins such as polyethylene, polyvinyl chloride, ethylene vinyl acetate copolymer, and polyester are widely used and have the advantages of being inexpensive and having excellent processability and workability. However, these have the following drawbacks. (1) Since it is made of hydrophobic synthetic resin, it has virtually no hygroscopicity or moisture permeability, and the inside of the coating becomes humid, and dew condenses and drops. For this reason, in greenhouses for greenhouse horticulture, the healthy growth of crops is hindered, resulting in a decrease in quality, and in addition, diseases are likely to occur. In livestock houses, the breeding environment for animals such as pigs and chickens deteriorates, resulting in disadvantages such as decreased appetite, poor growth, and decreased egg production. Furthermore, a humid environment is also unfavorable for people working within the coating. (2) Heat retention is not necessarily sufficient. In particular, sheets such as polyethylene and ethylene-vinyl acetate copolymers that have high transmittance to long-wave infrared rays (so-called heat rays) have poor heat retention, and in some cases, the temperature inside the coating may be lower than the outside temperature. Therefore, the growth of crops in greenhouses for greenhouse horticulture is poor, and in the worst case, the crops may be wiped out due to frost damage. Heating houses consume a large amount of energy such as heavy oil and electricity to maintain the temperature. In livestock greenhouses, the temperature environment is poor, which reduces animal activity and is not favorable for growth. (3) Insufficient heat resistance and weather resistance, and lacks durability. In particular, sheets made of polyethylene, polyvinyl chloride, or ethylene-vinyl acetate copolymers have poor heat resistance and are easily degraded by ultraviolet rays, resulting in poor durability and can usually withstand use for only one year. Similar problems arise in other applications, such as for tents. A sheet made of polyvinyl alcohol synthetic resin has been proposed as a sheet with dehumidification, anti-condensation, heat retention, and durability that does not have the above drawbacks, but it has the following drawbacks. , has become a major practical obstacle. It has extremely poor dimensional stability and poor water resistance. Polyvinyl alcohol synthetic resin is
Because it has high hygroscopicity and water absorption, it swells greatly with moisture, making it difficult for ordinary sheet films to
It expands and contracts by 150-200%. As a means to improve these points, there are methods to increase the degree of crystallinity by heat treatment, and methods to improve water resistance by biaxial stretching and heat treatment, but both are insufficient and the expansion and contraction ratio is reduced to 6 to 10%. It can only be reduced to a certain extent. If a sheet with this elasticity is stretched under tension when constructing it as a sheet for a house or a tent as described above, it will shrink during drying, knocking down the props, or tearing the sheet. On the other hand, if the house is stretched so that it is sagging, it will stretch when it absorbs moisture, making the sag even bigger, and the house may become flapping due to the wind, and the house may even collapse. Insufficient strength for practical use. When a polyvinyl alcohol sheet absorbs water, it blocks and its strength decreases. In addition, it easily becomes brittle at low temperatures and lacks practical strength. This drawback also
Although some improvements have been achieved by the above-mentioned heat treatment crystallization method, biaxial stretching, heat treatment method, etc., they are not suitable for practical use in greenhouses, tents, etc. [Problems to be Solved by the Invention] An object of the present invention is to provide a sheet that has excellent dehumidification properties, anti-condensation properties, heat retention properties, and durability, as well as excellent dimensional stability and strength. [Means for Solving the Problems] The object of the present invention is to provide (a) a polyvinyl alcohol-based biaxially stretched film body that has been subjected to a shrinkage treatment and is in a contracted state, and (b) a polyvinyl alcohol-based fiber structure pasted thereon. This is achieved by using an integrated polyvinyl alcohol sheet that has excellent dimensional stability and strength. The polyvinyl alcohol of the invention (hereinafter
In PVA (sometimes referred to as PVA) sheet,
The PVA-based biaxially stretched film (a) has been subjected to a shrinkage treatment, so that it hardly shrinks further under the conditions of use of the sheet, and preferably shrinkage is substantially zero. Therefore, when the sheet is actually used, it stretches, but no stress is generated in the direction of contraction. On the other hand, the PVA-based fiber structure (b) was not subjected to shrinkage treatment. When (a) and (b) are bonded together, when the sheet is actually used, the stretching force of (a) and the contraction force of (b) are counterbalanced, and the entire sheet is dimensional stability is improved. However, even if the PVA fiber structure (b) has improved dimensional stability, it has a practical elasticity of 2 to 3%, so depending on the environmental conditions, stress in the direction of contraction of (b) may be applied. may not occur. Therefore, PVA
The fiber structure (b) is preferably one that has been subjected to a swelling treatment, and more preferably one that does not further swell under the conditions in which the sheet is used and generates stress only in the direction of shrinkage during practical use. It has been found that by bonding and integrating the above (b) and the above (a), the dimensional stability can be significantly improved. The sheet of the present invention has practically preferable strength by combining a fibrous structure with a membrane. Note that the shrinkage rate of the untreated biaxially stretched PVA film is much larger than that of the untreated PVA fiber structure, so in contrast to the above, the PVA biaxially stretched film was subjected to swelling treatment. However, even if the PVA-based fiber structure is subjected to shrinkage treatment, sufficient effects cannot be achieved. In other words, between the contraction force and the extension force, the contraction force acts more strongly in the bonded and integrated structure, so if the biaxially stretched film body is made to shrink only, the dimensional stability cannot be sufficiently improved. do not have. The PVA-based biaxially stretched film body used in the present invention is PVA
It is obtained by stretching the film body in the warp and weft directions and then subjecting it to heat treatment, and the method may be any known method. For example, average degree of polymerization 1400
As described above, a PVA film body with a saponification degree of 98.5% or more is stretched at least 2.5 times, preferably 2.8 to 3.5 times, in the warp and weft directions at 180°C or higher, and then heat-treated preferably at 200°C or higher. can be easily obtained by In this case, the method for stretching in the warp and weft directions may be a so-called sequential biaxial stretching method in which stretching is first performed in the warp direction and then in the warp direction;
A so-called simultaneous biaxial stretching method in which stretching is performed simultaneously in the warp and weft directions may also be used. In addition, the stretching magnification in the warp and weft directions is
A ratio of 2.5 times or more is preferable in terms of mechanical strength and dimensional stability of the resulting biaxially stretched film. Although the stretching ratios in the warp and weft directions may be different, it is preferable that the stretching ratios be approximately the same because the physical properties in the warp and weft directions are balanced. Furthermore, the heat treatment temperature is
If the temperature is lower than 200°C, the heat setting effect will be poor, so in terms of practical water resistance and dimensional stability, the temperature is preferably 200°C or higher. The upper limit of stretching and heat treatment temperature is
The temperature at which the PVA film does not undergo thermal decomposition is generally 220 to 230°C. Further, the thickness of the PVA biaxially stretched film body is preferably 15 to 50 μm. A thickness of 15μ or more is suitable for practical strength, and a thickness of 50μ or less is suitable for flexibility. Regarding shrinkage treatment of PVA biaxially stretched film,
PVA-based membranes have the property of swelling under moisture absorption (wet) conditions and shrinking when heated and dried; the higher the temperature, the greater the shrinkage. Therefore, the shrinkage is low (preferably zero) under the conditions of use of the sheet.
The PVA-based biaxially stretched film, which continues to stretch, is wetted and then continuously dried while overfeeding the film at the highest practical temperature for the sheet, for example 40 to 50°C. It can be obtained by Drying is preferably carried out at a temperature of about 100° C. or lower; it is inconvenient if a wet material is suddenly exposed to high temperatures because it will melt. The PVA-based fiber structures used in the present invention include, for example, woven fabrics, knitted fabrics, non-woven fabrics made of vinylon fibers,
These include a reticulated nonwoven fabric obtained by stretching, splitting, heat treating, and widening a PVA film, a laminate obtained by laminating and adhering this reticulated nonwoven fabric in warp and warp directions, and woven and knitted fabrics made of PVA slit yarn. The reticulated nonwoven fabric preferably used in the present invention is
It is obtained by stretching, splitting, heat-treating, and widening a PVA-based film, and any known method may be used. For example, when using a film made of 100% PVA, the average degree of polymerization is 1400.
PVA film with saponification degree of 98.5% or more, 180
Stretched at least 5.5 times, preferably 6 to 6.5 times at temperatures above ℃, heat treated at 200 degrees C or above after splitting,
The width is then widened using a cross guider method, a spring method, or the like. in this case,
Average degree of polymerization is 1400 or less, saponification degree is 98.5% or less
A PVA coated body is not preferred in terms of practical dimensional stability and strength of the resulting reticulated nonwoven fabric. or,
If the stretching temperature is below 180°C, there will be a problem in terms of stretchability, and if the stretching ratio is lower than 5.5 times, the splitting properties and the strength and practical dimensional stability of the obtained reticulated nonwoven fabric will be poor, which is not preferable. Furthermore, if the heat treatment temperature is lower than 200°C, the heat setting effect will be poor and the practical dimensional stability will be poor, which is also not preferred. The upper limit of the stretching and heat treatment temperature is a temperature that does not cause thermal decomposition, generally 220 to 230°C.
When using an olefin-modified PVA coating as a PVA-based coating, the melting point and thermal decomposition temperature decrease in proportion to the olefin content, and the practical dimensional stability improves, compared to the case of the 100% PVA coating. Practical dimensional stability and sufficient mechanical strength can be imparted by stretching, splitting and heat treatment at low temperatures in the same manner as in the above methods. However, at least 80% of the split fibers constituting the reticulated nonwoven fabric used in the present invention are generally
It is preferable to have a width of 0.5 mm or more, more preferably 1.0 mm or more, and such a reticulated nonwoven fabric can be easily obtained by appropriately selecting the above-mentioned splitting conditions. If the width of the split fiber is smaller than 0.5 mm, the reinforcing effect against the embrittlement of the PVA film at low temperature and low humidity will be insufficient, which is not preferable. When high strength is required, such as when expanding a house, it is more preferable to use a width of 1 mm or more. Further, it is preferable that one sheet of the reticulated nonwoven fabric of the present invention is laminated on each side, or in some cases, more sheets are laminated and bonded by a known method. Furthermore, materials that adhere to the net-like laminate, such as vinylon-based or PVA-based stretched tape, may be inserted at appropriate intervals for reinforcement, but in either case, the porosity is usually 70% or less. is preferable. The swelling treatment of the PVA-based fiber structure can be easily performed by immersing it in water or spraying it with water. PVA biaxially stretched film (a) and PVA fiber structure
The adhesive integration in (b) is easily carried out by adhering with a binder. Paste one each of (a) and (b), or paste (a) with (b) in a sandwich pattern, or conversely, paste (b) with (a) in a sandwich pattern. It is possible to select an appropriate mode such as pasting with a sandwich. As the binder for bonding, it is preferable to use the same PVA-based polymer as in the production of the reticulated nonwoven fabric, such as a vinyl alcohol homopolymer, in terms of adhesion, weather resistance, hygroscopicity, and transparency. The adhesion may be done by any known method. For example, a PVA-based biaxially stretched film is obtained by immersing a PVA-based fiber structure in water at room temperature to undergo swelling treatment, then immersing it in an aqueous PVA-based binder solution to apply a PVA-based binder, and then shrinking it in advance. It is temporarily attached to the body at a temperature of 50 to 60 degrees Celsius,
Next, it is dried at a temperature of about 100°C to completely bond and integrate. At this time, it is not preferable to suddenly expose it to high temperatures because the PVA will melt. In order to improve the water resistance of the PVA binder, it is preferable to heat it next at 140°C or higher. "Polyvinyl alcohol" as used in the present invention refers to a polymer made of 100% PVA or, for example,
It is a modified PVA such as a copolymer or blend containing other monomers or polymers, preferably olefins or their polymers, in a proportion of 30% (mol %, the same hereinafter) or less. Karu PVA
The system coating has excellent hygroscopicity, transparency, and weather resistance, and has extremely low infrared transmittance in the 6 to 17μ wavelength range and good heat retention, and when used as a coating material,
There is little risk of disease outbreaks due to dew condensation, frost damage, and frost damage, and there is sufficient transparency for a long period of time.
Maintain daylight. Of course, it is not necessary that the composition of the PVA-based film for obtaining the reticulated non-woven fabric (b) and the PVA-based film applied to the reticulated non-woven fabric (a) be the same; rather, the composition of one of them is, for example, a copolymerization ratio of olefins. Alternatively, when the blend ratio is large, it is better to use the other composition as a copolymerization ratio of olefins or a composition with a lower blend ratio, preferably one made of 100% PVA, which improves hygroscopicity, transparency, and wavelength range from 6 to 17μ. It is preferable in terms of infrared transmission. The PVA sheet of the present invention has excellent dehumidification, dew condensation prevention, heat retention, and durability derived from the inherent properties of PVA polymer, and is also excellent in dimensional stability and strength, which are the characteristics of the present invention. . The present invention will be further explained below with reference to Examples. Example A PVA film with an average degree of polymerization of 1700 and a degree of saponification of 99.9% (thickness 60μ was first stretched 3 times in the warp direction and then 3 times in the weft direction at 190°C using a sequential biaxial stretching method, and then stretched at 210°C for 30 seconds. Heat treatment was performed to obtain a PVA biaxially stretched film.Then, the PVA biaxially stretched film was continuously immersed in water at room temperature for 15 seconds to moisten it, and then continuously heated in an oven room at 50°C while overfeeding. By drying, a shrinkage treatment of 7% was performed.On the other hand, PVA with an average degree of polymerization of 1700 and a degree of saponification of 99.9%
A film (thickness 70μ) was stretched 6 times at 190°C, split, heat treated at 210°C for 30 seconds, and expanded in the direction perpendicular to the stretching direction. Using a 10% PVA aqueous solution of
A reticular laminate was obtained. Next, the same average polymerization degree 1400 and saponification degree 99.9%
A product (1) of the present invention was obtained by bonding and integrating the PVA biaxially stretched film subjected to the shrinkage treatment using a 10% PVA aqueous solution and a PVA network laminate. Furthermore, the PVA biaxially stretched film body subjected to the shrinkage treatment and the PVA network laminate subjected to the swelling treatment by immersion in water at room temperature for 20 seconds are bonded and integrated to produce a product (2) of the present invention. I got it. Regarding the products (1) and (2) of the present invention and the conventional product, Table 1 shows the moisture absorption rate, Table 2 shows the infrared transmittance and heat retention properties in the 6-17μ wavelength range, and Table 3 shows the PVA 2 axis A comparison of physical properties with the stretched film alone is shown. From these results, it is clear that the product of the present invention is a PVA sheet that has superior hygroscopicity and heat retention, as well as superior mechanical strength and dimensional stability, compared to conventional products.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) 収縮処理を施されて収縮状態にあるポリ
ビニルアルコール系二軸延伸皮膜体、及び (b) ポリビニルアルコール系繊維構造体 を貼着一体化せしめてなる寸法安定性ならびに強
度に優れるポリビニルアルコール系シート。 2 ポリビニルアルコール系繊維構造体が、膨潤
処理を施されて膨潤状態にあるときに貼着された
ものである特許請求の範囲第1項記載のシート。 3 ポリビニルアルコール系二軸延伸皮膜体とし
て、シートの使用条件下での可能な最大収縮以上
の収縮状態にあるもの、及びポリビニルアルコー
ル系組織構造体として、シートの使用条件下での
可能な最大膨潤以上の膨潤状態にあるものを貼着
一体化せしめてなる特許請求の範囲第2項記載の
シート。 4 ポリビニルアルコール系二軸延伸皮膜体とポ
リビニルアルコール系繊維構造体とがポリビニル
アルコール系合成樹脂を介して貼着一体化せしめ
られたところの特許請求の範囲第1項ないし第3
項のいずれか一つに記載のシート。
[Claims] 1. Dimensional stability obtained by bonding and integrating (a) a polyvinyl alcohol-based biaxially stretched film body that has been subjected to a shrinkage treatment and is in a contracted state; and (b) a polyvinyl alcohol-based fiber structure. and a polyvinyl alcohol sheet with excellent strength. 2. The sheet according to claim 1, wherein the polyvinyl alcohol-based fiber structure is adhered while being in a swollen state after being subjected to a swelling treatment. 3 Polyvinyl alcohol-based biaxially stretched membranes that are in a state of contraction greater than the maximum possible contraction under the conditions of use of the sheet, and polyvinyl alcohol-based tissue structures that have the maximum possible swelling under the conditions of use of the sheet. A sheet according to claim 2, which is formed by bonding and integrating the above-mentioned materials in a swollen state. 4 Claims 1 to 3, in which a polyvinyl alcohol biaxially stretched film body and a polyvinyl alcohol fiber structure are bonded and integrated via a polyvinyl alcohol synthetic resin.
A sheet listed in any one of the sections.
JP61124741A 1986-05-31 1986-05-31 Polyvinyl alcohol group sheet having excellent dimensional stability and strength Granted JPS62282930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61124741A JPS62282930A (en) 1986-05-31 1986-05-31 Polyvinyl alcohol group sheet having excellent dimensional stability and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61124741A JPS62282930A (en) 1986-05-31 1986-05-31 Polyvinyl alcohol group sheet having excellent dimensional stability and strength

Publications (2)

Publication Number Publication Date
JPS62282930A JPS62282930A (en) 1987-12-08
JPH0479301B2 true JPH0479301B2 (en) 1992-12-15

Family

ID=14892964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61124741A Granted JPS62282930A (en) 1986-05-31 1986-05-31 Polyvinyl alcohol group sheet having excellent dimensional stability and strength

Country Status (1)

Country Link
JP (1) JPS62282930A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092041A (en) * 2005-09-02 2007-04-12 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film and method for producing the polyvinyl alcohol-based film

Also Published As

Publication number Publication date
JPS62282930A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
JP2008048660A (en) Agricultural reflecting sheet
JPH0479301B2 (en)
JPH055449B2 (en)
JPS62282931A (en) Polyvinyl alcohol group sheet having excellent dimensional stability and strength
JP5105177B2 (en) Thermal insulation sheet
JPS6174522A (en) Agricultural covering material
JP2619313B2 (en) Thermal barrier coating material and method of manufacturing the same
JPS6344820A (en) Protective sheet for directly protecting plant
JPS6044136B2 (en) Agricultural covering materials
KR102141338B1 (en) Light shielding film f or both lagging for cultivating ginseng
JPS602360A (en) Agricultural coating material
JPS6240964B2 (en)
JPS5947989B2 (en) Agricultural covering materials
JPS6155470B2 (en)
JPS6155471B2 (en)
JP2527969B2 (en) Agricultural dressing
JPS5951907B2 (en) Agricultural covering material and its manufacturing method
KR101383936B1 (en) The thermal insulatiing sheet for fruit tree
JP2005126832A (en) Hydrophilic synthetic resin film and agricultural covering material
JPS60210924A (en) Agricultural cover material
CN220390596U (en) PET composite melt-blown clean non-woven fabric
JPS6217486B2 (en)
JPH0555305B2 (en)
JPH07274742A (en) Agricultural covering material having insect-repelling properties and its production
KR830001729B1 (en) Agricultural cladding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees