JPH0555305B2 - - Google Patents
Info
- Publication number
- JPH0555305B2 JPH0555305B2 JP61049070A JP4907086A JPH0555305B2 JP H0555305 B2 JPH0555305 B2 JP H0555305B2 JP 61049070 A JP61049070 A JP 61049070A JP 4907086 A JP4907086 A JP 4907086A JP H0555305 B2 JPH0555305 B2 JP H0555305B2
- Authority
- JP
- Japan
- Prior art keywords
- laminate
- plastic
- plate
- heat
- mesh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920003023 plastic Polymers 0.000 claims description 23
- 239000004033 plastic Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000003365 glass fiber Substances 0.000 claims description 17
- 239000004566 building material Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 9
- 239000002650 laminated plastic Substances 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 description 11
- 239000004800 polyvinyl chloride Substances 0.000 description 9
- 229920000915 polyvinyl chloride Polymers 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012210 heat-resistant fiber Substances 0.000 description 1
- 229920006283 heat-resistant synthetic fiber Polymers 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009816 wet lamination Methods 0.000 description 1
Landscapes
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Panels For Use In Building Construction (AREA)
- Laminated Bodies (AREA)
Description
(産業上の利用分野)
この発明は、屋根板、板ガラス代用等に使用で
きる軽量網入りプラスチツクス板に関するもので
あり、透光性を保持し、熱線遮断効果に優れてい
るので、代表的には建築材料に関する産業分野で
利用することができる。
(従来の技術)
プラスチツクス積層体は、従来から建築材料に
関する分野で、透光性をもつ屋根板材、壁板材と
して利用されている。その代表的なものとして、
金属網、ガラス繊維網等の補強材が埋め込まれた
平板又は波板が知られている。
例えば、金属線を編んで構成される通常の金網
を介在させた波板、あるいは金属製多孔プレート
を介在させプラスチツクス板と一体化した積層体
が、実公昭57−47162、実公昭55−140432等に開
示されている。
これら、いわゆる金網入りプラスチツクス板
(平板又は波板)は、補強を大きな目的としてい
るものであるが、次のような点で問題があつた。
(1)野外での永年の使用は、金属網に錆を発生さ
せて透明性が悪くなり、美観、採光性を損ない、
強度も低下する。(2)金属網といえども光沢に乏し
く、太陽熱を反射して熱を遮断する効果が少な
い。(3)金属が埋め込まれている為に重く、高所
(例:屋根)に施行する場合の作業能率が悪い。
(4)工場で製造された連続長尺物を切断した製品の
切り口に金属線が針状に露出し、作業者が負傷し
やすい。
また、格子状のガラス繊維網状体が2枚の透明
又は半透明な熱可塑性硬質プラスチツクス板でサ
ンドイツチされた積層体平板又は波板も市販され
ている。これは、ガラス繊維によりプラスチツク
スの強度を補強し、格子状の目合が美観を呈する
が、太陽熱の反射や熱線遮断について格別の機能
を発揮するものではない。このような積層体の例
として、実開昭53−149072、実開昭57−171642を
挙げることができる。
(発明の課題)
本発明の課題は、屋根板等の建材に使用するこ
とができる軽量網入りプラスチツクス板の技術分
野で、可視光線の透光性を保持しながら、熱線を
遮断する効果において改良された積層板を実現し
ようとするものである。
(問題点を解決するための手段)
本発明者は、2枚の透明又は半透明な熱可塑性
硬質プラスチツクス板の層と、表面に金属薄膜を
設けたガラス繊維製網状体中間層との3層が一体
化した構造のプラスチツクス積層体を発明するこ
とにより、従来から建材分野で用いられていた金
網補強プラスチツクス板の問題点を解決した。
その代表的な実施態様は、アルミ薄膜被覆ガラ
ス繊維の網入り硬質塩化ビニル製建材用波板であ
り、定尺寸法(例えば900×1800mm)で供給でき
る。このように透光性硬質熱可塑性樹脂の押出シ
ート2枚の間に金属被覆ガラス繊維の網を挟んで
融着一体化した、1mm前後の厚さの板として扱え
る硬い積層体が本発明品の普通の形である。
本発明の積層体は、全体として板状であれば、
波板状であつても、平板状であつてもよい。波状
板の積層体は、比較的小さい厚さのものでも必要
な剛性が得られるのでしばしば用いられる。金属
薄膜は一般的によく用いられるアルミでよい。
プラスチツクスとしては、ポリ塩化ビニル系樹
脂、アクリル系樹脂、ポリカーボネート系樹脂等
の熱可塑性プラスチツクスを使用する。本発明品
は、普通の意味で「板」と呼べる程度の剛性をも
つ必要があるので、材料としては硬質プラスチツ
クスが用いられ、製品の厚さも0.5mm程度以上は
あるのが普通である。2枚のプラスチツクス板
は、異種のプラスチツクス板を適宜組み合わせて
使用することもできるが、密度強度を高めるため
には、同種のプラスチツクス板を使用するのが望
ましい。プラスチツクス単板の厚みは、0.4mm程
度前後の薄板でも、1.6mm程度の厚板でもよく、
強度等の必要に応じて選択され、2枚の厚みが異
なるものであつてもよい。本発明は2枚の板層と
その中間にある網状体の層とが一体化された構造
を備えていればよく、必要に応じてもう1対の網
層と板層とを加える等、他の構成が付加された態
様で実施することもできる。
本発明で用いるガラス繊維製網状体には、いわ
ゆるガラス繊維の他、ロツクウール等の無機質繊
維及び耐熱性の合成繊維も含まれる。要は、金属
網に比べて軽量で錆が発生せず、プラスチツクス
の押出加工温度で破壊されない耐熱性を備え、建
築材料として使える耐候性をもつ繊維を用いるこ
とができる。
網状体を構成する繊維の表面に設けられる金属
薄膜は、化学メツキ、真空蒸着、スパツタリング
等の方法で形成することができる。経済的には、
蒸着法が有利であるが、被膜を厚くできる性能上
から好ましい方法は化学メツキ法である。メツキ
する金属としては、アルミニウム、錫等が普通で
あり、アルミニウムが好ましい。金属薄膜を表面
に設けた耐熱性繊維は、例えば50〜400本を収束
して0.3〜0.8mm程度(特に0.1〜0.2mm)の繊維径
にする。収束繊維径は、網の形状により適宜決定
することができる。
網状体の形状としては、菱形目、角目、長方形
等が使用できるが、縦横の寸法安定性の点で格子
状のものが好ましい。網目の形成法としては平
織、綾織、からみ織等で編網することができる。
編網後、目くずれを防いだり、後処理の接着性を
向上させるために収束剤(接着剤)により処理さ
れたものが好ましい。適当な収束剤としては、ポ
リウレタン系、エポキシ系、ポリアミド系、ポリ
塩化ビニル系等を主成分として含むものを挙げる
ことができる。網目の大きさ、即ち繊維束の間隔
は、普通1〜8mm程度であり、特に1.5〜4mmが
好ましい。
ポリ塩化ビニル樹脂板を用いて積層体を構成す
る場合、アルミニウムは、特に水分による変質を
受けて、艶ぼけや透明化を起しやすい。アルミニ
ウムの対水性を向上させるためには、金属層を対
水性のある接着剤にて処理することが望ましい
(実開昭58−151036参照)。適当な接着剤として
は、ポリウレタン系、ポリアミド系、エチレン−
酢酸ビニル共重合体系等の接着剤を主化成分とし
て含むものが好ましい。処理方法としては、公知
の塗布方法を用いることができ、例えば溶剤を用
いた浸漬処理を好ましい方法として挙げることが
できる。
本発明のプラスチツクス積層体は、建材として
用いることができる程度の剛性を備えた板状物で
あり、例えば屋外でのテラス、ベランダ、カーポ
ート、アーケード、ガレージ等の風、雨よけ及び
採光屋根、採光側壁、天窓等の明り取り用に好適
である。本発明の積層体は、例えばウエツトラミ
ネーシヨン、ドライラミネーシヨン、エクストル
ージヨンラミネーシヨン、ホツトプレス等公知の
貼り合わせ方法により、2枚の透明又は半透明な
熱可塑性硬質プラスチツクス板材の間に、表面に
金属薄膜を設けたガラス繊維製網状体を挟んで、
積層し3層を一体化すればよい。加熱、加圧条件
は、十分強固に接着一体化するように選ぶ。望ま
しい方法は、エクストルージヨンラミネーシヨン
法、即ち押出速度に合わせて移動しつつあるガラ
ス繊維網状体の両側に押出成形機から板状に押し
出されてくるプラスチツクスをまだ柔らかい間に
ラミネートする方法である。ガラス繊維網状体と
1枚のプラスチツクス板とを重ねたものの片側に
押し出されてくる板状プラスチツクスをラミネー
トしてもよい。更に波形に成形するには、型押し
成形法、フオーミングロールによる成形法等、公
知の技術を用いることができる。
本発明において、あらかじめ紫外線吸収剤を練
り込んだプラスチツクス板の使用や、表面に塗布
又は付着させる紫外線吸収剤により耐候性を付与
すること、積層体板の表面に界面活性剤の層を設
けて結露の生じにくい状態にするというような公
知の性能向上技術を適用することができることは
いうまでもない。
(発明の作用及び効果)
本発明の積層体は、積層体の内部に設けられた
網状体表面の金属薄膜反射層により光線を反射
し、反射光のプラスチツクス内での透過、吸収作
用、網目からの透過作用、積層体表面からの逆放
射作用等が複合し、これにより、全体として可視
光線透過率をあまり低下させないで、熱線を大幅
に遮断するものと思われる。
本発明品は、熱を遮断する効果が大きいにも拘
らず、採光性が従来品とほとんど変わらないの
で、例えば屋外でのテラス、ベランダ、カーポー
ト、アーケード、ガレージ等の採光屋根、採光側
壁材料、海水浴場の簡易ハウスの屋根材、農場用
ハウス、豚舎の囲い板等に広く利用することがで
きる。
外観も格子状の模様で美観に優れている。特に
従来の金網入り積層体板のように長期の使用で錆
が発生することがなく、透明性の低下、美観、採
光を損なうこと、強度低下といつた問題がなくな
る。また、金網入り板に比べて重量が小さく、施
工作業が容易である。更に保温効果があるので、
暖房したハウス等の放熱防止にも利用できる。
積層体の中間層としてガラス繊維を用いたこと
による効果、即ちプラスチツクスの補強、金網に
比べて軽量であり、錆による品質劣化のないこと
等は、本発明においても当然に発揮される。
本発明におけるガラス繊維は、不織布のように
バラバラの状態でなく、繊維が束ねられ、それが
網を構成することにより可視光が通り抜ける網目
が確保されている。
中間層を挟むプラスチツクス板は建材としての
取扱いに適した厚さであり、硬質熱可塑性樹脂製
であるから、押出成形により3層を一体に熱融着
させた製品を作るのに便利である。
以下、実施例により説明する。第1図は、波板
状の形状をした本発明のプラスチツクス積層体の
部分切り欠き斜視図である。
積層体の外側になる一方の板には、厚さ0.4mm
の透明な硬質ポリ塩化ビニル薄板(通常の押出成
形法)を用いる。中間層となる網は、アルミニウ
ムを化学メツキしたガラス繊維を縦糸0.8mm、横
糸0.4mmに収束し、縦横共に3.9mmの糸間隔の網に
したものであり、その厚みは0.25mmである。これ
にエチレン−酢酸ビニル共重合体(酢酸ビニル15
%)を溶液浸漬法で塗布し、先のポリ塩化ビニル
薄板と重ねて連続的に供給する。このものの網状
体側に厚さ0.4mmに押出した直後の透明硬質ポリ
塩化ビニル薄板をラミネートして、約0.8mmの厚
みに積層して一体化した。ダイス温度210℃、積
層に使用した冷却ロールの温度は157℃である。
得られた平板積層体を、波付機を用いてピツチ32
mm、谷の深さ9mmに成形した。
この積層体波板の遮熱率を第2図に示した装置
を用いて測定した結果を第1表に示す。ここで遮
熱率は、次式で定義される。温度単位は℃
遮熱率E(%)=TB−TC/TB−TA×100
TA 測定室温度
TB ブランク実験平衡温度
TC 試料取付時の平衡温度
なお、可視光域の420nm〜820nmについて分光
光度計で測定した平均光線透過率を第1表に併せ
て表示する。
(Industrial Application Field) This invention relates to a lightweight wired plastic board that can be used as a roofing board, a substitute for plate glass, etc. It maintains translucency and has an excellent heat ray blocking effect, so it is typically used as a material. can be used in industrial fields related to building materials. (Prior Art) Plastic laminates have been used as translucent roofing and wall panels in the field of building materials. As a representative example,
Flat plates or corrugated plates embedded with reinforcing materials such as metal nets and glass fiber nets are known. For example, a corrugated sheet made of woven metal wires with a wire mesh interposed therein, or a laminated body integrated with a plastic sheet with a metal porous plate interposed therein, are available in Japanese Utility Model Publications No. 57-47162 and No. 55-140432. etc. are disclosed. These so-called wire mesh plastic plates (flat plates or corrugated plates) are mainly intended for reinforcement, but they have the following problems. (1) If used outdoors for many years, the metal mesh will rust and become less transparent, impairing its aesthetic appearance and lighting.
Strength also decreases. (2) Even though it is a metal mesh, it lacks luster and is less effective at reflecting solar heat and blocking heat. (3) Due to embedded metal, it is heavy and has poor work efficiency when installed in high places (e.g. roofs).
(4) Metal wires are exposed in the form of needles at the cut ends of continuous long products manufactured in factories, which can easily cause injuries to workers. Also commercially available are laminate flat plates or corrugated plates in which a lattice-like glass fiber network is sandwiched between two transparent or translucent thermoplastic hard plastic plates. This uses glass fibers to reinforce the strength of the plastic, and the lattice-like texture gives it an aesthetic appearance, but it does not provide any special functionality in terms of reflecting solar heat or blocking heat rays. Examples of such a laminate include Utility Model Application No. 53-149072 and Utility Model Application No. 57-171642. (Problem to be solved by the invention) The problem to be solved by the present invention is in the technical field of lightweight wired plastic plates that can be used for building materials such as roofing sheets, and which has the effect of blocking heat rays while maintaining visible light transparency. The aim is to realize an improved laminate. (Means for Solving the Problems) The present inventor has developed three layers: two transparent or translucent thermoplastic hard plastic plates and a glass fiber mesh intermediate layer with a metal thin film on the surface. By inventing a plastic laminate with an integrated layer structure, we have solved the problems of wire mesh reinforced plastic plates conventionally used in the field of building materials. A typical embodiment thereof is a corrugated rigid vinyl chloride building material with a thin aluminum film coated glass fiber mesh, which can be supplied in standard sizes (for example, 900 x 1800 mm). In this way, the product of the present invention is a hard laminate that can be handled as a plate with a thickness of about 1 mm, which is made by sandwiching a metal-coated glass fiber mesh between two extruded sheets of translucent hard thermoplastic resin and fusing them together. It's a normal shape. If the laminate of the present invention is plate-shaped as a whole,
It may be corrugated or flat. Laminates of corrugated plates are often used because they provide the necessary stiffness even at relatively small thicknesses. The metal thin film may be aluminum, which is commonly used. As the plastics, thermoplastics such as polyvinyl chloride resin, acrylic resin, polycarbonate resin, etc. are used. The product of the present invention needs to have enough rigidity to be called a "plate" in the ordinary sense of the word, so hard plastic is used as the material, and the thickness of the product is usually about 0.5 mm or more. Although the two plastic plates may be used in an appropriate combination of different types of plastic plates, it is preferable to use the same type of plastic plates in order to increase the density and strength. The thickness of the plastic veneer can be a thin plate around 0.4 mm or a thick plate around 1.6 mm.
The thickness of the two sheets may be different depending on the strength and other requirements. The present invention only needs to have a structure in which two plate layers and a mesh layer in between are integrated, and if necessary, another pair of mesh layers and a plate layer may be added, etc. It can also be implemented in a mode in which the following configuration is added. The glass fiber mesh used in the present invention includes not only so-called glass fibers but also inorganic fibers such as rock wool and heat-resistant synthetic fibers. In short, it is possible to use fibers that are lighter than metal mesh, do not rust, have heat resistance that does not break at the extrusion temperatures of plastics, and have weather resistance that can be used as building materials. The metal thin film provided on the surface of the fibers constituting the network can be formed by chemical plating, vacuum deposition, sputtering, or the like. Economically,
Although the vapor deposition method is advantageous, the chemical plating method is preferred from the viewpoint of its ability to thicken the film. The metal to be plated is usually aluminum, tin, etc., and aluminum is preferred. For example, 50 to 400 heat-resistant fibers having a metal thin film on the surface are converged to have a fiber diameter of about 0.3 to 0.8 mm (particularly 0.1 to 0.2 mm). The convergent fiber diameter can be appropriately determined depending on the shape of the net. The shape of the net-like body may be rhombic, square, rectangular, etc., but a lattice-like shape is preferable from the viewpoint of vertical and horizontal dimensional stability. The mesh can be formed by knitting with plain weave, twill weave, leno weave, etc.
After knitting, it is preferable that the net be treated with a binding agent (adhesive) in order to prevent deformation and improve adhesion in post-treatment. Suitable sizing agents include those containing polyurethane-based, epoxy-based, polyamide-based, polyvinyl chloride-based, etc. as a main component. The size of the mesh, that is, the interval between the fiber bundles, is usually about 1 to 8 mm, preferably 1.5 to 4 mm. When configuring a laminate using polyvinyl chloride resin plates, aluminum is particularly susceptible to deterioration due to moisture and tends to become dull or transparent. In order to improve the water resistance of aluminum, it is desirable to treat the metal layer with a water resistant adhesive (see Utility Model Application Publication No. 58-151036). Suitable adhesives include polyurethane, polyamide, and ethylene.
Those containing an adhesive such as a vinyl acetate copolymer system as a main component are preferred. As a treatment method, a known coating method can be used, and for example, dipping treatment using a solvent can be mentioned as a preferable method. The plastic laminate of the present invention is a plate-like product having enough rigidity to be used as a building material, for example, for outdoor terraces, balconies, carports, arcades, garages, etc., for wind and rain protection and lighting roofs. Suitable for lighting side walls, skylights, etc. The laminate of the present invention is produced between two transparent or translucent hard thermoplastic plates by a known bonding method such as wet lamination, dry lamination, extrusion lamination, or hot pressing. Sandwiching a glass fiber mesh with a thin metal film on the surface,
It is sufficient to stack the three layers and integrate them. The heating and pressurizing conditions are selected to ensure a sufficiently strong bonding and integration. A desirable method is extrusion lamination, in which the plastic extruded from the extruder in a plate shape is laminated on both sides of the glass fiber network while it is still soft, while it is moving in accordance with the extrusion speed. be. It is also possible to laminate a sheet of extruded plastic on one side of a stack of a glass fiber mesh and a plastic sheet. Further, in order to form the material into a wave shape, known techniques such as an embossing method and a forming method using forming rolls can be used. In the present invention, it is possible to use a plastic plate pre-mixed with an ultraviolet absorber, to impart weather resistance by applying or adhering an ultraviolet absorber to the surface, and to provide a surfactant layer on the surface of the laminate plate. It goes without saying that known performance improvement techniques such as creating a state in which condensation is less likely to occur can be applied. (Operations and Effects of the Invention) The laminate of the present invention reflects light rays by the metal thin film reflective layer on the surface of the net provided inside the laminate, and the transmission and absorption of the reflected light within the plastics. It is thought that the transmission effect from the laminate, the reverse radiation effect from the surface of the laminate, etc. are combined, and as a result, heat rays are largely blocked without significantly lowering the visible light transmittance as a whole. Although the product of the present invention has a large heat-blocking effect, it has almost the same lighting performance as conventional products, so it can be used as a material for lighting roofs and lighting side walls of outdoor terraces, balconies, carports, arcades, garages, etc. It can be widely used for roofing materials for simple greenhouses at beaches, farmhouses, corral boards for pigsty, etc. The exterior has a checkered pattern and is aesthetically pleasing. In particular, it does not rust during long-term use unlike conventional laminate boards with wire mesh, and problems such as decreased transparency, loss of aesthetics and lighting, and decreased strength are eliminated. In addition, it is lighter in weight than a wire mesh board and is easier to install. It also has a heat retention effect,
It can also be used to prevent heat radiation in heated houses, etc. The effects of using glass fiber as the intermediate layer of the laminate, such as reinforcement of plastic, lighter weight than wire mesh, and no quality deterioration due to rust, are naturally exhibited in the present invention. The glass fibers in the present invention are not in a separate state like non-woven fabrics, but are bundled to form a net, thereby ensuring a network through which visible light passes. The plastic plates sandwiching the middle layer are thick enough to be handled as building materials and are made of hard thermoplastic resin, making them convenient for making products in which the three layers are heat-fused together by extrusion molding. . Examples will be explained below. FIG. 1 is a partially cutaway perspective view of a plastic laminate of the present invention having a corrugated plate shape. One plate, which will be the outside of the laminate, has a thickness of 0.4 mm.
A transparent rigid polyvinyl chloride sheet (conventional extrusion molding method) is used. The mesh that forms the middle layer is made by converging glass fibers chemically plated with aluminum into warp threads of 0.8 mm and weft threads of 0.4 mm, with thread spacing of 3.9 mm in both length and width, and its thickness is 0.25 mm. To this, ethylene-vinyl acetate copolymer (vinyl acetate 15
%) by a solution dipping method, and continuously supplied by layering it with the polyvinyl chloride thin plate. A transparent rigid polyvinyl chloride thin plate that had just been extruded to a thickness of 0.4 mm was laminated to the net-like body side of this material, and the layers were laminated to a thickness of about 0.8 mm to form an integrated structure. The die temperature was 210°C, and the temperature of the cooling roll used for lamination was 157°C.
The obtained flat plate laminate is made into a pitch of 32 using a corrugating machine.
mm, and the valley depth was 9 mm. Table 1 shows the results of measuring the heat shielding rate of this laminate corrugated plate using the apparatus shown in FIG. Here, the heat shielding rate is defined by the following formula. Temperature unit is °C Heat shielding rate E (%) = T B - T C / T B - T A × 100 T A Measuring chamber temperature T B Blank experiment equilibrium temperature T C Equilibrium temperature when sample is attached The average light transmittance measured with a spectrophotometer from 420 nm to 820 nm is also shown in Table 1.
【表】
第1表には、本発明品による測定値と従来品の
ガラスネツト入り透明硬質ポリ塩化ビニル波板、
即ち形状は本発明品と同じで金属薄膜化処理をし
ていないものについての測定値を併記した。
本発明品は、ネツトの部分が金属薄膜により不
透明になるので、実施例に示した寸法で、面積比
から単純に計算すると、光線透過率が48%になる
と予測される。しかし、実測値は61.3%と透明な
ガラス繊維ネツトを用いた場合とあまり変わらな
い良好な透過率を示す。これは金属薄膜からの反
射光線が採光に寄与する作用によるものとして理
解できる。
可視光透過率が60%台に維持されているにも拘
らず、波長の長い熱線については遮熱率が従来品
の1.6倍以上の44%となり、極めて効果が大きい
ことは驚くべきことである。
なお、平衡温度に達した後、熱源を遮断し、放
熱により温度が低下する速度を測定したところ、
元の温度になるのに、本発明品は90分を要したの
に対し、従来品では70分で本発明の波板は保温性
の点でも優れていることを示している。また、本
発明の波板のポリ塩化ビニル面を光線に向けて促
進耐候テスト(サンシヤインカーボンアーク型の
ウエザーメータ)にかけたところ、1000時間でも
何等変化はなかつた。また、上記波板から幅25
mm、長さ10cmの短冊状サンプルを切り出し、パン
チで中央部に孔をあけ、これを60℃の温水に8時
間浸漬後、16時間放冷のサイクルによる合計800
時間の耐水テストにかけたが、全く異常が認めら
れなかつた。[Table] Table 1 shows the measured values of the product of the present invention and the conventional product of transparent rigid polyvinyl chloride corrugated sheet with glass net.
That is, the measured values for a product having the same shape as the product of the present invention but not subjected to metal thinning treatment are also shown. In the product of the present invention, the net portion is made opaque by the metal thin film, so if the dimensions shown in the example are simply calculated from the area ratio, the light transmittance is predicted to be 48%. However, the measured value was 61.3%, which is a good transmittance that is not much different from the case where a transparent glass fiber net is used. This can be understood to be due to the effect that the reflected light from the metal thin film contributes to lighting. Although the visible light transmittance is maintained in the 60% range, the heat shielding rate for long wavelength heat rays is 44%, which is more than 1.6 times that of conventional products, and it is surprising that it is extremely effective. . In addition, after reaching the equilibrium temperature, the heat source was shut off and the rate at which the temperature decreased due to heat radiation was measured.
It took 90 minutes for the product of the present invention to reach the original temperature, whereas it took 70 minutes for the conventional product to reach the original temperature. Further, when the polyvinyl chloride surface of the corrugated plate of the present invention was subjected to an accelerated weathering test (Sunshine carbon arc type weather meter) with the polyvinyl chloride surface facing a light beam, no change was observed even after 1000 hours. Also, width 25 from the above corrugated plate
A strip sample with a length of 10 cm and a length of 10 cm was cut out, a hole was punched in the center, and the sample was immersed in hot water at 60°C for 8 hours, then left to cool for 16 hours.
I subjected it to a water resistance test for several hours, but no abnormalities were observed.
第1図は、本発明の一例を示す波板状積層体の
部分切り欠き斜視図、第2図は、遮熱率測定に使
用した装置の説明断面図である。
記号の説明、1及び2……熱可塑性硬質プラス
チツクス板、3……表面に金属薄膜を設けたガラ
ス繊維網状体。
FIG. 1 is a partially cutaway perspective view of a corrugated laminate showing an example of the present invention, and FIG. 2 is an explanatory cross-sectional view of an apparatus used for measuring the heat shielding rate. Explanation of symbols, 1 and 2...Thermoplastic hard plastic plate, 3...Glass fiber network with a metal thin film provided on the surface.
Claims (1)
チツクス板の層と、表面に金属薄膜を設けたガラ
ス繊維製の網状体で構成された中間層とがあり、
これらの3層が一体化されていることを特徴とす
るプラスチツクス積層体 2 プラスチツクス板が厚さ0.4〜1.6mmであるこ
とを特徴とする特許請求の範囲第1項記載のプラ
スチツクス積層体 3 建材用の積層体であることを特徴とする特許
請求の範囲第1項記載のプラスチツクス積層体 4 積層体が波状板であることを特徴とする特許
請求の範囲第1項記載のプラスチツクス積層体。[Claims] 1. There is a layer of two transparent or translucent thermoplastic hard plastic plates, and an intermediate layer composed of a glass fiber mesh with a metal thin film on the surface,
Plastic laminate 2 characterized in that these three layers are integrated. Plastic laminate according to claim 1, characterized in that the plastic plate has a thickness of 0.4 to 1.6 mm. 3. The plastics laminate according to claim 1, which is a laminate for building materials. 4. The plastics laminate according to claim 1, wherein the laminate is a corrugated plate. laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4907086A JPS62204935A (en) | 1986-03-06 | 1986-03-06 | Plastic laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4907086A JPS62204935A (en) | 1986-03-06 | 1986-03-06 | Plastic laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62204935A JPS62204935A (en) | 1987-09-09 |
JPH0555305B2 true JPH0555305B2 (en) | 1993-08-16 |
Family
ID=12820817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4907086A Granted JPS62204935A (en) | 1986-03-06 | 1986-03-06 | Plastic laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62204935A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097460A (en) * | 2004-08-30 | 2006-04-13 | Takiron Co Ltd | Roof structure |
JP2007016445A (en) * | 2005-07-06 | 2007-01-25 | Takiron Co Ltd | Roof structure |
JP2007040046A (en) * | 2005-08-05 | 2007-02-15 | Asahi Glass Matex Co Ltd | Roof material |
JP2014062405A (en) * | 2012-09-21 | 2014-04-10 | Lixil Corp | Exterior building panel and method for manufacturing the sane |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711033B2 (en) * | 1974-08-22 | 1982-03-02 | ||
JPS60257240A (en) * | 1984-06-05 | 1985-12-19 | 旭硝子株式会社 | Conductive low shrinkable resin molding material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711033U (en) * | 1980-06-23 | 1982-01-20 |
-
1986
- 1986-03-06 JP JP4907086A patent/JPS62204935A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711033B2 (en) * | 1974-08-22 | 1982-03-02 | ||
JPS60257240A (en) * | 1984-06-05 | 1985-12-19 | 旭硝子株式会社 | Conductive low shrinkable resin molding material |
Also Published As
Publication number | Publication date |
---|---|
JPS62204935A (en) | 1987-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514428A (en) | Spacer fabric with interconnected rib fibers in glazing element | |
US4226910A (en) | Energy control sheet having insulative properties | |
FI75877C (en) | VAEXTHUSGARDIN. | |
EP3357683B1 (en) | Room darkening material and architectural covering made from same | |
CA1116069A (en) | Solar control film having insulative properties | |
US20050014429A1 (en) | Wire mesh panel and method | |
US20070010147A1 (en) | Flexible glass fiber weave | |
US20050048231A1 (en) | Glazing panels | |
GB2025501A (en) | Light-transmitting roofing or cladding panel | |
JPH0555305B2 (en) | ||
CN211228971U (en) | High-strength polyester glass fiber honeycomb composite board | |
GB2117701A (en) | Laminate | |
CN214983795U (en) | Plant roofing and use polymer waterproofing membrane | |
GB2247040A (en) | Glazing panels and materials | |
CN101994357A (en) | Metal laminated composite glass | |
KR200350887Y1 (en) | structural insulation material | |
CN201519033U (en) | No-wash antiflaming reflection energy-saving curtain | |
WO2001077039A1 (en) | Reinforced glass panel | |
US20070031630A1 (en) | Bamboo building components | |
EP0146394B1 (en) | Greenhouse provided with a demountable thermal insulating screen | |
CN2418171Y (en) | Anti-radiation heat-insulation composite section material | |
DE1955953A1 (en) | Heat insulating material | |
FI87480B (en) | LAJUSGENOMSLAEPPANDE VAERMEISOLERING. | |
JPS6399935A (en) | Heat-shielding bright sheet | |
JPH01265915A (en) | Heat-insulating curtain or the like |