JPH0479186B2 - - Google Patents
Info
- Publication number
- JPH0479186B2 JPH0479186B2 JP57052122A JP5212282A JPH0479186B2 JP H0479186 B2 JPH0479186 B2 JP H0479186B2 JP 57052122 A JP57052122 A JP 57052122A JP 5212282 A JP5212282 A JP 5212282A JP H0479186 B2 JPH0479186 B2 JP H0479186B2
- Authority
- JP
- Japan
- Prior art keywords
- jsi
- phase
- polarity
- point
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000284 extract Substances 0.000 claims description 2
- 238000000605 extraction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/233—Demodulator circuits; Receiver circuits using non-coherent demodulation
- H04L27/2338—Demodulator circuits; Receiver circuits using non-coherent demodulation using sampling
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
Description
【発明の詳細な説明】
(A) 発明の技術分野
本発明は、位相変調信号受信装置、特に、2相
位相変調時に(X,jY)平面上の点(Sr+jSi)
と点(−Sr−jSi)とを判定点とした信号を受信
するようにし、(X,jY)平面上の点(Sr+jSi)
と点(−Sr+jSi)と点(−Sr−jSi)と点(Sr−
jSi)とを判定点とする4相位相変調信号の受信
処理と処理態様を共通化するようにした位相変調
信号受信装置に関するものである。[Detailed Description of the Invention] (A) Technical Field of the Invention The present invention relates to a phase modulation signal receiving device, and in particular, to a phase modulation signal receiving device, in particular, a point (Sr+jSi) on the (X, jY) plane during two-phase phase modulation.
and the point (-Sr-jSi) as the decision point is received, and the point (Sr+jSi) on the (X, jY) plane is received.
and point (−Sr+jSi), point (−Sr−jSi), and point (Sr−
The present invention relates to a phase modulated signal receiving device in which a receiving process and a processing mode of a four-phase phase modulated signal using jSi) as a decision point are shared.
(B) 技術の背景と問題点
従来から位相変調によるデータ伝送において
は、V22(CCITT)においては1200bit/sの場合
に第1図A図示の如く4値の判定点をもつ4相位
相変調信号とされ、また600bit/sの場合に第1
図B図示の如く2値の判定点をもつ2相位相変調
信号とされる。またV26(CCITT)においては
2400bit/sの場合に4相位相変調信号とされ、
1200bit/sの場合に2相位相変調信号とされる。(B) Technical background and problems Traditionally, in data transmission using phase modulation, V 22 (CCITT) uses four-phase phase modulation with four decision points as shown in Figure 1A at 1200 bit/s. signal, and in the case of 600 bit/s, the first
As shown in Figure B, the signal is a two-phase phase modulation signal having binary decision points. Also in V 26 (CCITT)
In the case of 2400 bit/s, it is considered as a four-phase phase modulation signal,
In the case of 1200 bit/s, it is a two-phase phase modulation signal.
そして、第1図A図示の場合には、受信信号の
座標値Srの極性と座標値Siの極性とにもとづい
て、(+,+)の場合には図示の面Aに位置するも
のと判定され、(−,+)の場合には面B上に位置
するものと判定され、(−,−)の場合には面C上
に位置するものと判定され、(+,−)の場合には
面D上に位置するものと判定される。また第1図
B図示の場合には、受信信号の座標値Srの極性
にもとづいて、(+)の場合には面A+D上に位
置するものとされ、(−)の場合には面(B+C)
上に位置するものと判定される。 In the case shown in FIG. 1A, based on the polarity of the coordinate value Sr and the polarity of the coordinate value Si of the received signal, in the case of (+, +), it is determined that the position is on the plane A shown in the figure. In the case of (-, +), it is determined that it is located on surface B, in the case of (-, -), it is determined that it is located on surface C, and in the case of (+, -), it is determined that it is located on surface B. is determined to be located on plane D. In addition, in the case shown in FIG. 1B, based on the polarity of the coordinate value Sr of the received signal, if it is (+), it is assumed to be located on plane A+D, and if it is (-), it is assumed that it is located on plane (B+C). )
It is determined that it is located above.
従来上述の如く、4相位相変調信号における判
定点と2相位相変調信号における判定点とが、い
わば異なる次元の平面に対応するものであつたた
めに、受信処理プログラムが異なるものとなる難
点があつた。 Conventionally, as mentioned above, the decision point in a four-phase phase modulation signal and the decision point in a two-phase phase modulation signal corresponded to planes of different dimensions, so there was a problem that the reception processing programs were different. Ta.
(C) 発明の目的と構成
本発明は、上記の点を解決することを目的とし
ている。即ち、本発明の場合、後述する如く、4
相位相変調に関して判定点が第2図A図示の黒点
に示す如きものとするとき、2相位相変調に関し
て判定点を第2図B図示の黒点に示す如きものと
することによつて、受信処理プログラムを実質上
共通化するようにすることを目的としている。そ
してそのため、本発明の位相変調信号受信装置
は、受信信号をデジタル信号に変換するA/D変
換部、
プロセツサ側から基準値を受け取ると共に上記
A/D変換された結果にもとづいて演算処理を行
う演算部、
および該演算部からの演算結果を受信して受信
データの判定を行うプロセツサ
を有する位相変調信号受信装置において、
上記演算部は、(X,jY)平面上における点
(Sr+jSi)と点(−Sr+jSi)と点(−Sr−jSi)
と点(Sr−jSi)とを判定点にもつ4相位相変調
信号および(X,jY)平面上における点(Sr+
jSi)と点(−Sr−jSi)とを判定点にもつ2相位
相変調信号を少なくとも受信するよう構成されて
なり、
かつ当該演算部は上記4相位相変調信号の場合
と上記2相位相変調信号の場合とのいずれに対し
ても同じように上記受信信号にもとづいて値Sr
の極性と値Siの極性と値(Sr+Si)の極性とを抽
出して上記プロセツサ側に転送するよう構成さ
れ、
上記プロセツサは上記4相位相変調時のデータ
受信において値Srの極性と値Siの極性との組み合
わせにもとづいて上記点(Sr+jSi)と点(−Sr
+jSi)と点(−Sr−jSi)と点(Sr−jSi)とに対
応した4値の受信データの判定を行いかつ上記2
相位相変調時のデータ受信において記値Srの極
性と値Siの極性とにもとづいて上記点(Sr+jSi)
と点(−Sr−jSi)とに対応した2値の受信デー
タの判定を行い、上記2相位相変調時の点(Sr
+jSi)と点(−Sr−jSi)とを上記4相位相変調
時の上記4つの点のうちの2つと同じ位相範囲と
し値Srの極性と値Siの極性とのみでデータの識別
ができないとき、値(Sr+Si)の極性にもとづい
て受信データの判定を行うようにしたことを特徴
としている。以下図面を参照しつつ説明する。(C) Object and structure of the invention The present invention aims to solve the above points. That is, in the case of the present invention, as described later, 4
When the decision points for phase modulation are as shown by the black dots in FIG. 2A, the reception processing is The purpose is to make programs virtually common. Therefore, the phase modulated signal receiving device of the present invention receives a reference value from an A/D converter that converts a received signal into a digital signal, and a processor side, and performs arithmetic processing based on the A/D converted result. In a phase modulated signal receiving device having an arithmetic unit and a processor that receives the arithmetic result from the arithmetic unit and determines received data, the arithmetic unit calculates a point (Sr+jSi) and a point on the (X, jY) plane. (−Sr+jSi) and point (−Sr−jSi)
and the point (Sr−jSi) as the decision point and the point (Sr+jSi) on the (X, jY) plane.
jSi) and the point (-Sr-jSi) as decision points, and the calculation unit is configured to receive at least a two-phase phase modulation signal having judgment points of the four-phase phase modulation signal and the two-phase phase modulation signal. In the same way as in the case of a signal, the value Sr is calculated based on the above received signal.
The polarity of the value Sr, the polarity of the value Si, and the polarity of the value (Sr+Si) are extracted and transferred to the processor side, and the processor extracts the polarity of the value Sr and the polarity of the value Si when receiving data during the four-phase phase modulation. Based on the combination with polarity, the above point (Sr + jSi) and point (−Sr
+jSi), the point (-Sr-jSi), and the point (Sr-jSi)
When receiving data during phase modulation, the above point (Sr + jSi) is determined based on the polarity of the recorded value Sr and the polarity of the value Si.
The binary received data corresponding to the point (-Sr-jSi) is determined, and the point (Sr
+jSi) and point (-Sr-jSi) in the same phase range as two of the four points mentioned above during the four-phase phase modulation, and when data cannot be identified only by the polarity of the value Sr and the polarity of the value Si. , the reception data is determined based on the polarity of the value (Sr+Si). This will be explained below with reference to the drawings.
(D) 発明の実施例
第2図は本発明に用いる判定点を説明する説明
図、第3図は本発明の一実施例構成を示す。(D) Embodiment of the Invention FIG. 2 is an explanatory diagram for explaining determination points used in the present invention, and FIG. 3 shows the configuration of an embodiment of the present invention.
4相位相変調信号に関して判定点が第2図A図
示の如く、点(Sr+jSi)、点(−Sr+jSi)、点
(−Sr−jSi)、点(Sr−jSi)とするとき、本発明
の一実施例として2相位相変調信号に関して判定
点が第2図B図示の如く点(Sr+jSi)と点(−
Sr−jSi)とに選ばれる。このようにすることに
よつて、判定点に対応した点を受信データに対応
づけるに当つて、実質上同じ位相範囲を取り出す
形となり、受信処理プログラムが第2図A図示の
場合と共通化を図ることが可能となる。 When the decision points for the four-phase phase modulation signal are the point (Sr+jSi), the point (-Sr+jSi), the point (-Sr-jSi), and the point (Sr-jSi) as shown in FIG. As an example, the decision points for a two-phase phase modulation signal are the point (Sr+jSi) and the point (-) as shown in FIG. 2B.
Sr−jSi). By doing this, when associating points corresponding to judgment points with received data, substantially the same phase range is extracted, and the reception processing program can be made common to the case shown in FIG. 2A. It becomes possible to achieve this goal.
ただ第2図B図示の如く判定点が定められた場
合には、第2図A図示の平面A,B,C,Dのい
ずれかを判定する所の(i)値Srの極性と(ii)値Siの極
性とのみでは、第2図B図示の平面B−1,B−
2,D−1,D−2を識別することができないと
き、マイクロプロセツサ3は、値(Sr+Si)の極
性にもとづいて受信データの判定を行う。このた
め、本発明の一実施例としては、第3図図示の如
く、値(Sr+Si)の極性を通知するようにされ
る。即ち、4相位相変調信号を受信する場合も2
相位相変調信号を受信する場合も、両者を区別す
ることなく、Srの極性と、Siの極性と、(Sr+Si)
の極性とを抽出するようにすると共に、2相位相
変調信号を受信したときの2つの点(Sr+jSi)
と点(−Sr−jSi)とを、4相位相変調信号を受
信したときの4つの点に対応する値、例えば、
「00」と「11」とみなして以降の処理を行うよう
にすればよい。 However, when the determination point is determined as shown in FIG. 2B, (i) the polarity of the value Sr and (ii) where any of planes A, B, C, and D shown in FIG. ) value Si, the planes B-1 and B- shown in FIG.
2, D-1, and D-2, the microprocessor 3 judges the received data based on the polarity of the value (Sr+Si). Therefore, in one embodiment of the present invention, as shown in FIG. 3, the polarity of the value (Sr+Si) is notified. In other words, when receiving a 4-phase phase modulation signal, 2
When receiving a phase modulation signal, the polarity of Sr, the polarity of Si, and (Sr+Si) are distinguished without distinguishing between the two.
At the same time, the two points (Sr + jSi) when the binary phase modulation signal is received are
and the point (-Sr-jSi) are values corresponding to the four points when the quadrature phase modulation signal is received, for example,
It is sufficient to perform the subsequent processing by regarding them as "00" and "11".
第3図は本発明の一実施例構成を示し、図中の
符号1はA/D変換部、2は演算部、3はマイク
ロプロセツサであつて判定を行うもの、4は座標
値抽出回路部、5は(Sr+Si)極性判別部、6は
Sr極性・Si極性判別部を表している。 FIG. 3 shows the configuration of an embodiment of the present invention, in which reference numeral 1 is an A/D conversion section, 2 is an arithmetic section, 3 is a microprocessor that performs judgment, and 4 is a coordinate value extraction circuit. part, 5 is (Sr+Si) polarity discrimination part, 6 is
It represents the Sr polarity/Si polarity discrimination section.
図示実施例においては、A/D変換部によつて
デジタル信号に変換された受信信号の座標値、即
ち(Sr+jSi)又は(−Sr+jSi)又は(−Sr−
jSi)又は(Sr−jSi)のいずれかである4相位相
変調時に対応する座標値、あるいは(Sr+jSi)
又は(−Sr−jSi)のいずれかである2相位相変
調時に対応する座標値を演算部2に供給する。演
算部2においては、上記いずれかの座標値が座標
値抽出回路部4に供給される形となる。座標値抽
出回路部4において、実数部Srと虚数部Siとに分
離され、更に値(Sr+Si)の極性を抽出すべく値
SrとSiとが加算器によつて加算される。なお図示
基準値は、4相位相変調信号受信の場合には、第
2図A図示の判定点を通知し、2相位相変調信号
受信の場合には、第2図B図示の判定点を通知す
るものと考えてよい。 In the illustrated embodiment, the coordinate values of the received signal converted into a digital signal by the A/D converter, that is, (Sr+jSi) or (-Sr+jSi) or (-Sr-
Coordinate values corresponding to four-phase phase modulation, which are either jSi) or (Sr−jSi), or (Sr+jSi)
or (-Sr-jSi), which corresponds to the coordinate value at the time of two-phase phase modulation, is supplied to the calculation unit 2. In the calculation section 2, one of the above coordinate values is supplied to the coordinate value extraction circuit section 4. In the coordinate value extraction circuit section 4, the real part Sr and the imaginary part Si are separated, and the value is further extracted to extract the polarity of the value (Sr+Si).
Sr and Si are added by an adder. Note that the illustrated reference value notifies the decision point shown in FIG. 2A in the case of receiving a four-phase phase modulation signal, and notifies the decision point shown in FIG. 2B in the case of receiving a two-phase phase modulation signal. You can think of it as something you do.
上記演算部2から、(i)(Sr+Si)の極性、(ii)
Srの極性、(iii)Siの極性を受信したマイクロプロセ
ツサは、4相位相変調信号受信時には判別部6を
用い、また2相位相変調信号受信時において判別
部6のみを用いて判定できない場合には判別部5
を用いて受信データを判定する。そして以降の処
理においては、4相位相変調信号受信時の信号
「00」、信号「01」、信号「11」、信号「10」の4つ
の信号のうち、2相位相変調信号受信時には信号
「00」と信号「11」とのみが受信されたものとみ
なすようにされる。 From the above calculation unit 2, (i) polarity of (Sr+Si), (ii)
The microprocessor that receives the polarity of Sr and (iii) the polarity of Si uses the discriminator 6 when receiving a four-phase phase modulation signal, and uses only the discriminator 6 when receiving a two-phase phase modulation signal, if the microprocessor cannot make a determination. Discrimination unit 5
Determine the received data using In the subsequent processing, among the four signals "00", "01", "11", and "10" when receiving the four-phase phase modulation signal, when receiving the two-phase phase modulation signal, the signal " Only the signals "00" and "11" are considered to have been received.
第3図図示において、演算部2が座標値抽出回
路部4として固有の処理回路をもつものとして説
明した。しかし、上記値(Sr+Si)の極性を得る
に当たつては次の如き乗算処理を行つて、実数部
の極性を抽出するようにしてもよい。即ち、
(Sr+jSi)(cos45゜−jsin45゜)
=1/√2(Sr+jSi)(1−j)
=1/√2{(Sr+Si)+j(Si−Sr)}
(E) 発明の効果
以上説明した如く、本発明によれば、4相位相
変調時の判定点の座標と2相位相変調時の判定点
の座標とが共に(Sr+jSi)なる形をもつている
ことのために、判定点に対応した点を受信データ
に対応づけるに当つて、実質上同じ位相範囲を取
り出すことが可能となり、プログラムを共通化す
ることが可能となる。 In FIG. 3, the calculation section 2 has been described as having its own processing circuit as the coordinate value extraction circuit section 4. However, in order to obtain the polarity of the value (Sr+Si), the following multiplication process may be performed to extract the polarity of the real part. That is, (Sr+jSi)(cos45゜−jsin45゜) =1/√2(Sr+jSi)(1−j) =1/√2 {(Sr+Si)+j(Si−Sr)} (E) Effect of the invention As explained above According to the present invention, since the coordinates of the decision point during four-phase phase modulation and the coordinates of the decision point during two-phase phase modulation both have the form (Sr+jSi), the coordinates of the decision point correspond to the decision point. When associating the detected points with the received data, it becomes possible to extract substantially the same phase range, and it becomes possible to use a common program.
第1図は従来の判定点を説明する説明図、第2
図は本発明に用いる判定点を説明する説明図、第
3図は本発明の一実施例構成を示す。
図中、1はA/D変換部、2は演算部、3はマ
イクロプロセツサ、4は座標値抽出回路部、5は
(Sr+Si)極性判別部、6はSr極性・Si極性判別
部を表す。
Fig. 1 is an explanatory diagram explaining conventional judgment points, and Fig. 2
The figure is an explanatory diagram for explaining determination points used in the present invention, and FIG. 3 shows the configuration of an embodiment of the present invention. In the figure, 1 is an A/D conversion section, 2 is a calculation section, 3 is a microprocessor, 4 is a coordinate value extraction circuit section, 5 is a (Sr+Si) polarity discrimination section, and 6 is an Sr polarity/Si polarity discrimination section. .
Claims (1)
換部、 プロセツサ側から基準値を受け取ると共に上記
A/D変換された結果にもとづいて演算処理を行
う演算部、 および該演算部からの演算結果を受信して受信
データの判定を行うプロセツサ を有する位相変調信号受信装置において、 上記演算部は、(X,jY)平面上における点
(Sr+jSi)と点(−Sr+jSi)と点(−Sr−jSi)
と点(Sr−jSi)とを判定点にもつ4相位相変調
信号および(X,jY)平面上における点(Sr+
jSi)と点(−Sr−jSi)とを判定点にもつ2相位
相変調信号を少なくとも受信するよう構成されて
なり、 かつ当該演算部は上記4相位相変調信号の場合
と上記2相位相変調信号の場合とのいずれに対し
ても同じように上記受信信号にもとづいて値Sr
の極性と値Siの極性と値(Sr+Si)の極性とを抽
出して上記プロセツサ側に転送するよう構成さ
れ、 上記プロセツサは上記4相位相変調時のデータ
受信において値Srの極性と値Siの極性との組み合
わせにもとづいて上記点(Sr+jSi)と点(−Sr
+jSi)と点(−Sr−jSi)と点(Sr−jSi)とに対
応した4値の受信データの判定を行いかつ上記2
相位相変調時のデータ受信において上記値Srの
極性と値Siの極性とにもとづいて上記点(Sr+
jSi)と点(−Sr−jSi)とに対応した2値の受信
データの判定を行い、上記2相位相変調時の点
(Sr+jSi)と点(−Sr−jSi)とを上記4相位相
変調時の上記4つの点のうちの2つと同じ位相範
囲とした ことを特徴とする位相変調信号受信装置。 2 上記2相位相変調時のデータ受信において上
記値Srの極性と値Siの極性とのみでデータの識別
ができないとき、値(Sr+Si)の極性にもとづい
て受信データの判定を行うようにしたことを特徴
とする特許請求の範囲第1項記載の位相変調信号
受信装置。[Scope of Claims] 1. An A/D converter that converts a received signal into a digital signal, an arithmetic unit that receives a reference value from a processor and performs arithmetic processing based on the A/D converted result, and the arithmetic operation. In a phase modulation signal receiving device having a processor that receives calculation results from a processor and determines received data, the calculation part calculates points (Sr+jSi), (−Sr+jSi) and points on the (X, jY) plane. (−Sr−jSi)
and the point (Sr−jSi) as the decision point and the point (Sr+jSi) on the (X, jY) plane.
jSi) and the point (-Sr-jSi) as decision points, and the calculation unit is configured to receive at least a two-phase phase modulation signal having judgment points of the four-phase phase modulation signal and the two-phase phase modulation signal. In the same way as in the case of a signal, the value Sr is calculated based on the above received signal.
The polarity of the value Sr, the polarity of the value Si, and the polarity of the value (Sr+Si) are extracted and transferred to the processor side, and the processor extracts the polarity of the value Sr and the polarity of the value Si when receiving data during the four-phase phase modulation. Based on the combination with polarity, the above point (Sr + jSi) and point (−Sr
+jSi), the point (-Sr-jSi), and the point (Sr-jSi)
When receiving data during phase modulation, the above point (Sr +
The binary reception data corresponding to the points (-Sr-jSi) and (-Sr-jSi) are determined, and the points (Sr+jSi) and (-Sr-jSi) at the time of the two-phase phase modulation are converted into the four-phase phase modulation. A phase modulated signal receiving device characterized in that the phase range is the same as two of the four points at the time. 2. When data cannot be identified based only on the polarity of the value Sr and the polarity of the value Si during data reception during the two-phase phase modulation described above, the received data is determined based on the polarity of the value (Sr + Si). A phase modulated signal receiving device according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5212282A JPS58170159A (en) | 1982-03-30 | 1982-03-30 | Receiver of phase modulated signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5212282A JPS58170159A (en) | 1982-03-30 | 1982-03-30 | Receiver of phase modulated signal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58170159A JPS58170159A (en) | 1983-10-06 |
JPH0479186B2 true JPH0479186B2 (en) | 1992-12-15 |
Family
ID=12906065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5212282A Granted JPS58170159A (en) | 1982-03-30 | 1982-03-30 | Receiver of phase modulated signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58170159A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068209A (en) * | 1973-10-18 | 1975-06-07 |
-
1982
- 1982-03-30 JP JP5212282A patent/JPS58170159A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068209A (en) * | 1973-10-18 | 1975-06-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS58170159A (en) | 1983-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3025384B2 (en) | Digital FM demodulator | |
US5052050A (en) | Direct conversion FM receiver | |
JP3856555B2 (en) | Phase angle detector and frequency discriminator using the same | |
US4656513A (en) | Data slicer circuit for separating and recovering digital teletext signals | |
JPH0479186B2 (en) | ||
JPS5918900B2 (en) | demodulator | |
EP0151394B1 (en) | Demodulator for ditital fm signals | |
JP3301033B2 (en) | Digital demodulator | |
JP3394788B2 (en) | Frequency discriminator | |
EP0801495A3 (en) | Data transmission apparatus | |
JPS6135742B2 (en) | ||
JP3133654B2 (en) | Television signal format discrimination circuit | |
JP2555140B2 (en) | Sampling phase controller | |
JP2890105B2 (en) | QAM demodulator | |
JP3312658B2 (en) | Clock phase error detection method and circuit | |
JPS6012841A (en) | Method for discriminating code of data transmission | |
JPS6010855A (en) | Code deciding method in data transmission | |
JP2804546B2 (en) | Color signal contour correction circuit | |
JPH0462618B2 (en) | ||
KR0120592Y1 (en) | Line discriminating circuit of image signal | |
JPH0637288Y2 (en) | Signal processing circuit of gyro sync transmitter | |
JPH0775287B2 (en) | FM demodulator | |
JPS63193770A (en) | Method and device for processing image | |
JPH06105898B2 (en) | Interference compensation circuit | |
JPH0366244A (en) | Demodulator |