JPH0479118B2 - - Google Patents

Info

Publication number
JPH0479118B2
JPH0479118B2 JP61071128A JP7112886A JPH0479118B2 JP H0479118 B2 JPH0479118 B2 JP H0479118B2 JP 61071128 A JP61071128 A JP 61071128A JP 7112886 A JP7112886 A JP 7112886A JP H0479118 B2 JPH0479118 B2 JP H0479118B2
Authority
JP
Japan
Prior art keywords
contact
shorting element
conduit
impedance matching
matching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071128A
Other languages
Japanese (ja)
Other versions
JPS62229787A (en
Inventor
Koji Ito
Hisashi Fukushima
Noryuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61071128A priority Critical patent/JPS62229787A/en
Publication of JPS62229787A publication Critical patent/JPS62229787A/en
Publication of JPH0479118B2 publication Critical patent/JPH0479118B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は核融合装置用高周波加熱装置等の大電
力高周波伝送線路のインピーダンス整合器に係
り、特に無接触型インピーダンス整合器に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an impedance matching device for a high-power, high-frequency transmission line such as a high-frequency heating device for a nuclear fusion device, and particularly to a non-contact type impedance matching device. Regarding.

(従来の技術) 核融合装置のプラズマ追加熱の一手段として高
周波加熱法が採用されている。高周波加熱は、高
周波電磁エネルギーをプラズマに吸収させてプラ
ズマの温度をあげる方法で、使用する周波数によ
つて各種の方式があり、その1つにイオンサイク
ロトロン周波数帯(以下ICRFと略称する)高周
波加熱がある。
(Prior Art) A high-frequency heating method is employed as a means of adding plasma heat to a nuclear fusion device. High-frequency heating is a method of increasing the temperature of plasma by absorbing high-frequency electromagnetic energy into the plasma.There are various methods depending on the frequency used, one of which is high-frequency heating in the ion cyclotron frequency band (hereinafter abbreviated as ICRF). There is.

ICRF高周波加熱装置は第3図に示すように、
高出力(MW級)の100MHz帯の高周波を発生さ
せる高周波発振系1、この高周波発振系1から発
生した高周波出力を伝送する同軸管で構成された
伝送系2、この伝送系2に接続され高周波出力を
真空容器内のプラズマ4に注入する結合系3から
構成されている。
As shown in Figure 3, the ICRF high-frequency heating device
A high-frequency oscillation system 1 that generates high-power (MW class) high-frequency waves in the 100MHz band; a transmission system 2 composed of coaxial tubes that transmits the high-frequency output generated from this high-frequency oscillation system 1; It consists of a coupling system 3 which injects the power into a plasma 4 in a vacuum vessel.

結合系3は先端に高周波出力を放射するアンテ
ナ5を有し、上記伝送系2との接続部にはインピ
ーダンス整合器が設置され、このインピーダン
ス整合器と上記アンテナ5間は伝送系2と同等
の同軸管7で接続されている。上記インピーダン
ス整合器は、結合系3やプラズマ4の負荷イン
ピーダンスと、高周波発振系1や伝送系2の特性
インピーダンスを等しくして、反射を生じないよ
うにするためのものである。
The coupling system 3 has an antenna 5 at its tip that radiates high-frequency output, and an impedance matching device 6 is installed at the connection with the transmission system 2, and the connection between the impedance matching device 6 and the antenna 5 is connected to the transmission system 2. They are connected by an equivalent coaxial tube 7. The impedance matching device 6 is used to equalize the load impedance of the coupling system 3 and plasma 4 and the characteristic impedance of the high frequency oscillation system 1 and transmission system 2 to prevent reflection from occurring.

第4図はインピーダンス整合器の原理を説明
するための回路図で、負荷L0に対して長さl1,l2
の短絡線路を並列接続する時、この様な並列線路
をスタブといい、2つのスタブの長さl1,l2を調
節してインピーダンス整合を図ることを2重スタ
ブ整合と言う。核融合装置用高周波加熱装置で用
いられるインピーダンス整合器は、一般に2重
スタブ方式で、プラズマ4とアンテナ5との結合
条件に応じてl1,l2を速やかに調節してインピー
ダンスの整合を図るようにしたものである。
FIG. 4 is a circuit diagram for explaining the principle of the impedance matching device 6 , in which the lengths l 1 and l 2 are connected to the load L 0 .
When connecting short-circuited lines in parallel, such parallel lines are called stubs, and adjusting the lengths l 1 and l 2 of the two stubs to achieve impedance matching is called double stub matching. The impedance matching device 6 used in a high-frequency heating device for a nuclear fusion device is generally a double stub type, and matches the impedance by quickly adjusting l 1 and l 2 according to the coupling conditions between the plasma 4 and the antenna 5. This was done to achieve this goal.

ところで、従来インピーダンス整合器の一例
としては第5図の縦断面図に示すようなものが使
用されている。第5図において、8は内部導管、
9はこの内部導管8と同軸の外部導管、10は上
記内部導管8と上記外部導管9とで形成された環
状空間に挿入された短絡素子で、この内外周面に
はコンタクトフインガー11が装着され、内部導
管8および外部導管9と電気的に接触しながら往
復動可能になつている。短絡素子10の反負荷側
には、この短絡素子10を往復動させるための駆
動系12が装備されており、短絡素子10と駆動
12とは駆動軸13で連結されている。
By the way, as an example of the conventional impedance matching device 6 , one shown in the vertical cross-sectional view of FIG. 5 is used. In FIG. 5, 8 is an internal conduit;
9 is an external conduit coaxial with the internal conduit 8; 10 is a shorting element inserted into the annular space formed by the internal conduit 8 and the external conduit 9; contact fingers 11 are attached to the inner and outer peripheral surfaces of this element; The inner conduit 8 and the outer conduit 9 can be reciprocated while being in electrical contact with each other. A drive system 12 for reciprocating the short circuit element 10 is provided on the opposite load side of the short circuit element 10, and the short circuit element 10 and the drive system 12 are connected by a drive shaft 13.

(発明が解決しようとする問題点) このような構成のインピーダンス整合器は、
外部導管9と内部導管8の内外周面にコンタクト
フインガー11が電気的に接触しながら短絡素子
10を往復動させるため、小電力で短絡素子の駆
動速度が低く、かつ使用頻度の少い場合には大き
な問題を生じないが、核融合装置用高周波加熱装
置のような大電力で高速駆動かつ多頻度の場合に
は次のような不具合を生じる虞れがある。大電
流がコンタクトフインガー11に流れるため、接
触抵抗によるジユール損失で高温になると共に、
内部導管8、外部導管9の接触摺動面が面荒れを
起し、使用頻度が多い場合には摩耗粉の発生や焼
付き等を起し動作不能になる。インピーダンス
整合器の設置姿勢からも制約を受ける。すなわ
ち縦置された場合にはそれ程大きな問題はない
が、もし横置に設置された場合には、短絡素子1
0の自重により、偏心してコンタクトフインガー
11の接触力がアンバランスになり、特性悪化の
要因になる。また高速駆動の場合にはコンタク
トフインガー11と内部導管8、外部導管9との
接触部で放電を起す等大電力、高速駆動かつ多頻
度の用途への適用には性能上、信頼性の面で問題
がある。
(Problems to be Solved by the Invention) The impedance matching device 6 having such a configuration,
Since the contact finger 11 reciprocates the shorting element 10 while electrically contacting the inner and outer circumferential surfaces of the external conduit 9 and the internal conduit 8, the driving speed of the shorting element is low with low electric power, and when it is used infrequently. However, in the case of a high-power, high-speed drive and frequent operation such as a high-frequency heating device for a nuclear fusion device, the following problems may occur. Since a large current flows through the contact finger 11, the temperature increases due to Joule loss due to contact resistance, and
The contact sliding surfaces of the internal conduit 8 and the external conduit 9 become rough, and if used frequently, abrasion powder is generated, seizure occurs, and the device becomes inoperable. There are also restrictions on the installation orientation of the impedance matching device 6 . In other words, if it is installed vertically, there is no big problem, but if it is installed horizontally, the shorting element 1
Due to its own weight, the contact force of the contact finger 11 becomes unbalanced due to eccentricity, which causes deterioration of characteristics. In addition, in the case of high-speed drive, discharge occurs at the contact portion between the contact finger 11 and the internal conduit 8 and external conduit 9, so that performance and reliability problems are required for applications that require high power, high-speed drive, and frequent use. There is a problem with this.

このようなことから本発明は、従来の接触式短
絡素子に起りがちな接触部の面荒れやジユール損
失による異常発熱を回避できると共に放電等の問
題もなく安定に大電力用として使用でき、縦置や
横置等その設置姿勢にかかわらず確実に絶縁で
き、かつ高速駆動でかつ多頻度使用でもスムーズ
に転がり接触し、これによつて大電力、高速駆動
でかつ多頻度に耐える高性能で高信頼性のインピ
ーダンス整合器を提供することを目的とする。
For these reasons, the present invention can avoid abnormal heat generation due to roughening of the surface of the contact portion and joule loss, which tend to occur with conventional contact type shorting elements, and can be stably used for high power applications without problems such as discharge, and can be used vertically. It can be reliably insulated regardless of the installation position, such as horizontal or horizontal installation, and it can be driven at high speed and rolls smoothly into contact even when used frequently. The purpose is to provide a reliable impedance matching device.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するため、外部導管と
内部導管との環状空間部に往復動可能に挿入され
たチヨーク回路を有する無接触型短絡素子と、こ
の無接触型短絡素子の負荷側と反負荷側の両端に
上記外部導管および内部導管と接する様に装着さ
れた複数個の絶縁ガイドローラと、上記無接触型
短絡素子の反負荷側にその一端が取付けられた駆
動軸と、この駆動軸の他端に連結され上記無接触
型短絡素子を往復動させる駆動系とで構成したも
のである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a non-contact type circuit having a chiyoke circuit reciprocably inserted into an annular space between an external conduit and an internal conduit. A shorting element, a plurality of insulated guide rollers attached to both ends of the load side and anti-load side of the non-contact type shorting element so as to be in contact with the external conduit and the internal conduit, and a counter-load of the non-contact type shorting element. The device is composed of a drive shaft with one end attached to the side thereof, and a drive system connected to the other end of the drive shaft to reciprocate the contactless shorting element.

(作用) 上記のように短絡素子をチヨーク回路を有する
無接触型短絡素子にした事により、接触式短絡素
子に起りがちな接触部の面荒れやジユール損失に
よる異常発熱を回避できると共に高速駆動でも接
触部を有しないので放電等の問題もなく安定に大
電力用として使用でき、さらに無接触型短絡素子
の両端に複数個の絶縁ガイドローラを装着して内
部導管および外部導管との隙間の保持や絶縁をす
る様に構成する事により、縦置や横置等その設置
姿勢にかかわらず確実に絶縁し、かつ高速駆動で
かつ多頻度使用でも転がり接触であるのでスムー
ズに駆動できる。
(Function) As described above, by using a non-contact type shorting element with a chiyoke circuit as the shorting element, it is possible to avoid abnormal heat generation due to surface roughening of the contact part and joule loss that tends to occur with contact type shorting elements, and it is also possible to avoid high-speed operation. Since it has no contact parts, it can be used stably for high power without problems such as discharge, and in addition, multiple insulated guide rollers are attached to both ends of the contactless shorting element to maintain the gap between the internal conduit and external conduit. By configuring it to be insulated, it can be reliably insulated regardless of its installation orientation, such as vertical or horizontal installation, and can be driven smoothly even with high speed and frequent use due to rolling contact.

(実施例) 以下、本発明の実施例について図面を参照して
説明する。はじめに、第1図の縦断面図を参照し
て本発明の一実施例について説明する。第1図に
おいて、8は内部導管、9はこの内部導管8と同
軸の外部導管で、内部導管8および外部導管9の
負荷側は絶縁物からなる環状スペーサー14で、
また内部導管8および外部導管9の反負荷側はフ
ランジ15に銀口−付等で固着されて位置が決め
られている。16はチヨーク回路16a,16b
を有する無接触型短絡素子で、この両端の内外周
面にそれぞれ複数個の絶縁ガイドローラ17が装
着されている。無接触型短絡素子16の反負荷側
端には複数本例えば2本の駆動軸13の一端が取
付けられており、駆動軸の他端が上記フランジ1
5に取付けられた気密部15aを貫通して連結板
18に接続されている。この連結板18にはボー
ルネジ19と噛合うボールナツト20が取付けら
れ、ボールネジ19の先端には駆動モータ21に
取付けられた動力伝達機構例えばピニオン歯車2
2と噛合う駆動歯車23が取付けられている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. First, one embodiment of the present invention will be described with reference to the vertical cross-sectional view of FIG. In FIG. 1, 8 is an internal conduit, 9 is an external conduit coaxial with the internal conduit 8, and the load side of the internal conduit 8 and the external conduit 9 is an annular spacer 14 made of an insulator.
Further, the anti-load sides of the internal conduit 8 and the external conduit 9 are fixed to the flange 15 with silver caps or the like to determine their positions. 16 is a chain circuit 16a, 16b
A plurality of insulated guide rollers 17 are mounted on the inner and outer circumferential surfaces of both ends of the non-contact shorting element. One end of a plurality of, for example two, drive shafts 13 is attached to the opposite end of the contactless shorting element 16, and the other end of the drive shaft is attached to the flange 1.
The connecting plate 18 is connected to the connecting plate 18 by passing through an airtight part 15a attached to the connecting plate 5. A ball nut 20 that meshes with a ball screw 19 is attached to the connecting plate 18, and a power transmission mechanism, such as a pinion gear 2, attached to a drive motor 21 is attached to the tip of the ball screw 19.
A drive gear 23 meshing with 2 is attached.

上記駆動モータ21の回転でボールネジ19と
噛合うボールナツト20が固着されている連結板
18が往復動することにより、駆動軸13を介し
て無接触型短絡素子16が往復動するようになつ
ている。この場合、無接触型短絡素子16の往復
動は、両端に装着された絶縁ガイドローラー17
の転がりで行われるので、小さい駆動力でスムー
ズに行われる。なお、24はボールネジ19を回
転自在に支承する軸受、25はフランジ15に取
付けられ上記駆動系12が取付けられるフレー
ム、26は上記フランジ15に電波漏洩を抑える
ために貼付けられた電波吸収体、27は上記内部
導管8の内側に設けられた内管、28はこの内管
27と上記内部導管8との環状空間に冷却媒体が
供給される供給管、29は上記内管27の先端部
27aで上記冷却媒体が反流して内管27内を通
りここから排出される排出管29である。
The rotation of the drive motor 21 reciprocates the connecting plate 18 to which the ball nut 20 that meshes with the ball screw 19 is fixed, so that the contactless shorting element 16 reciprocates via the drive shaft 13. . In this case, the reciprocating motion of the non-contact shorting element 16 is controlled by insulated guide rollers 17 mounted on both ends.
Since it is performed by rolling, it is performed smoothly with a small driving force. In addition, 24 is a bearing that rotatably supports the ball screw 19, 25 is a frame attached to the flange 15 and to which the drive system 12 is attached, 26 is a radio wave absorber attached to the flange 15 to suppress radio wave leakage, and 27 28 is a supply pipe through which a cooling medium is supplied to the annular space between the inner pipe 27 and the inner pipe 8; 29 is the tip end 27a of the inner pipe 27; This is a discharge pipe 29 from which the cooling medium flows counter-currently through the inner pipe 27 and is discharged from there.

次に上記のように構成されたインピーダンス整
合器の作用を説明する。第3図のプラズマ4の条
件やプラズマ4とアンテナ5との隙間等の変化に
よる負荷インピーダンスの変化に対応して速やか
にスタブの長さを調節(第5図の短絡素子10の
位置を調節)して整合をとる必要がある。このた
め、第1図の実施例では、その不整合量に応じた
無接触型短絡素子16の移動量信号を受けて、駆
動モータ21が回転し、ピニオン歯車22、駆動
歯車23を介してボールネジ19が回転する事に
よりボールナツト20が固着された連結板18が
往復動し、駆動軸13を介して無接触型短絡素子
16が往復動する、このため、接触式短絡素子に
起りがちな接触部の面荒れやジユール損失による
異常発熱を回避できると共に高速駆動でも接触部
を有しないので、放電等の問題もなく安定に大電
力用として使用できる。
Next, the operation of the impedance matching device configured as described above will be explained. The length of the stub is quickly adjusted in response to changes in load impedance due to changes in the conditions of the plasma 4 in FIG. 3, the gap between the plasma 4 and the antenna 5, etc. (adjust the position of the shorting element 10 in FIG. 5) It is necessary to achieve consistency. Therefore, in the embodiment shown in FIG. 1, the drive motor 21 rotates in response to the movement amount signal of the non-contact shorting element 16 corresponding to the amount of misalignment, and the ball screw is rotated via the pinion gear 22 and the drive gear 23. 19 rotates, the connecting plate 18 to which the ball nut 20 is fixed reciprocates, and the non-contact type shorting element 16 reciprocates via the drive shaft 13. Therefore, the contact part that tends to occur with contact type shorting elements is avoided. Abnormal heat generation due to surface roughness and joule loss can be avoided, and since there are no contact parts even when driven at high speed, it can be used stably for high power applications without problems such as discharge.

また無接触型短絡素子16の内外周面が共に絶
縁ガイドローラ17によつて、それぞれ内部導管
8および外部導管9に往復動可能に支承されてい
るので、縦置は言うまでもなく、横置でも機械的
に接触することなく高速駆動でもスムーズに往復
動ができる。また駆動軸13を2本にした事によ
り駆動に伴う偏心力が加わらない。
In addition, both the inner and outer circumferential surfaces of the non-contact type shorting element 16 are supported by the insulated guide rollers 17 in a reciprocating manner on the inner conduit 8 and the outer conduit 9, respectively, so that the machine can be placed horizontally as well as vertically. Smooth reciprocating motion is possible even at high speeds without contacting surfaces. Furthermore, since there are two drive shafts 13, eccentric force associated with driving is not applied.

一方、高周波的には無接触型短絡素子16の内
外に設けられたチヨーク回路16a,16bの静
電容量で機械的に接触してなくても内部導管8と
外部導管9とが電気的に短絡状態になる。
On the other hand, in terms of high frequency, the internal conduit 8 and the external conduit 9 are electrically short-circuited even if they are not in mechanical contact due to the capacitance of the chi-yoke circuits 16a and 16b provided inside and outside of the non-contact type shorting element 16. become a state.

さらに、内部導管8、外部導管9および無接触
型短絡素子16には大きな電流が流れ、高周波の
ため電流浸透深さは数μm程度である。したがつ
て、電気抵抗が大きくなりジユール損失による大
きな発熱を生じる。外部導管9は内部導管8に比
して直径が約2倍あるため熱流束は約1/4で、か
つ外表面が外気に接しているのに対して、内部導
管8で無接触型短絡素子16は発熱が大きく、か
つ冷却熱伝達率が小さいために非常に大きな温度
上昇になる。そこで、第1図の実施例では内部導
管8の内側に内管27を設け、この内管27と内
部導管8との環状空間部に供給管28から冷却媒
体を供給し、この冷却媒体が内管27を通つて排
出管29に排出されるようにしたので、核融合装
置用高周波加熱装置のような大電力でも内部導管
8の温度上昇を低く抑える事ができる。また、無
接触型短絡素子16は、内部導管8および外部導
管9と狭い隙間で対向しているので、内部導管8
および外部導管9の温度を低く抑える事ができ、
温度上昇の心配はない。これにより、大電力、高
速駆動でかつ多頻度使用にも充分耐える高性能で
高信頼性インピーダンス整合器となる。
Furthermore, a large current flows through the internal conduit 8, external conduit 9, and non-contact type shorting element 16, and due to the high frequency, the current penetration depth is approximately several μm. Therefore, the electrical resistance increases and a large amount of heat is generated due to Joule loss. Since the outer conduit 9 has a diameter approximately twice that of the inner conduit 8, the heat flux is approximately 1/4, and the outer surface is in contact with the outside air, whereas the inner conduit 8 has a non-contact type shorting element. No. 16 generates a large amount of heat and has a small cooling heat transfer coefficient, resulting in a very large temperature rise. Therefore, in the embodiment shown in FIG. 1, an inner pipe 27 is provided inside the inner pipe 8, and a cooling medium is supplied from the supply pipe 28 to the annular space between the inner pipe 27 and the inner pipe 8. Since the gas is discharged through the pipe 27 to the discharge pipe 29, the temperature rise in the internal conduit 8 can be suppressed to a low level even with high power such as in a high-frequency heating device for a nuclear fusion device. In addition, since the contactless shorting element 16 faces the internal conduit 8 and the external conduit 9 with a narrow gap, the internal conduit 8
And the temperature of the external conduit 9 can be kept low,
There is no need to worry about temperature rise. This results in a high-performance, highly reliable impedance matching device that is capable of high power, high-speed driving, and can withstand frequent use.

一方、外部導管9の外表面にも発熱が大きく自
然対流による冷却のみでは温度上昇に問題がある
場合、蛇管等を装着して熱伝達率を上げるように
構成する事により、内部導管8と同様の低い温度
にする事ができる。
On the other hand, if the outer surface of the external conduit 9 also generates a large amount of heat and there is a problem with the temperature rising by cooling only by natural convection, it can be configured to increase the heat transfer coefficient by attaching a coiled pipe etc. to the same as the internal conduit 8. The temperature can be lowered to .

第2図は本発明の他の実施例の要部すなわち第
1図の無接触型短絡素子部のみを示す縦断面図
で、無接触型短絡素子16のチヨーク回路16
a,16bの一部または全長にテフロン(デユポ
ン社商品名)等の弗素樹脂からなる誘電体30を
挿入する事により誘電体損失は多少増える事にな
るが、チヨーク回路16a,16bの長さを短縮
できるので、コンパクトなスタブにする事ができ
る。
FIG. 2 is a vertical sectional view showing only the main part of another embodiment of the present invention, that is, the non-contact type shorting element part of FIG.
By inserting a dielectric material 30 made of fluororesin such as Teflon (trade name of Dupont) into a part or the entire length of the circuits a and 16b, the dielectric loss will increase somewhat, but the length of the circuits 16a and 16b can be reduced. Since it can be shortened, it can be made into a compact stub.

[発明の効果] 以上説明したように本発明によれば、次のよう
な効果が得られる。すなわち、従来の接触式短絡
素子に起りがちな接触部の面荒れやジユール損失
による異常発熱を回避できると共に高速駆動でも
接触部を有しないので放電等の問題もなく安定に
大電力用として使用でき、また無接触型短絡素子
の両端に複数個の絶縁ガイドローラを装着して内
部導管および外部導管との隙間の保持や絶縁をす
る様にしたので縦置や横置等その設置姿勢にかか
わらず確実に絶縁でき、かつ高速駆動でかつ多頻
度使用でも転がり接触であるのでスムーズに駆動
でき、このようなことから大電力、高速駆動でか
つ多頻度使用にも充分耐えうる高性能で高信頼性
のインピーダンス整合器が得られる。
[Effects of the Invention] As explained above, according to the present invention, the following effects can be obtained. In other words, it is possible to avoid abnormal heat generation due to roughening of the surface of the contact part and joule loss that tends to occur with conventional contact type shorting elements, and since there is no contact part even when driven at high speed, it can be used stably for high power applications without problems such as discharge. In addition, multiple insulated guide rollers are attached to both ends of the non-contact shorting element to maintain and insulate the gap between the internal and external conduits, regardless of the installation orientation, such as vertical or horizontal installation. It can be reliably insulated, can be driven at high speed, and can be driven smoothly even with frequent use due to rolling contact.As a result, it has high performance and high reliability that can withstand high power, high speed drive, and frequent use. An impedance matching device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるインピーダンス整合器の
一実施例を示す縦断面図、第2図は本発明による
他の実施例の無接触型短絡素子部のみを示す縦面
図、第3図は本発明のインピーダンス整合器が用
いられる核融合装置用ICRF高周波加熱装置の構
成図、第4図はインピーダンス整合器の原理を説
明するための回路図、第5図は従来のインピーダ
ンス整合器の一例を示す縦断面図である。 3……結合系、4……プラズマ、5……アンテ
ナ、……インピーダンス整合器、8……内部導
管、9……外部導管、10……短絡素子、11…
…コンタクトフインガー、12……駆動系、13
……駆動軸、14……スペーサー、15……フラ
ンジ、15a……気密部、16……無接触型短絡
素子、17……絶縁ガイドローラー、18……連
結板、19……ボールネジ、20……ボールナツ
ト、21……駆動モーター、25……フレーム、
26……電波吸収体、27……内管、28……供
給管、29……排出管、30……誘電体。
FIG. 1 is a vertical cross-sectional view showing one embodiment of an impedance matching device according to the present invention, FIG. 2 is a vertical cross-sectional view showing only the non-contact type shorting element portion of another embodiment according to the present invention, and FIG. A configuration diagram of an ICRF high-frequency heating device for a nuclear fusion device in which the impedance matching device of the invention is used, FIG. 4 is a circuit diagram for explaining the principle of the impedance matching device, and FIG. 5 shows an example of a conventional impedance matching device. FIG. 3... Coupling system, 4... Plasma, 5... Antenna, 6 ... Impedance matching device, 8... Internal conduit, 9... External conduit, 10... Short circuit element, 11...
...Contact finger, 12 ...Drive system, 13
... Drive shaft, 14 ... Spacer, 15 ... Flange, 15a ... Airtight part, 16 ... Contactless shorting element, 17 ... Insulated guide roller, 18 ... Connection plate, 19 ... Ball screw, 20 ... ... Ball nut, 21 ... Drive motor, 25 ... Frame,
26... Radio wave absorber, 27... Inner pipe, 28... Supply pipe, 29... Discharge pipe, 30... Dielectric material.

Claims (1)

【特許請求の範囲】 1 外部導管と内部導管との環状空間部に往復動
可能に挿入されたチヨーク回路を有する無接触型
短絡素子と、この無接触型短絡素子の負荷側と反
負荷側の両端に上記外部導管および内部導管と接
する様に装着された複数個の絶縁ガイドローラ
と、上記無接触型短絡素子の反負荷側にその一端
が取付けられた駆動軸と、この駆動軸の他端に連
結され上記無接触型短絡素子を往復駆動させる駆
動系とで構成した事を特徴とするインピーダンス
整合器。 2 内部導管を2重管構造にして冷却媒体流路を
設け、反負荷側から冷却媒体の給排が出来るよう
にした事を特徴とする特許請求の範囲第1項記載
のインピーダンス整合器。 3 内部導管と外部導管の環状空間部の反負荷側
端に電波吸収体を装着した事を特徴とする特許請
求の範囲第1項記載のインピーダンス整合器。 4 無接触型短絡素子のチヨーク回路部の一部ま
たは全長に弗素樹脂からなる誘電体を挿入した事
を特徴とする特許請求の範囲第1項記載のインピ
ーダンス整合器。 5 無接触型短絡素子と駆動系との間に設ける駆
動軸は複数本とした事を特徴とする特許請求の範
囲第1項記載のインピーダンス整合器。
[Claims] 1. A non-contact shorting element having a chiyoke circuit reciprocably inserted into an annular space between an external conduit and an internal conduit, and a load side and anti-load side of this non-contact shorting element. a plurality of insulated guide rollers attached at both ends so as to be in contact with the external conduit and the internal conduit; a drive shaft with one end attached to the opposite load side of the non-contact shorting element; and the other end of the drive shaft. and a drive system connected to the contactless shorting element to reciprocate the contactless shorting element. 2. The impedance matching device according to claim 1, wherein the internal conduit has a double pipe structure to provide a cooling medium flow path, so that the cooling medium can be supplied and discharged from the opposite load side. 3. The impedance matching device according to claim 1, characterized in that a radio wave absorber is attached to the opposite end of the annular space of the internal conduit and the external conduit on the opposite load side. 4. The impedance matching device according to claim 1, characterized in that a dielectric material made of fluororesin is inserted into a part or the entire length of the chiyoke circuit portion of the non-contact type shorting element. 5. The impedance matching device according to claim 1, characterized in that a plurality of drive shafts are provided between the contactless shorting element and the drive system.
JP61071128A 1986-03-31 1986-03-31 Impedance matching device Granted JPS62229787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071128A JPS62229787A (en) 1986-03-31 1986-03-31 Impedance matching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071128A JPS62229787A (en) 1986-03-31 1986-03-31 Impedance matching device

Publications (2)

Publication Number Publication Date
JPS62229787A JPS62229787A (en) 1987-10-08
JPH0479118B2 true JPH0479118B2 (en) 1992-12-15

Family

ID=13451623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071128A Granted JPS62229787A (en) 1986-03-31 1986-03-31 Impedance matching device

Country Status (1)

Country Link
JP (1) JPS62229787A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222626A (en) * 2019-04-05 2022-03-22 派罗波有限公司 Internally cooled impedance tuner for microwave pyrolysis system

Also Published As

Publication number Publication date
JPS62229787A (en) 1987-10-08

Similar Documents

Publication Publication Date Title
US3520642A (en) Motor driven pump
CN1024872C (en) Rotary anode type X-ray tube
CN104081484B (en) Variable vacuum capacitor
EP1193726A2 (en) Fluid variable capacitor
JP2011019293A (en) Power supply system
WO2001029853A1 (en) Vacuum variable capacitor
JPH0479118B2 (en)
US4115718A (en) Rotary-anode X-ray tube
JP6150304B2 (en) Impedance matching device, linear motion module, and radio frequency power supply device
CN112803127B (en) Broadband non-contact coaxial rotary joint and radar antenna
US3099807A (en) Helical line rotary joint
US6462930B1 (en) Vacuum variable capacitor device
CN115799777A (en) Double-channel coaxial antenna rotary joint
US4324967A (en) Microwave heating apparatus having magnetic coupling for driving the antenna
CN105576888B (en) A kind of sealing device applied to the quick phase shifter of high power
JP2835168B2 (en) Phase shifter
CN204481667U (en) The flexible speed changer of double bracing permanent-magnet eddy current
GB2501018A (en) Magnetic retainer for a magnetic coupling of a flywheel
CN115084804B (en) GW-class circular TM 01 Mould vacuum rotary joint
US3356971A (en) Tuned circuit
CN102142789B (en) Displacement amplification ultrasonic linear motor and working method thereof
CN214154162U (en) Embedded wireless energy signal synchronous receiving device with slip ring
CN214227957U (en) Embedded wireless energy signal synchronous receiving device
JP3365080B2 (en) Vacuum condenser
JPH0127548B2 (en)