JPH0478938B2 - - Google Patents

Info

Publication number
JPH0478938B2
JPH0478938B2 JP61112985A JP11298586A JPH0478938B2 JP H0478938 B2 JPH0478938 B2 JP H0478938B2 JP 61112985 A JP61112985 A JP 61112985A JP 11298586 A JP11298586 A JP 11298586A JP H0478938 B2 JPH0478938 B2 JP H0478938B2
Authority
JP
Japan
Prior art keywords
flow cell
flow
reflection
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61112985A
Other languages
Japanese (ja)
Other versions
JPS62269042A (en
Inventor
Juji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61112985A priority Critical patent/JPS62269042A/en
Publication of JPS62269042A publication Critical patent/JPS62269042A/en
Publication of JPH0478938B2 publication Critical patent/JPH0478938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1443Auxiliary imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表面に光学的処理を施した粒子解析
装置用フローセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a flow cell for a particle analysis device whose surface is optically treated.

[従来の技術] フローセルメータ等に用いられる従来の粒子解
析装置用フローセルでは、フローセルの中央部の
例えば200μm×200μmの微少な断面を有する流
通部内を、シース液に包まれて通過する検体粒子
に照射光を照射し、その結果生ずる前方及び側方
散乱光により、検体粒子の形状・大きさ・屈折率
等の粒子的性質を得ることが可能である。
[Prior Art] In a conventional flow cell for a particle analyzer used in a flow cell meter, etc., sample particles passing through a flow section surrounded by a sheath liquid and having a minute cross section of, for example, 200 μm x 200 μm, are located in the center of the flow cell. It is possible to obtain particle properties such as shape, size, refractive index, etc. of sample particles by irradiating the irradiation light and using the resulting forward and side scattered light.

一般に、レーザー光はAr+レーザーの488nmの
波長光が使用されており、蛍光は可視光域全体に
渡つている。レーザー光源からのレーザー光Lが
フローセル1内に入射した場合に、第2図に示す
フローセル1の入射方向のa側、b側の面でフレ
ネル反射して数%の反射が生ずる。従つて、a
側、b側の面での反射は複数回の反射を繰り返し
た後に、集光レンズに入射し光検出器へ到達し、
この光は検体粒子が存在しない場合でも、光検出
器の出力信号の直流成分として現われることにな
る。この直流成分は検出のダイナミツクレンジを
低下させるという欠点があると共に、レーザー光
の雑音による光信号の変動も出力として大きくな
るので、検体粒子の検出精度に与える影響も大き
い。
Generally, Ar + laser light with a wavelength of 488 nm is used as the laser light, and the fluorescence spans the entire visible light range. When laser light L from a laser light source enters the flow cell 1, Fresnel reflection occurs on the a side and b side surfaces of the flow cell 1 in the direction of incidence shown in FIG. 2, resulting in reflection of several percent. Therefore, a
After the reflection from the side and b side surfaces repeats multiple reflections, it enters the condenser lens and reaches the photodetector.
This light will appear as the DC component of the photodetector output signal even in the absence of analyte particles. This DC component has the disadvantage of reducing the dynamic range of detection, and also increases the fluctuation of the optical signal due to noise in the laser beam as an output, which has a large effect on the detection accuracy of the sample particles.

そこで、既に特開昭61−66947号公報に開示さ
れているように、本出願人はフローセルの表面に
反射防止膜を施して有害光を減少する発明を提案
した。
Therefore, as already disclosed in Japanese Unexamined Patent Publication No. 61-66947, the present applicant proposed an invention in which an antireflection film is applied to the surface of a flow cell to reduce harmful light.

しかしながら、実際にはフローセル1の流通部
1aの内面においても、表面ほどではないにして
も反射が生じ、その影響を無視することはできな
い。
However, in reality, reflection also occurs on the inner surface of the flow section 1a of the flow cell 1, although not as much as on the surface, and its influence cannot be ignored.

[発明の目的] 本発明の目的は、フローセルの内面反射による
有害光を減少する粒子解析装置用フローセルを提
供することにある。
[Object of the Invention] An object of the present invention is to provide a flow cell for a particle analyzer that reduces harmful light due to internal reflection of the flow cell.

[発明の概要] 上述の目的を達成するための本発明の要旨は、
フローセル内の流通部を流れる検体粒子に光を照
射し、検体粒子から得られる散乱光又は蛍光を測
光する装置に使用されるフローセルであつて、前
記流通部の内面に反射防止膜を施したことを特徴
とする粒子解析装置用フローセルである。
[Summary of the invention] The gist of the present invention for achieving the above object is as follows:
A flow cell used in a device that irradiates light onto sample particles flowing through a flow section in the flow cell and measures scattered light or fluorescence obtained from the sample particles, the flow cell having an anti-reflection coating applied to the inner surface of the flow section. This is a flow cell for a particle analysis device, which is characterized by:

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明す
る。
[Embodiments of the Invention] The present invention will be described in detail based on illustrated embodiments.

第1図は光学系の構成図であり、フローセル1
の流通部1a内を高速層流となつたシース液に包
まれて、液体力学的焦点合わせが行われたサンプ
ル液が通過し、この流れと直交する方向にレーザ
ー光源2が配置されている。このレーザー光源2
から照射されたレーザー光Lを流通部1aに導く
ために、光軸01上に結像レンズ3が配置されて
おり、更に検体粒子から得られる前方散乱光を測
定するために、フローセル1を挟んで結像レンズ
3と反対側の光軸01上にストツパ4、集光レン
ズ5、光検出器6が順次に配列されている。ま
た、検体粒子の流れの方向と光軸01にそれぞれ
直交する方向である光軸02上に、フローセル1
側から集光レンズ7、コリメートレンズ8、波長
選択特性を有するダイクロイツクミラー9及び反
射ミラー10が順次に配列されている。そして、
ダイクロイツクミラー9の反射方向にはバリアフ
イルタ11、集光レンズ12、光検出器13が、
反射ミラー10の反射方向にはバリアフイルタ1
4、集光レンズ15、光検出器16が配列されて
いる。
Figure 1 is a configuration diagram of the optical system, and the flow cell 1
A sample liquid that has been hydrodynamically focused passes through the flow section 1a surrounded by the sheath liquid in a high-speed laminar flow, and a laser light source 2 is arranged in a direction perpendicular to this flow. This laser light source 2
An imaging lens 3 is arranged on the optical axis 01 in order to guide the laser beam L irradiated from the analyte to the flow section 1a, and an imaging lens 3 is arranged on the optical axis 01 with the flow cell 1 in between to measure the forward scattered light obtained from the sample particles. A stopper 4, a condensing lens 5, and a photodetector 6 are sequentially arranged on the optical axis 01 on the opposite side from the imaging lens 3. In addition, a flow cell 1 is placed on the optical axis 02, which is a direction perpendicular to the flow direction of the sample particles and the optical axis 01.
A condensing lens 7, a collimating lens 8, a dichroic mirror 9 having wavelength selection characteristics, and a reflecting mirror 10 are arranged in this order from the side. and,
In the reflection direction of the dichroic mirror 9, a barrier filter 11, a condensing lens 12, and a photodetector 13 are installed.
A barrier filter 1 is provided in the reflection direction of the reflection mirror 10.
4. A condenser lens 15 and a photodetector 16 are arranged.

第1図において、レーザー光源2からのレーザ
ー光Lは結像レンズ3でフローセル1の流通部1
a付近に結像される。フローセル1を流れるサン
プル液の中の検体粒子に当つたレーザー光Lによ
る散乱光のうち、サイズを調べるのに適した前方
散乱光は集光レンズ5により光検出器6に集めら
れる。なお、この場合にストツパ4はレーザー光
Lの直接光をカツトする役割を果している。
In FIG. 1, a laser beam L from a laser light source 2 passes through an imaging lens 3 to a flow section 1 of a flow cell 1.
The image is formed near a. Among the scattered light caused by the laser beam L hitting the sample particles in the sample liquid flowing through the flow cell 1, forward scattered light suitable for examining the size is collected by the condenser lens 5 onto the photodetector 6. In this case, the stopper 4 plays a role of cutting off the direct light of the laser light L.

また、検体粒子が蛍光標識されている場合に
は、90゜方向に設けられている集光レンズ7、コ
リメートレンズ8、ダイクロイツクミラー9、バ
リアフイルタ11,14、集光レンズ12,15
を用いて、複数チヤンネルの蛍光測定が可能であ
る。即ち、光検出器13,16からの信号を解析
することにより、蛍光標識粒子の分析分類が可能
となる。このとき、バリアフイルタ11,14は
それぞれ必要な波長域の光のみを通す特性を有し
ている。
In addition, when the sample particles are fluorescently labeled, the condenser lens 7, collimator lens 8, dichroic mirror 9, barrier filters 11, 14, condenser lenses 12, 15 provided in the 90° direction
Multi-channel fluorescence measurement is possible using this method. That is, by analyzing the signals from the photodetectors 13 and 16, the fluorescent labeled particles can be analyzed and classified. At this time, each of the barrier filters 11 and 14 has a characteristic of passing only light in a necessary wavelength range.

ここで、流通部1aの内面には反射防止膜がコ
ーテイングされている。この反射防止膜はフロー
セル1を構成する例えばガラスの屈折率とサンプ
ル液の主成分である水の屈折率との中間の屈折率
を有することが必要である。また内面へのコーテ
イングは、コーテイングした複数個のガラスブロ
ツクを組立てることによりフローセル1を製作す
ればよい。
Here, the inner surface of the flow section 1a is coated with an antireflection film. This anti-reflection film needs to have a refractive index that is intermediate between the refractive index of, for example, glass constituting the flow cell 1 and the refractive index of water, which is the main component of the sample liquid. Further, the inner surface may be coated by manufacturing the flow cell 1 by assembling a plurality of coated glass blocks.

この内面へのコーテイングと共に、フローセル
1のa側、b側の面に特定波長域に対し反射防止
効果の高い反射防止膜を施すことによつて、入出
射面におけるフレネル反射を小さくし、有害光を
カツトすることが可能となる。また、c側の面は
蛍光測定用の光が出射して行く方向であり、ここ
には使用波長域に渡つて反射の少ない反射防止膜
をコーテイングすることにより、集光の効率を高
めることができる。同様に、d側の面においても
反射防止膜により反射率を低下させることが好ま
しい。
In addition to this coating on the inner surface, an anti-reflection film that has a high anti-reflection effect in a specific wavelength range is applied to the a-side and b-side surfaces of the flow cell 1, thereby reducing Fresnel reflection on the input and output surfaces and blocking harmful light. It becomes possible to cut. In addition, the c-side surface is the direction in which the light for fluorescence measurement is emitted, and by coating this with an anti-reflection film that has low reflection over the wavelength range used, it is possible to increase the efficiency of light collection. can. Similarly, it is preferable to reduce the reflectance on the d-side surface with an antireflection film.

[発明の効果] 以上説明したように本発明に係る粒子解析装置
用フローセルは、フローセルに使用レーザー光の
波長の反射を特に低下させる反射防止膜をフロー
セルの内面にコーテイングすることにより有害光
が低減できる。
[Effects of the Invention] As explained above, the flow cell for a particle analyzer according to the present invention reduces harmful light by coating the inner surface of the flow cell with an anti-reflection film that particularly reduces the reflection of the wavelength of the laser light used in the flow cell. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る粒子解析装置用フローセル
の実施例を示し、第1図はその構成図、第2図は
フローセルの斜視図である。 符号1はフローセル、1aは流通部、2はレー
ザー光源、3は結像レンズ、4はストツパ、5,
7,12,15は集光レンズ、6,13,16は
光検出器、9はダイクロイツクミラー、10は反
射ミラー、11,14はバリアフイルタである。
The drawings show an embodiment of a flow cell for a particle analyzer according to the present invention, and FIG. 1 is a configuration diagram thereof, and FIG. 2 is a perspective view of the flow cell. 1 is a flow cell, 1a is a flow section, 2 is a laser light source, 3 is an imaging lens, 4 is a stopper, 5,
7, 12, and 15 are condenser lenses; 6, 13, and 16 are photodetectors; 9 is a dichroic mirror; 10 is a reflecting mirror; and 11, 14 are barrier filters.

Claims (1)

【特許請求の範囲】 1 フローセル内の流通路を流れる検体粒子に光
を照射し、検体粒子から得られる散乱光又は蛍光
を測光する装置に使用されるフローセルであつ
て、前記流通部の内面に反射防止膜を施したこと
を特徴とする粒子解析装置用フローセル。 2 前記反射防止膜は前記フローセルの材質の屈
折率と水の屈折率との中間の屈折率を有するもの
とした特許請求の範囲第1項に記載の粒子解析装
置用フローセル。 3 前記フローセルの外面に反射防止膜を施した
特許請求の範囲第1項に記載の粒子解析装置用フ
ローセル。
[Scope of Claims] 1. A flow cell used in a device that irradiates light onto sample particles flowing through a flow path in the flow cell and measures scattered light or fluorescence obtained from the sample particles, wherein the flow cell has an inner surface of the flow section. A flow cell for particle analysis equipment characterized by being coated with an anti-reflection film. 2. The flow cell for a particle analyzer according to claim 1, wherein the antireflection film has a refractive index intermediate between the refractive index of the material of the flow cell and the refractive index of water. 3. The flow cell for a particle analyzer according to claim 1, wherein an antireflection film is applied to the outer surface of the flow cell.
JP61112985A 1986-05-17 1986-05-17 Flow cell for particle analyser Granted JPS62269042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112985A JPS62269042A (en) 1986-05-17 1986-05-17 Flow cell for particle analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112985A JPS62269042A (en) 1986-05-17 1986-05-17 Flow cell for particle analyser

Publications (2)

Publication Number Publication Date
JPS62269042A JPS62269042A (en) 1987-11-21
JPH0478938B2 true JPH0478938B2 (en) 1992-12-14

Family

ID=14600521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112985A Granted JPS62269042A (en) 1986-05-17 1986-05-17 Flow cell for particle analyser

Country Status (1)

Country Link
JP (1) JPS62269042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250203A (en) * 2012-06-01 2013-12-12 Denso Corp Fluid component sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592701U (en) * 1992-04-22 1993-12-17 株式会社キング製作所 Spectroscopic cell
DE102012108158B4 (en) * 2012-09-03 2016-03-17 Johann Wolfgang Goethe-Universität Capillary cell, assembly and method for receiving, positioning and examining a microscopic sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250203A (en) * 2012-06-01 2013-12-12 Denso Corp Fluid component sensor

Also Published As

Publication number Publication date
JPS62269042A (en) 1987-11-21

Similar Documents

Publication Publication Date Title
US8427641B2 (en) Compact detector for simultaneous particle size and fluorescence detection
US6707551B2 (en) Multipass cavity for illumination and excitation of moving objects
JPH0258585B2 (en)
JP2005515470A (en) Method for fluorescence detection to minimize unwanted background fluorescence
EP0594327A1 (en) Capillary detector cell with imaging elements for optimizing sensitivity
GB2125181A (en) Flow cells for particle study
JPS62168033A (en) Particle analyzing device
US4893929A (en) Particle analyzing apparatus
WO2001027590A2 (en) Optical element for flow cytometry
JPH0224535A (en) Particle analyzing apparatus
JPH0478938B2 (en)
WO2016024429A1 (en) Fine particle detection device
JP4054178B2 (en) Light scattering measuring device
US4707131A (en) Optical arrangement for photometrical analysis measuring devices
JPS6244650A (en) Particle analyzing device
CN213275352U (en) Raman signal collecting probe based on off-axis parabolic reflector
JP4262380B2 (en) Light intensity measuring device
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
JPS63201554A (en) Particle analyzing device
JPH03154850A (en) Specimen inspecting device
JPS5826248A (en) Total internal reflection absorption spectrophotometer
JPS6244649A (en) Particle analyzing device
CN220367204U (en) Microscopic light path coupling system for measuring deep ultraviolet photoluminescence spectrum
CN212844874U (en) Liquid measurement system based on optical cavity enhancement
CN217717432U (en) Optical detection assembly and optical detection system