JPH0478727B2 - - Google Patents

Info

Publication number
JPH0478727B2
JPH0478727B2 JP58238393A JP23839383A JPH0478727B2 JP H0478727 B2 JPH0478727 B2 JP H0478727B2 JP 58238393 A JP58238393 A JP 58238393A JP 23839383 A JP23839383 A JP 23839383A JP H0478727 B2 JPH0478727 B2 JP H0478727B2
Authority
JP
Japan
Prior art keywords
fiber
weight
resin composition
fibers
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58238393A
Other languages
Japanese (ja)
Other versions
JPS60134014A (en
Inventor
Taizo Yasumoto
Yukio Matsumoto
Shiro Mya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP23839383A priority Critical patent/JPS60134014A/en
Publication of JPS60134014A publication Critical patent/JPS60134014A/en
Publication of JPH0478727B2 publication Critical patent/JPH0478727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は極細繊維の製造方法に関し、更に詳し
くは、湿式法又は乾式法により1本の繊維中に複
数本の繊維形状物を含有する極細繊維の集合体を
得、次いで、これを分割して極細繊維を製造する
方法に関するものである。 1本の繊維が通常の繊度(2デニールから50デ
ニール)でありながら、その繊維が綿、紡績糸、
不織布、編織物等の最終商品の段階で極細繊維に
分割されることは、その商品の風合、触感のみな
らず、物性上においても特異な価値を有すること
は広く知られている。しかし、このような繊維を
得るためには特殊な複合紡糸口金を用いた高分子
配列体製造法と呼ばれるもの(特公昭44−18369)
や紡糸口金にスタテイツクミキサーを内蔵したも
の(特開昭56−91069)等があり、精巧で高価な
紡糸口金を要し、且つ2種の異樹脂を別々に紡糸
口金の所まで導入しなければならないような複雑
な工程や装置を要しているのが現状である。 また他方、異種重合体のミクロ相分離を利用
し、海島を形成した糸条が得られることも発表さ
れているが、前者程完全なものでなく、また実用
的でない。即ち、島部に形成されている糸条物が
完全な繊維形状に形成されていることが非常に重
要であり、これによつて最終商品の価値が決定さ
れるのである。特殊紡糸口金を用いる高分子配列
体製造法はその意味において、ほぼ理想に近い海
島の形状のものが得られ、且つ島部も完全に近い
繊維形状を形成させるものである。唯、この方法
は前述の通り、高価な紡糸口金を要することと、
工程が複雑になるという大きな欠陥があるのが問
題である。他方これに比べ、ミクロ相分離を応用
した方法は簡便で有利なのであるが、島部分の糸
条形成が充分でなく、完全な繊維形状になり難
く、そのため最終商品にしてもその特徴が充分発
揮されていないのが現状である。 本発明者等はかかる実情に鑑み特殊紡糸口金も
必要とせず、製造工程も複雑になることなく、繊
維断面が完全な海島構造をとる合成繊維を得、該
繊維から極細繊維を得るため鋭意研究を重ねてき
た結果、本発明に到達したものである。 即ち、本発明はアクリロニトリルを主成分とす
るアクリル樹脂組成物の20重量部から80重量部と
塩化ビニル樹脂及び/又は塩素含有量68重量パー
セント以下の塩素化塩化ビニル樹脂組成物の80重
量部から20重量部とを共通溶媒で混合溶解し、こ
れを前記樹脂組成物が凝固する凝固液中又は空気
中に紡出し、延伸、乾燥して極細繊維の集合体を
得、次いで該集合体を分割することを特徴とする
極細繊維の製造方法を内容とするものである。 本発明において用いられるアクリル樹脂組成物
はアクリロニトリルが30重量パーセント以上85重
量パーセント以下と、これに共重合能を有するビ
ニル化合物、例えばアクリル酸メチル、メタクリ
ル酸メチル、酢酸ビニル、塩化ビニル、塩化ビニ
リデン、スチレン等があり、更に染色改良剤とし
て用いられるメタアリルスルホン酸ソーダ、パラ
スチレンスルホン酸ソーダ、イタコン酸等をも共
重合されていても良い。本発明におけるアクリル
樹脂組成物は所謂アクリル系樹脂組成物を含み、
通常アクリル系樹脂組成物はアクリロニトリルが
85重量パーセント以下30重量パーセント以上に塩
化ビニル及び/又は塩化ビニリデンが15重量パー
セント以上70重量パーセント以下と、これに共重
合可能な染色改良剤、例えばメタアリルスルホン
酸ソーダ、パラスチレンスルホン酸ソーダ、イタ
コン酸等が2重量パーセント以下とから構成され
る。これら樹脂組成物は20重量部から80重量部迄
がその効果が大きく、更に好ましくは30重量部か
ら50重量部までがその効果が顕著に現れる。ま
た、20重量部未満または80重量部を越えると、島
部分の繊維形状が不完全となり、その特徴も出難
くなり、最終商品での価値も低下する。 本発明に用いられる塩素化塩化ビニル樹脂組成
物は塩素含有量が68重量パーセントまでの塩素化
率のものが良く、またこのものの25重量パーセン
トのアセトン溶液は25℃において1ポイズから20
ポイズまでのものが良い。これらの範囲外では、
いずれの場合も島部分の繊維形状が不完全とな
る。更に詳しくは、塩素含有量が61重量パーセン
トから65重量パーセントが好ましく、この場合の
島部分の繊維が最も良好な形状を呈する。 また塩化ビニル樹脂組成物は一般の市販されて
いるものの中から重合度が700から1500までのも
のが良く、これより低いものは島部分の繊維形状
が悪く、これより高いものは均一にブレンドされ
にくいので好ましくない。 次に、これらアクリル樹脂組成物と塩化ビニル
及び/又は塩素化塩化ビニル樹脂組成物とを混合
溶解するに際しては、夫々の樹脂組成物を溶解す
る共通溶媒であれば特に制限されず、また溶解方
法も夫々別々に溶解したものを混合しても良く、
或いは共通溶媒の中へ夫々の樹脂組成物を同時に
投入して、撹拌溶解しても良い。この溶解時にお
ける溶解条件(温度及び時間)は余り島部分の繊
維形状には影響を与えないようである。このよう
にして得られた紡糸原液を湿式紡糸法により紡糸
する場合は、凝固液中に通常の紡糸口金から吐出
させ、凝固させて繊維を形成させることが出来
る。また繊維の強度を増加させるために紡糸浴中
で数倍の延伸をするのが有効であり、然る後に乾
燥して合成繊維を得ることが出来る。またこの場
合、更に当該繊維に適した条件による熱延伸や熱
処理も可能であり、これによつて合成繊維の糸条
構造が大幅に変わることはない。 一方、熱風雰囲気中へ紡出する所謂乾式紡糸法
においても湿式紡糸法と同様に所期の合成繊維が
得られ、湿式紡糸法に比べて繊維表面がやや滑ら
かになる程度で本質的には変わらない。 このようにして得られた極細繊維の集合体から
なる合成繊維は、分割され極細繊維とされる。こ
の合成繊維の1本を見ると外観は殆んど通常の繊
維と変わらないのであるが、外力(引きちぎる、
叩く等)を加えたり、海部分のみを溶解する溶剤
で処理をすれば、1本の繊維の中から多数の繊維
形状をした糸条が発現するのである。即ち、相分
離を利用した方法でありながら、後記する実施例
でも明らかなように島部の糸条部分が、驚くべき
ことに殆んど完全な繊維形状になつており、細い
繊度(2から3デニール)のものでは数十本、更
に太い繊度(30から50デニール)のものでは数百
本の極細繊維が得られるのである。 また上記極細繊維の集合体からなる繊維は、紡
績糸や布帛の段階で分割したり起毛して極細繊維
とすることもできる。例えば、綿として使用する
場合、分割による含気率の向上で秀れた保温性が
期待でき、またフイルターとして使用する場合、
非常に細かい塵埃を除去することが出来る。その
他嵩高性や極細繊維特有の非常に柔らかい風合、
触感が紡績糸、不織布、及び一般の織布の段階で
起毛したり分割したりすることにより得られるの
である。その上、当該合成繊維は塩素含有の樹脂
組成物であることから難燃性の特性も備え、フイ
ルター等の応用においては極めて好都合である。 以下、実施例により本発明を更に具体的に説明
するが、本発明はこれらにより何ら制限をうけな
いことは云うまでもない。 実施例 1 アクリル系樹脂と塩素化塩化ビニル樹脂との混
合物において、混合比率の異なる5種類の繊維を
湿式紡糸し、得られた繊維の特性を観察した。 使用したアクリル系樹脂の組成はアクリロニト
リル/塩化ビニル/パラスチレンスルフオン酸ソ
ーダ重量比=45.0/54.5/0.5であり、塩素化塩化
ビニル樹脂は塩素含有量62.0重量パーセントの樹
脂である。両樹脂はそれぞれ別個に溶剤アセトン
50℃で撹拌溶解し、25重量パーセント溶液とした
後に、アクリル系樹脂/塩素化塩化ビニル樹脂重
量比がそれぞれ(A)10/90、(B)30/70、(C)50/50、
(D)70/30及び(E)90/10の比率になるように混合
し、再度、十分に撹拌し紡糸原液とした。 各紡糸原液は若干不透明ではあるが肉眼的には
均一で、放置しておいても分離しない安定な溶液
であつた。 各原液を次の紡糸条件に従つて紡糸、水洗、乾
燥、熱処理を行ない、単繊維繊度約3デニール、
フイラメント数50のフイラメントを得た。即ち、
該紡糸原液を孔径0.1mm、ホール数50のノズルを
通して、25℃、30重量パーセントアセトン水溶液
の第1凝固浴に紡出し、5m/分で引き上げた。
続いて、20重量パーセントアセトン水溶液の第2
凝固浴及び水100%の第3凝固浴を順次通過させ、
雰囲気温度130℃で乾燥させ、10m/分で巻き取
つた。延伸工程では120℃で3倍に延伸し、130℃
で10分間緩和処理を行なつた。得られた繊維の特
性値は第1表の通りである。測定はJIS L−1069
に従い、定速緊張形で行なつた。
The present invention relates to a method for producing ultrafine fibers, and more specifically, by obtaining an aggregate of ultrafine fibers containing a plurality of fiber shapes in one fiber by a wet method or a dry method, and then dividing this. The present invention relates to a method for producing ultrafine fibers. Although one fiber has a normal fineness (2 denier to 50 denier), the fiber is cotton, spun yarn,
It is widely known that the separation into ultrafine fibers at the stage of final products such as nonwoven fabrics and knitted fabrics has unique value not only in terms of the texture and feel of the product, but also in terms of physical properties. However, in order to obtain such fibers, a method called a polymer array production method using a special composite spinneret was used (Japanese Patent Publication No. 18369, 1973).
There are also those with a built-in static mixer in the spinneret (Japanese Patent Application Laid-open No. 56-91069), which require a sophisticated and expensive spinneret, and two different resins must be introduced separately to the spinneret. The current situation is that complex processes and equipment are required. On the other hand, it has also been announced that yarns with sea islands can be obtained by utilizing microphase separation of different types of polymers, but this is not as complete as the former method, nor is it practical. That is, it is very important that the threads formed in the islands are formed into perfect fiber shapes, and this determines the value of the final product. In this sense, the method for producing a polymer array using a special spinneret allows obtaining a sea-island shape that is close to the ideal, and also allows the island portions to form a nearly perfect fiber shape. However, as mentioned above, this method requires an expensive spinneret,
The problem is that the process is complicated. On the other hand, compared to this, the method that applies microphase separation is simple and advantageous, but the formation of threads in the island portion is not sufficient and it is difficult to form a perfect fiber shape, so the characteristics are fully exhibited even in the final product. The current situation is that this has not been done. In view of these circumstances, the present inventors have conducted intensive research in order to obtain synthetic fibers with a perfect sea-island structure in cross section, without requiring a special spinneret or complicating the manufacturing process, and to obtain ultrafine fibers from the fibers. As a result of repeated efforts, we have arrived at the present invention. That is, the present invention uses 20 to 80 parts by weight of an acrylic resin composition containing acrylonitrile as a main component and 80 parts by weight of a vinyl chloride resin and/or a chlorinated vinyl chloride resin composition having a chlorine content of 68 percent by weight or less. 20 parts by weight are mixed and dissolved in a common solvent, spun into a coagulating liquid in which the resin composition is solidified or into air, stretched and dried to obtain an aggregate of ultrafine fibers, and then the aggregate is divided. The content is a method for producing ultrafine fibers characterized by the following. The acrylic resin composition used in the present invention contains 30 to 85 weight percent of acrylonitrile, and a vinyl compound having copolymerizability with this, such as methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, vinylidene chloride, In addition to styrene, sodium methalylsulfonate, sodium p-styrenesulfonate, itaconic acid, etc., which are used as dye improving agents, may also be copolymerized. The acrylic resin composition in the present invention includes a so-called acrylic resin composition,
Acrylic resin compositions usually contain acrylonitrile.
85% by weight or less and 30% by weight or more of vinyl chloride and/or vinylidene chloride from 15% by weight or more and 70% by weight or less, and a dyeing improver that can be copolymerized with this, such as sodium metaallylsulfonate, sodium p-styrenesulfonate, It is composed of less than 2% by weight of itaconic acid and the like. The effect of these resin compositions is significant when the amount is from 20 parts by weight to 80 parts by weight, and more preferably from 30 parts by weight to 50 parts by weight. On the other hand, if the amount is less than 20 parts by weight or exceeds 80 parts by weight, the fiber shape of the island portions will be incomplete, making it difficult to express the characteristics thereof, and the value of the final product will also decrease. The chlorinated vinyl chloride resin composition used in the present invention preferably has a chlorination rate of up to 68% by weight, and a 25% by weight acetone solution of this composition at 25°C ranges from 1 poise to 20% by weight.
Anything up to a point is good. Outside these ranges,
In either case, the fiber shape of the island portion becomes incomplete. More specifically, the chlorine content is preferably from 61% to 65% by weight, and in this case the fibers in the island portions exhibit the best shape. Also, among the general commercially available vinyl chloride resin compositions, those with a polymerization degree of 700 to 1500 are good; those with a degree of polymerization lower than this have poor fiber shape in the island portion, and those with a degree of polymerization higher than this are not uniformly blended. I don't like it because it's difficult. Next, when mixing and dissolving these acrylic resin compositions and vinyl chloride and/or chlorinated vinyl chloride resin compositions, there is no particular restriction as long as the solvent is a common solvent that dissolves each resin composition, and there are no particular restrictions on the dissolution method. They may be dissolved separately and mixed together.
Alternatively, the respective resin compositions may be simultaneously introduced into a common solvent and dissolved by stirring. The melting conditions (temperature and time) during this melting do not seem to have much effect on the fiber shape of the island portions. When the spinning stock solution obtained in this way is spun by a wet spinning method, it can be discharged from a common spinneret into a coagulating solution and coagulated to form fibers. Furthermore, in order to increase the strength of the fiber, it is effective to stretch the fiber several times in a spinning bath, and then dry it to obtain a synthetic fiber. In this case, it is also possible to carry out hot drawing or heat treatment under conditions suitable for the fiber, and the yarn structure of the synthetic fiber will not be significantly changed by this. On the other hand, in the so-called dry spinning method, which involves spinning into a hot air atmosphere, the desired synthetic fiber can be obtained in the same way as in the wet spinning method, but the fiber surface is essentially different from the wet spinning method, except that the fiber surface is slightly smoother. do not have. The synthetic fiber made of an aggregate of ultrafine fibers thus obtained is divided into ultrafine fibers. When you look at one of these synthetic fibers, its appearance is almost the same as a normal fiber, but it is susceptible to external forces (tearing,
If the fiber is subjected to a process such as beating) or treated with a solvent that dissolves only the sea portion, threads with multiple fiber shapes will emerge from a single fiber. In other words, although the method utilizes phase separation, as is clear from the examples described below, surprisingly, the yarn portion of the island part has an almost perfect fiber shape, and the fineness is fine (from 2 to 2). If the fineness is 3 denier), several tens of microfibers can be obtained, and if the fineness is even thicker (30 to 50 denier), several hundred ultrafine fibers can be obtained. Further, the fibers made of the above-mentioned aggregate of ultrafine fibers can also be made into ultrafine fibers by dividing or raising them at the stage of spinning yarn or fabric. For example, when used as cotton, excellent heat retention can be expected due to the improved air content due to division, and when used as a filter,
It can remove very fine dust. In addition, the bulkiness and the extremely soft texture unique to ultra-fine fibers,
The tactile sensation is obtained by raising or dividing the yarn, nonwoven fabric, or general woven fabric at the stage. Furthermore, since the synthetic fiber is a chlorine-containing resin composition, it also has flame retardant properties, making it extremely convenient for applications such as filters. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but it goes without saying that the present invention is not limited in any way by these examples. Example 1 In a mixture of acrylic resin and chlorinated vinyl chloride resin, five types of fibers having different mixing ratios were wet-spun, and the characteristics of the obtained fibers were observed. The composition of the acrylic resin used was acrylonitrile/vinyl chloride/sodium p-styrene sulfonate weight ratio = 45.0/54.5/0.5, and the chlorinated vinyl chloride resin had a chlorine content of 62.0% by weight. Both resins were separately treated with solvent acetone.
After stirring and dissolving at 50°C to make a 25 weight percent solution, the acrylic resin/chlorinated vinyl chloride resin weight ratio was (A) 10/90, (B) 30/70, (C) 50/50, respectively.
They were mixed at a ratio of (D) 70/30 and (E) 90/10, and stirred thoroughly again to obtain a spinning stock solution. Although each spinning stock solution was slightly opaque, it was macroscopically uniform and was a stable solution that did not separate even if left standing. Each stock solution was spun, washed with water, dried, and heat treated according to the following spinning conditions, and the single fiber fineness was approximately 3 denier.
Filaments with a filament number of 50 were obtained. That is,
The spinning dope was passed through a nozzle with a hole diameter of 0.1 mm and 50 holes to be spun into a first coagulation bath of a 30 weight percent acetone aqueous solution at 25° C., and pulled up at a rate of 5 m/min.
followed by a second solution of 20 weight percent acetone in water.
Pass through a coagulation bath and a third coagulation bath of 100% water in sequence,
It was dried at an ambient temperature of 130°C and wound at a speed of 10 m/min. In the stretching process, it is stretched 3 times at 120℃, then 130℃
Relaxation treatment was performed for 10 minutes. The characteristic values of the obtained fibers are shown in Table 1. Measurement is JIS L-1069
In accordance with the above, the test was carried out in a constant speed tension type.

【表】 試料繊維(B)について、繊維を繊維軸方向に引き
ちぎり極細繊維とした。この場合の側面の電子顕
微鏡写真を第1図a及び同拡大写真を第1図bに
示した。また鋭利な刃物により切断した(B)繊維の
切断面を第2図a及び同拡大写真を第2図bに示
した。これらから、ミクロ相分離による極細繊維
が得られていることが明らかである。これら極細
繊維の直径は最大1μである。(C)及び(D)繊維も極
細分割化の容易さの程度に若干の差は有るが、定
性的に同様の繊維が得られた。 対照として掲げた(A)繊維の側面及び断面の電子
顕微鏡写真をそれぞれ第3図及び第4図に示し
た。この場合は島部分の占める体積が少なく、充
分な長さを有する繊維形状が得られていない。(E)
繊維についても海島が逆となつた他は(A)繊維と同
様の側面及び断面形状を有していた。 以上の結果から、本発明により樹脂固有の性能
を損なうことなく、容易に極細繊維を得ることが
できることがわかる。 実施例 2 以下の方法で乾式紡糸を行なつた。使用した樹
脂の一方の組成はアクリロニトリル/酢酸ビニ
ル/メタアリルスルフオン酸ソーダ重量比=
90.0/9.5/0.5であり、他方の樹脂は市販されて
いる塩化ビニル樹脂である。2種の樹脂を粉末状
態で混合撹拌した後、溶剤であるジメチルフオル
ムアミドに撹拌溶解し、濃度30重量パーセントの
溶液とし、これを紡糸原液とした。アクリル系樹
脂/塩化ビニル樹脂重量比がそれぞれ(F)10/90、
(G)30/70、(H)50/50、(I)70/30及び(J)90/10とし
た。 各紡糸原液は実施例1と同様に若干不透明では
あるが、肉眼的には均一で安定であつた。紡糸は
次の要領で行ない、得られた繊維はフイラメント
数48本、トータルデニール150デニールのマルチ
フイラメントであつた。紡糸原液を吐出速度43
c.c./分、吐出温度145℃で210℃の熱風中に孔径
0.1mm、孔数48個のノズルから吐出させることに
より繊維形状を形成させ、100m/分で巻き取つ
た。次にこれを110℃で約5倍に延伸し、単繊維
繊度約3.1デニールの繊維を得た。各繊維の特性
値を第2表に示す。
[Table] Regarding the sample fiber (B), the fiber was torn in the fiber axis direction to obtain ultrafine fiber. An electron micrograph of the side surface in this case is shown in FIG. 1a, and an enlarged photograph of the same is shown in FIG. 1b. The cut surface of the fiber (B) cut with a sharp knife is shown in FIG. 2a, and an enlarged photograph of the same is shown in FIG. 2b. It is clear from these that ultrafine fibers are obtained by microphase separation. The diameter of these microfibers is up to 1μ. Fibers (C) and (D) also had qualitatively similar fibers, although there was a slight difference in the degree of ease of ultrafine division. Electron micrographs of the side surface and cross section of the fiber (A) used as a control are shown in FIGS. 3 and 4, respectively. In this case, the volume occupied by the island portion is small, and a fiber shape with sufficient length is not obtained. (E)
The fibers also had the same side and cross-sectional shapes as the (A) fibers, except that the sea islands were reversed. From the above results, it can be seen that ultrafine fibers can be easily obtained according to the present invention without impairing the properties inherent to the resin. Example 2 Dry spinning was carried out in the following manner. The composition of one of the resins used was acrylonitrile/vinyl acetate/sodium metaallylsulfonate weight ratio =
90.0/9.5/0.5, and the other resin is a commercially available vinyl chloride resin. The two resins were mixed and stirred in powder form, and then dissolved in dimethyl formamide, a solvent, with stirring to form a solution with a concentration of 30% by weight, which was used as a spinning dope. The weight ratio of acrylic resin/vinyl chloride resin is (F)10/90, respectively.
(G) 30/70, (H) 50/50, (I) 70/30 and (J) 90/10. Although each spinning stock solution was slightly opaque as in Example 1, it was macroscopically uniform and stable. Spinning was carried out in the following manner, and the obtained fiber was a multifilament with 48 filaments and a total denier of 150 deniers. Discharge speed of spinning dope 43
cc/min, pore size in hot air of 210℃ at discharge temperature 145℃
A fiber shape was formed by discharging from a 0.1 mm nozzle with 48 holes, and the fiber was wound at 100 m/min. Next, this was stretched about 5 times at 110°C to obtain a fiber with a single fiber fineness of about 3.1 denier. Table 2 shows the characteristic values of each fiber.

【表】 試料繊維(H)について、繊維軸方向に引きちぎつ
て極細繊維とした。この場合の側面の電子顕微鏡
写真を第5図に示し、鋭利な刃物による切断面を
第6図a及び同拡大写真を第6図bに示した。実
施例1と同様、容易に極細繊維化するという基本
的性質を有していることが理解される。(G)及び(I)
繊維の側面及び断面は混合比による海部分と島部
分の比率の相違はあるものの定性的にはそれぞれ
第5図及び第6図a,bと同様であつた。 対照として掲げた(F)繊維の側面及び切断面の電
子顕微鏡写真をそれぞれ第7図及び第8図に示し
た。この場合も実施例1と同様に極細繊維は得ら
れなかつた。(J)繊維についても海島が逆となつた
他は(F)繊維と同様の側面及び断面形状を有してい
た。
[Table] The sample fiber (H) was torn in the fiber axis direction to produce ultrafine fibers. An electron micrograph of the side surface in this case is shown in FIG. 5, a cross section cut by a sharp knife is shown in FIG. 6a, and an enlarged photograph of the same is shown in FIG. 6b. It is understood that, like Example 1, it has the basic property of being easily formed into ultrafine fibers. (G) and (I)
The side surface and cross section of the fiber were qualitatively similar to those shown in FIGS. 5 and 6 a and b, respectively, although there were differences in the proportions of sea and island portions depending on the mixing ratio. Electron micrographs of the side surface and cut surface of the fiber (F) used as a control are shown in FIGS. 7 and 8, respectively. In this case, as in Example 1, no ultrafine fibers were obtained. The (J) fiber also had the same side and cross-sectional shape as the (F) fiber, except that the sea islands were reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbはアクリル系樹脂組成物及び塩
素化塩化ビニル樹脂組成物の混合物を湿式紡糸法
により繊維化し、引きちぎつて得た極細繊維の形
状を示す電子顕微鏡写真、第2図a及びbは第1
図に相当する繊維の鋭利な刃物で切断して得られ
たものの切断面の繊維の形状を示す電子顕微鏡写
真、第3図及び第4図はそれぞれ極細繊維化して
いない繊維(対照)の形状を示す電子顕微鏡写
真、第5図はアクリル樹脂組成物及び塩化ビニル
樹脂組成物の混合物を乾式紡糸法により繊維化
し、引きちぎつて得た極細繊維の形状を示す電子
顕微鏡写真、第6図a及びbは第5図に相当する
繊維の切断面の形状を示す電子顕微鏡写真、第7
図及び第8図はそれぞれ極細繊維化していない繊
維(対照)の形状を示す電子顕微鏡写真である。
Figures 1a and b are electron micrographs showing the shape of ultrafine fibers obtained by fiberizing a mixture of an acrylic resin composition and a chlorinated vinyl chloride resin composition by a wet spinning method and tearing the mixture; b is the first
Electron micrographs showing the shape of the fibers on the cut surface obtained by cutting the fibers corresponding to the figure with a sharp knife, Figures 3 and 4 respectively show the shapes of the fibers that have not been made into ultra-fine fibers (control). FIG. 5 is an electron micrograph showing the shape of ultrafine fibers obtained by dry spinning a mixture of an acrylic resin composition and a vinyl chloride resin composition and tearing the mixture, FIG. 6 a and b is an electron micrograph showing the shape of the cut surface of the fiber corresponding to Fig. 5;
FIG. 8 and FIG. 8 are electron micrographs showing the shape of fibers that have not been made into ultrafine fibers (control).

Claims (1)

【特許請求の範囲】 1 アクリロニトリルを主成分とするアクリル樹
脂組成物の20重量部から80重量部と塩化ビニル樹
脂及び/又は塩素含有量68重量パーセント以下の
塩素化塩化ビニル樹脂組成物の80重量部から20重
量部とを共通溶媒で混合溶解し、これを前記樹脂
組成物が凝固する凝固液中又は空気中に紡出し、
延伸、乾燥して極細繊維の集合体を得、次いで該
集合体を分割することを特徴とする極細繊維の製
造方法。 2 アクリル樹脂組成物のアクリロニトリルが85
重量パーセント以下のアクリル系樹脂組成物であ
る特許請求の範囲第1項記載の製造方法。 3 塩素含有量が61重量パーセント以上65重量パ
ーセント以下の塩素化塩化ビニル樹脂組成物を使
用する特許請求の範囲第2項記載の製造方法。
[Claims] 1. 20 to 80 parts by weight of an acrylic resin composition containing acrylonitrile as a main component and 80 parts by weight of a vinyl chloride resin and/or a chlorinated vinyl chloride resin composition having a chlorine content of 68 percent by weight or less. % to 20 parts by weight are mixed and dissolved in a common solvent, and this is spun into a coagulating liquid in which the resin composition is coagulated or into air,
A method for producing ultrafine fibers, which comprises stretching and drying to obtain an aggregate of ultrafine fibers, and then dividing the aggregate. 2 The acrylonitrile of the acrylic resin composition is 85
The manufacturing method according to claim 1, wherein the acrylic resin composition has a weight percent or less. 3. The manufacturing method according to claim 2, which uses a chlorinated vinyl chloride resin composition having a chlorine content of 61 weight percent or more and 65 weight percent or less.
JP23839383A 1983-12-16 1983-12-16 Manufacture of synthetic fiber Granted JPS60134014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23839383A JPS60134014A (en) 1983-12-16 1983-12-16 Manufacture of synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23839383A JPS60134014A (en) 1983-12-16 1983-12-16 Manufacture of synthetic fiber

Publications (2)

Publication Number Publication Date
JPS60134014A JPS60134014A (en) 1985-07-17
JPH0478727B2 true JPH0478727B2 (en) 1992-12-14

Family

ID=17029525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23839383A Granted JPS60134014A (en) 1983-12-16 1983-12-16 Manufacture of synthetic fiber

Country Status (1)

Country Link
JP (1) JPS60134014A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943368B2 (en) * 2008-04-08 2012-05-30 三菱レイヨン株式会社 Process for producing easily splittable acrylic composite fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142644A (en) * 1974-10-09 1976-04-10 Tokuzo Kaneko KUTSUNO NAKAZOKOSOZAI
JPS578191A (en) * 1980-06-19 1982-01-16 Shinko Buriki Insatsu Kojo:Kk Preparation of decorative board
JPS5735016A (en) * 1980-08-11 1982-02-25 Toray Ind Inc Production of fiber structure with specified ends
JPS5881613A (en) * 1981-11-09 1983-05-17 Teijin Ltd Polyvinyl chloride fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142644A (en) * 1974-10-09 1976-04-10 Tokuzo Kaneko KUTSUNO NAKAZOKOSOZAI
JPS578191A (en) * 1980-06-19 1982-01-16 Shinko Buriki Insatsu Kojo:Kk Preparation of decorative board
JPS5735016A (en) * 1980-08-11 1982-02-25 Toray Ind Inc Production of fiber structure with specified ends
JPS5881613A (en) * 1981-11-09 1983-05-17 Teijin Ltd Polyvinyl chloride fiber

Also Published As

Publication number Publication date
JPS60134014A (en) 1985-07-17

Similar Documents

Publication Publication Date Title
US4381335A (en) Multi-component composite filament
US4496619A (en) Fabric composed of bundles of superfine filaments
US3718534A (en) Spontaneously crimping synthetic composite filament and process of manufacturing the same
JP2694718B2 (en) Towel cloth
JP3736298B2 (en) Blended yarn
JP3076372B2 (en) Polyester filament yarn, method for producing the same, woven / knitted material and method for producing the same
JPH0478727B2 (en)
JPS5855259B2 (en) Tokushi Unite Caranal Amioli Mono Oyobi Sono Seizouhou
EP0330766A1 (en) Multi-layered conjugated acrylic fibers and the method for their production
JPH01139833A (en) Fiber materials excellent in flexibility
DE2009971B2 (en) Bicomponent synthetic threads of the matrix / fibril type
JPH03249217A (en) Light-weight sheath-core conjugate hollow polyester fiber
GB2062537A (en) A multi-component composite filament
JPH0625918A (en) Easy-raising polyester fiber and its production
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP3418265B2 (en) Method for producing cation-mix-like fine fiber
JP3244173B2 (en) Suede-like fabric and method for producing the same
JP4100180B2 (en) Polymer alloy fiber
JPS6136084B2 (en)
JPH07216653A (en) Highly crimping polypropylene filament yarn and its production
JP3753654B2 (en) Pile fiber products
JPH01272862A (en) Cation dyeable polyester fiber excellent in feeling and production thereof
JPH0440455B2 (en)
JP2021188243A (en) Composite fiber
JP3518133B2 (en) Method for producing short fiber having latent fibril properties