JPH0478647B2 - - Google Patents

Info

Publication number
JPH0478647B2
JPH0478647B2 JP14853287A JP14853287A JPH0478647B2 JP H0478647 B2 JPH0478647 B2 JP H0478647B2 JP 14853287 A JP14853287 A JP 14853287A JP 14853287 A JP14853287 A JP 14853287A JP H0478647 B2 JPH0478647 B2 JP H0478647B2
Authority
JP
Japan
Prior art keywords
imide
epoxy resin
compound
molecule
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14853287A
Other languages
Japanese (ja)
Other versions
JPS63312315A (en
Inventor
Eisaku Saito
Koji Sato
Tokio Yoshimitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14853287A priority Critical patent/JPS63312315A/en
Publication of JPS63312315A publication Critical patent/JPS63312315A/en
Publication of JPH0478647B2 publication Critical patent/JPH0478647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、積層板等に使用される硬化性樹脂
組成物に関する。 〔背景技術〕 積層板等に使用される樹脂としては、一般に、
エポキシ樹脂やイミド樹脂が多用されている。 そのような積層板の場合、樹脂選択の基準とし
て、積層数が10層以上か以下かと言うことで、イ
ミド樹脂とエポキシ樹脂の使い分けが行われる。
ところが、近時、このような積層板の用途が多様
化し、前記積層数による使い分け等の使用体系で
は、それに充分に対応できなくなつてきているの
が現状である。 たとえば、エポキシ樹脂においては、高純度
化、速硬化性、スミヤー性、UV遮蔽性等の点で
優れていることが要求されており、イミド樹脂に
おいては、高ガラス転移温度(Tg)化、高難燃
性化、低温度硬化化、低コスト化等の満たされて
いることが求められるようになつてきた。特に最
近では、イミド樹脂とエポキシ樹脂の中間に位置
する性能を有したものが求められており、それに
答えるものとして、イミド樹脂プレポリマーをエ
ポキシ樹脂で変成したエポキシ変性イミド樹脂フ
レポリマーが開発された。 ところが、現在使用されているエポキシ変性イ
ミド樹脂プレポリマーの多くは、積層板にした場
合の層間接着力を高めるため、エポキシ樹脂の配
合量を多くしているが、そのために、硬化後の樹
脂のガラス転移温度が低くなつてしまう、と言う
問題を有する。 〔発明の目的〕 この発明は、上記事情に鑑みてなされたもので
あつて、ガラス転移温度が高く、しかも、積層板
にした場合にも充分な層間密着力が得られる硬化
性樹脂組成物を提供することを目的としている。 〔発明の開示〕 以上の目的を達成するため、発明者らは、どの
ようにすればエポキシ樹脂の配合量を増やさずに
層間密着力を高めることができるか、と言う観点
から検討を行つた。その結果、エポキシ樹脂の配
合量を多くする代わりに、イミド樹脂プレポリマ
ーの主たる骨格である分子内にイミド基を複数個
有する芳香族化合物で、エポキシ樹脂と反応する
アミノ基を複数個有する化合物を用いればよいこ
とを見出した。しかし、単に、このような化合物
(以下「分子内にイミド基とアミノ基とを各々複
数個有する芳香族化合物」と記す)とエポキシ樹
脂とを反応させるだけでは、未反応のアミノ基が
数多く残留して、耐熱性に悪影響を与えることが
わかつた。そこで、さらに検討を行つた結果、こ
の発明を完成した。 すなわち、この発明は、分子内にイミド基とア
ミノ基とを各々複数個有する芳香族化合物とエポ
キシ樹脂とを反応させてなるものに、硬化剤とし
て少なくとも不飽和イミド化合物を配合してなる
硬化性樹脂組成物を要旨としている。 以下に、この発明を、詳しく説明する。 イミド樹脂プレポリマーに代わつて使用され
る、分子内にイミド基とアミノ基とを各々複数個
有する芳香族化合物としては、下記式()、
()であらわされた化合物のうちの少なくとも
一方が使用される。 〔上記式中Ar1は2価の芳香族基、Ar2は4価の
芳香族基、Ar3は3価の芳香族基を、それぞれあ
らわし、n、mは0または正の整数(ただしn+
m>0)をあらわしている。〕 〔上記式中Ar4は、前記Ar2と同一かまたは異な
る4価の芳香族基をあらわし、R1、R2は水素原
子、ハロゲン原子またはアルキル基をあらわし、
R1、R2のうちの少なくとも一方は常にアルキル
基である。また、pは正の整数をあらわしてい
る。〕 上記一般式()であらわされた化合物は、ジ
メチルホルムアミド、N−メチルピロリドン、m
−クレゾール等の極性溶媒中で、下記の一般式
()および() であらわされた芳香族酸無水物と、これら酸無水
物のモル数よりも過剰の、下記一般式() NH2−Ar1−NH2 ……() であらわされた芳香族ジアミンとを反応させるこ
とで得られる。 一般式()または()であらわされる芳香
族酸無水物としては、3,3′,4,4′−ベンゾフ
エノンテトラカルボン酸ジ無水物、ピロメリツト
酸ジ無水物、2,3,6,7−ナフタレンテトラ
カルボン酸ジ酸無水物、3,3′,4,4′−ジフエ
ニルテトラカルボン酸ジ無水物、2,2−ビス
(3,4−ジカルボキシフエニル)プロパンジ無
水物、ビス(3,4−ジカルボキシフエニル)エ
ーテルジ無水物、2,6−ジクロロナフタレン−
1,4,5,8−テトラカルボン酸ジ無水物、フ
エナントレン−1,8,9,10−テトラカルボン
酸ジ無水物、1,1−ビス(2,3−ジカルボキ
シフエニル)エタンジ無水物、ビス(2,3−ジ
カルボキシフエニル)メタンジ無水物、ビス
(3,4−ジカルボキシフエニル)スルホンジ無
水物、1,1,3,3,3−ヘキサフロロ−2,
2−ビス(3,4−ジカルボキシフエニル)プロ
パンジ無水物、トリメリツト酸無水物等が挙げら
れる。 一般式()であらわされるジアミンとして
は、4,4′−ジアミノジフエニルプロパン、4,
4′−ジアミノジフエニルメタン、4,4′−ジアミ
ノジフエニルスルフイド、3,3−ジアミノジフ
エニルスルホン、4,4′−ジアミノジフエニルス
ルホン、4,4′−ジアミノジフエニルエーテル、
3,3′−ジメチル−4,4′−ジアミノジフエニル
メタン、3,3′−ジエチル−4,4′−ジアミノジ
フエニルメタン、3,3′−ジメトキシ−4,4′−
ジアミノジフエニルメタン、3,3′−ジメチル−
4,4′−ジアミノジフエニルエーテル、3,3′−
ジエトキシ−4,4′−ジアミノジフエニルスルホ
ン、3,3′−ジエチル−4,4′−ジアミノジフエ
ニルプロパン3,3′−ジメチル−4,4′−ジアミ
ノベンゾフエノン、3,3′−ジアミノジフエニル
メタン、3,3′−ジアミノジフエニルエーテル、
2,4−ジアミノトルエン、2,6−ジアミノト
ルエン、2,4−ジアミノアニソール、2,4−
ジアミノモノクロロベンゼン、2,4−ジアミノ
フルオロベンゼン、m−フエニレンジアミン、p
−フエニレンジアミン、3,3′−ジアミノベンゾ
フエノン、1,3−ビス(3−アミノフエノキ
シ)ベンゼン、9,9−ビス(4−アミノフエニ
ル)フルオレン等が挙げられる。 反応は、イミド重合体またはアミドイミド重合
体を製造する公知の重合条件下で行えばよい。 上記一般式()であらわされた化合物は、ピ
ロメリツト酸、3,3′,4,4′−ベンゾフエノン
テトラカルボン酸、3,3′,4,4′−ジフエニル
エーテルテトラカルボン酸、3,3′,4,4′−ビ
フエニルテトラカルボン酸、2,3,6,7−ナ
フタレンテトラカルボン酸、2,3,4,5−チ
オフエンテトラカルボン酸、2,2−ビス(3,
4−ジカルボキシフエニル)プロパン等の芳香族
テトラカルボン酸およびその誘導体と、モル過剰
のo−アルキル置換アニリン−ホルムアルデヒド
縮合物(アルキルとしてはC1〜C4、その中でも
エチル基が好ましい)等の芳香族ジアミン成分と
を適当な溶媒中で反応させることで得られる。溶
媒としては、N−メチル−2−ピロリドン、N,
N−ジメチルアセトアミド、N,N−ジメチルホ
ルムアミド等のアミド系溶媒の他、m−クレゾー
ル等のフエノール類、ジメチルスルホキシド等が
用いられる。 前記式()、()であらわれた、分子内にイ
ミド基とアミノ基とを各々複数個有する芳香族化
合物の変性に用いられるエポキシ樹脂としては、
種々のものが考えられるが、硬化後の樹脂のガラ
ス転移温度や、その他の性能向上のためには、ノ
ボラツク型エポキシ樹脂を使用することが好まし
い。しかしながら、それ以外のエポキシ樹脂を使
用することも、もちろん、可能である。たとえ
ば、ブロム化エポキシ樹脂を使用すれば、樹脂の
難燃性を向上することができる。その場合、UL
規格のUL94V−0を達成しようとすれば、全樹
脂成分量に対し、8重量%以上のBr原子が含有
されるような量のブロム化エポキシ樹脂を配合し
てやればよい。 ブロム化エポキシ樹脂としては、たとえば、下
記一般式() であらわされたブロム化ノボラツクエポキシ樹脂
や、式() であらわされたテトラブロムビスフエノールAの
ジアリルエーテル化物、式() であらわされたテトラブロムビスフエノールAの
ジグリシジルエーテル化物等が、この発明に好ま
しいものとして挙げられる。 分子内にイミド基とアミノ基とを各々複数個有
する芳香族化合物とエポキシ樹脂の配合比は、特
に限定されないが、以上のように、この発明で
は、エポキシ樹脂の配合比が少なくても充分な層
間密着力を得ることができるため、樹脂のガラス
転移温度を高める意味からも、エポキシ樹脂の配
合比は、少なければ少ないほど好ましい。たとえ
ば、従来のエポキシ変性イミド樹脂プレポリマー
では、エポキシ樹脂(E)とイミド樹脂(I)の配合比
E/Iが1.5程度であることが多かつたが、この
発明では、エポキシ樹脂(E)と分子内にイミド基と
アミノ基とを各々複数個有する芳香族化合物
(IA)の配合比E/IAを1.0以下にしても、従来
と同等の層間密着力を得ることができるようにな
るのである。 エポキシ樹脂硬化のための硬化剤としては、不
飽和イミド化合物が用いられる。不飽和イミド化
合物の代表的なものとしては、下記一般式() であらわされたN−メチルマレイミドや、式
() であらわされたビスマレイミドが好ましく用いら
れるが、これら以外の不飽和イミド化合物も、も
ちろん使用することができる。 また、上記不飽和イミド化合物以外の硬化剤、
たとえば、ルイス酸化合物を併用することも可能
である。ルイス酸化合物の代表的なものとして
は、下記一般式(XI) であらわされたフエノールノボラツクや、式
(XII) 〔ただし、上記2式中r、sは、1以上の整数を
あらわしている。〕 であらわされたオルソクレゾールノボラツク等が
好ましく用いられるが、これら以外のルイス酸化
合物を使用することもできる。 以上のような、この発明の硬化性樹脂組成物
は、上述した分子内にイミド基とアミノ基とを
各々複数個有する芳香族化合物、エポキシ樹脂な
らびに硬化剤を、単に混合しただけでも得ること
ができるが、このように混合しただけでは、濃度
が高い場合には均一であるように見えるが、希釈
すると前2者が分離してしまう恐れがある。した
がつて、分子内にイミド基とアミノ基とを各々複
数個有する芳香族化合物とエポキシ樹脂とは反応
させる必要がある。反応の条件は特に限定され
ず、使用する化合物の種類に応じた条件を設定し
てやればよい。 つぎに、この発明の実施例について、比較例と
併せて説明する。 実施例 1、2 分子内にイミド基とアミノ基とを各々複数個有
する芳香族化合物として前記式()であらわさ
れた化合物を使用し、これを第1表に示したエポ
キシ樹脂と混合し反応させたあと、同表に示した
硬化剤を配合して硬化性樹脂組成物を得た。得ら
れた硬化性樹脂組成物をガラス布(日東紡社製
WE−09−F104)に含浸さ、160℃、10分間乾燥
させてプリプレグを得た。得られたプリプレグ4
枚の上下に、銅箔(日鉱グールド社製JTC−
18μ)を重ね、30Kg/cm2、170℃で90分間の加熱、
加圧を行つたあと、常圧下、200℃、120分間アフ
ターキユアして、厚み0.5mmの両面銅張り積層板
を得た。 実施例 3、4 分子内にイミド基とアミノ基とを各々複数個有
する芳香族化合物として前記式()であらわさ
れた化合物を使用した以外は、実施例1、2と同
様にして硬化性樹脂組成物を得、厚み0.5mmの両
面銅張り積層板を作成した。 比較例 1 硬化剤を配合しなかつた以外は、上記実施例
1、2と同様にして両面銅張り積層板を得た。 比較例 2、3 不飽和ビスイミドたるマレイン酸N,N′−4,
4′−ジフエニルメタン−ビス−イミドと、ジアミ
ンたる4,4′−ジアミノジフエニルメタンとを反
応させて得られる末端アミノ基含有イミド化合物
を用いた以外は、上記実施例1、2と同様にして
両面銅張り積層板を得た。 以上の実施例ならびに比較例で得られた両面銅
張り積層板について、以下の試験を行い、その性
能を評価した。結果を第1表下欄に示す。 <ガラス移転温度(Tg)> 両面銅張り積層板表面の銅箔をエツチングによ
つて除去したあと、動的粘弾性測定装置を使用し
て測定した。 <層間密着強度> 両面銅張り積層板を、ガラス布の繊維方向に対
し直角に、幅4〜8mmの短冊形に切断してサンフ
ルとした。そして、得られたサンプル中のガラス
布の第1層目と第2層目の間の層間接着強度をシ
ヨツパー式引張試験器で測定した。 <銅箔引き剥がし強度> 層間接着強度と同様のサンプルを作成し、表面
の銅箔と、その直下のガラス布第1層との間の引
き剥がし強度をシヨツパー式引張試験器で測定し
た。 <ハンダ耐熱性> 両面銅張り積層板を縦横25±1mmに切り取つし
試験片とし、それを溶融ハンダ浴(300℃)上に
浮かせ、20秒後に、銅箔面および積層板のフクレ
の有無を観察した。
[Technical Field] The present invention relates to a curable resin composition used for laminates and the like. [Background technology] Generally, resins used for laminates etc.
Epoxy resins and imide resins are often used. In the case of such laminates, the criteria for resin selection is whether the number of laminated layers is 10 or more or less than 10, and either imide resin or epoxy resin is used.
However, in recent years, the uses of such laminates have become diversified, and the current usage system, such as the use according to the number of laminated plates, is no longer able to adequately cope with these needs. For example, epoxy resins are required to be superior in terms of high purity, fast curing, smearing properties, UV shielding properties, etc., and imide resins are required to have high glass transition temperature (Tg) and high There has been a growing demand for flame retardancy, low temperature curing, and cost reduction. Particularly recently, there has been a demand for products with performance that lies between those of imide resins and epoxy resins, and as a response to this demand, epoxy-modified imide resin polymers, which are made by modifying imide resin prepolymers with epoxy resins, have been developed. . However, many of the epoxy-modified imide resin prepolymers currently in use contain a large amount of epoxy resin in order to increase the interlayer adhesion when made into a laminate, but this results in a large amount of epoxy resin being added to the resin after curing. The problem is that the glass transition temperature becomes low. [Object of the Invention] The present invention was made in view of the above circumstances, and provides a curable resin composition that has a high glass transition temperature and can provide sufficient interlayer adhesion even when formed into a laminate. is intended to provide. [Disclosure of the Invention] In order to achieve the above objectives, the inventors conducted studies from the viewpoint of how to increase interlayer adhesion without increasing the amount of epoxy resin blended. . As a result, instead of increasing the amount of epoxy resin blended, we developed an aromatic compound that has multiple imide groups in the molecule, which is the main skeleton of the imide resin prepolymer, and a compound that has multiple amino groups that react with the epoxy resin. I found out that it can be used. However, simply reacting such a compound (hereinafter referred to as "aromatic compound having multiple imide groups and amino groups in the molecule") with an epoxy resin leaves many unreacted amino groups. It was found that this had a negative effect on heat resistance. Therefore, as a result of further study, this invention was completed. That is, the present invention provides a curable product which is obtained by reacting an aromatic compound having a plurality of imide groups and a plurality of amino groups in the molecule with an epoxy resin, and blending at least an unsaturated imide compound as a curing agent. The main subject is resin compositions. This invention will be explained in detail below. Aromatic compounds having a plurality of imide groups and a plurality of amino groups in the molecule, which are used in place of the imide resin prepolymer, include the following formula (),
At least one of the compounds represented by () is used. [In the above formula, Ar 1 represents a divalent aromatic group, Ar 2 represents a tetravalent aromatic group, and Ar 3 represents a trivalent aromatic group, respectively, and n and m are 0 or a positive integer (however, n+
m>0). ] [In the above formula, Ar 4 represents a tetravalent aromatic group that is the same as or different from Ar 2 , R 1 and R 2 represent a hydrogen atom, a halogen atom, or an alkyl group,
At least one of R 1 and R 2 is always an alkyl group. Further, p represents a positive integer. ] The compound represented by the above general formula () includes dimethylformamide, N-methylpyrrolidone, m
- In a polar solvent such as cresol, the following general formulas () and () An aromatic acid anhydride represented by the following is reacted with an aromatic diamine represented by the following general formula () NH 2 −Ar 1 −NH 2 ……() in excess of the number of moles of these acid anhydrides. It can be obtained by letting Examples of the aromatic acid anhydride represented by the general formula () or () include 3,3',4,4'-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,6, 7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-diphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, bis (3,4-dicarboxyphenyl)ether dianhydride, 2,6-dichloronaphthalene-
1,4,5,8-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride , bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, 1,1,3,3,3-hexafluoro-2,
Examples include 2-bis(3,4-dicarboxyphenyl)propane dianhydride and trimellitic anhydride. Examples of the diamine represented by the general formula () include 4,4'-diaminodiphenylpropane, 4,
4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl sulfide, 3,3-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether,
3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethoxy-4,4'-
Diaminodiphenylmethane, 3,3'-dimethyl-
4,4'-diaminodiphenyl ether, 3,3'-
Diethoxy-4,4'-diaminodiphenyl sulfone, 3,3'-diethyl-4,4'-diaminodiphenylpropane 3,3'-dimethyl-4,4'-diaminobenzophenone, 3,3'- Diaminodiphenyl methane, 3,3'-diaminodiphenyl ether,
2,4-diaminotoluene, 2,6-diaminotoluene, 2,4-diaminoanisole, 2,4-
Diaminomonochlorobenzene, 2,4-diaminofluorobenzene, m-phenylenediamine, p
-phenylenediamine, 3,3'-diaminobenzophenone, 1,3-bis(3-aminophenoxy)benzene, 9,9-bis(4-aminophenyl)fluorene, and the like. The reaction may be carried out under known polymerization conditions for producing imide polymers or amide-imide polymers. The compounds represented by the above general formula () include pyromellitic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 3,3',4,4'-diphenylethertetracarboxylic acid, 3 , 3',4,4'-biphenyltetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,4,5-thiophenetetracarboxylic acid, 2,2-bis(3,
Aromatic tetracarboxylic acids such as (4-dicarboxyphenyl)propane and derivatives thereof, molar excess of o-alkyl substituted aniline-formaldehyde condensates (alkyl is C 1 to C 4 , of which ethyl group is preferred), etc. and an aromatic diamine component in a suitable solvent. As a solvent, N-methyl-2-pyrrolidone, N,
In addition to amide solvents such as N-dimethylacetamide and N,N-dimethylformamide, phenols such as m-cresol, dimethyl sulfoxide, etc. are used. Epoxy resins used for modifying aromatic compounds having a plurality of imide groups and a plurality of amino groups in the molecule, each represented by the above formulas () and (), include:
Although various resins are conceivable, it is preferable to use a novolak type epoxy resin in order to improve the glass transition temperature of the resin after curing and other properties. However, it is of course also possible to use other epoxy resins. For example, the use of brominated epoxy resins can improve the flame retardancy of the resin. In that case, UL
In order to achieve the standard UL94V-0, the brominated epoxy resin should be blended in an amount such that Br atoms are contained in an amount of 8% by weight or more based on the total amount of resin components. As the brominated epoxy resin, for example, the following general formula () Brominated novolac epoxy resin expressed by the formula () A diallyl etherified product of tetrabromobisphenol A represented by the formula () Diglycidyl etherified products of tetrabromobisphenol A represented by the following formula are preferred for this invention. The blending ratio of the aromatic compound having a plurality of imide groups and amino groups in the molecule and the epoxy resin is not particularly limited, but as described above, in this invention, even if the blending ratio of the epoxy resin is small, it is sufficient. The lower the blending ratio of the epoxy resin is, the more preferable it is from the viewpoint of increasing the glass transition temperature of the resin, since it is possible to obtain interlayer adhesion. For example, in conventional epoxy-modified imide resin prepolymers, the blending ratio E/I of epoxy resin (E) and imide resin (I) was often about 1.5, but in this invention, the epoxy resin (E) Even if the compounding ratio E/IA of the aromatic compound (IA), which has multiple imide groups and amino groups in the molecule, is 1.0 or less, it is possible to obtain the same interlayer adhesion as before. be. An unsaturated imide compound is used as a curing agent for curing the epoxy resin. A typical unsaturated imide compound is the following general formula () N-methylmaleimide represented by the formula () Bismaleimide represented by is preferably used, but unsaturated imide compounds other than these can of course also be used. In addition, curing agents other than the above unsaturated imide compounds,
For example, it is also possible to use a Lewis acid compound in combination. A typical Lewis acid compound is the general formula (XI) below. Phenol novolak expressed by formula (XII) [However, in the above two formulas, r and s represent an integer of 1 or more. ] Orthocresol novolacs and the like represented by these are preferably used, but Lewis acid compounds other than these can also be used. The curable resin composition of the present invention as described above can be obtained by simply mixing the above-mentioned aromatic compound having a plurality of imide groups and amino groups in the molecule, an epoxy resin, and a curing agent. However, if only mixed in this way, it will appear to be homogeneous if the concentration is high, but there is a risk that the former two will separate when diluted. Therefore, it is necessary to react an aromatic compound having a plurality of imide groups and a plurality of amino groups each in the molecule with an epoxy resin. The reaction conditions are not particularly limited, and may be set according to the type of compound used. Next, examples of the present invention will be described together with comparative examples. Examples 1 and 2 A compound represented by the above formula () was used as an aromatic compound having a plurality of imide groups and a plurality of amino groups in the molecule, and this was mixed with the epoxy resin shown in Table 1 and reacted. After that, a curing agent shown in the same table was added to obtain a curable resin composition. The obtained curable resin composition was coated on a glass cloth (manufactured by Nittobo Co., Ltd.).
WE-09-F104) and dried at 160°C for 10 minutes to obtain a prepreg. Obtained prepreg 4
Copper foil (JTC-
18μ), heated at 30Kg/cm 2 and 170℃ for 90 minutes,
After applying pressure, after-curing was performed at 200° C. for 120 minutes under normal pressure to obtain a double-sided copper-clad laminate with a thickness of 0.5 mm. Examples 3 and 4 A curable resin was prepared in the same manner as in Examples 1 and 2, except that the compound represented by the above formula () was used as the aromatic compound having a plurality of imide groups and a plurality of amino groups in the molecule. The composition was obtained, and a double-sided copper-clad laminate with a thickness of 0.5 mm was produced. Comparative Example 1 A double-sided copper-clad laminate was obtained in the same manner as in Examples 1 and 2 above, except that no curing agent was blended. Comparative Examples 2, 3 Maleic acid N, N'-4, which is an unsaturated bisimide
The procedure was repeated in the same manner as in Examples 1 and 2 above, except that an imide compound containing a terminal amino group obtained by reacting 4'-diphenylmethane-bis-imide with 4,4'-diaminodiphenylmethane, which was a diamine, was used. A double-sided copper-clad laminate was obtained. The following tests were conducted on the double-sided copper-clad laminates obtained in the above Examples and Comparative Examples to evaluate their performance. The results are shown in the lower column of Table 1. <Glass transition temperature (Tg)> After the copper foil on the surface of the double-sided copper-clad laminate was removed by etching, it was measured using a dynamic viscoelasticity measuring device. <Interlayer adhesion strength> The double-sided copper-clad laminate was cut into strips having a width of 4 to 8 mm at right angles to the fiber direction of the glass cloth to obtain sunflutes. Then, the interlayer adhesive strength between the first layer and the second layer of glass cloth in the obtained sample was measured using a Schottper type tensile tester. <Copper Foil Peel Strength> A sample similar to the interlayer adhesive strength was prepared, and the peel strength between the copper foil on the surface and the first layer of glass cloth immediately below it was measured using a Schottper type tensile tester. <Solder heat resistance> Cut a double-sided copper-clad laminate into a test piece of 25 ± 1 mm in length and width, float it on a molten solder bath (300°C), and after 20 seconds, check for blisters on the copper foil surface and the laminate. observed.

〔発明の効果〕〔Effect of the invention〕

この発明の硬化性樹脂組成物は、以上のようで
あるため、ガラス移転温度が高く、しかも、積層
板にした場合にも充分な層間密着力が得られるよ
うになつている。
As described above, the curable resin composition of the present invention has a high glass transition temperature and can also provide sufficient interlayer adhesion even when formed into a laminate.

Claims (1)

【特許請求の範囲】 1 分子内にイミド基とアミノ基とを各々複数個
有する芳香族化合物とエポキシ樹脂とを反応させ
てなるものに、硬化剤として少なくとも不飽和イ
ミド化合物を配合してなる硬化性樹脂組成物であ
つて、前記分子内にイミド基とアミノ基とを各々
複数個有する芳香族化合物が、下記一般式()
および()のうちの少なくとも一方であること
を特徴とする硬化性樹脂組成物。 〔上記式中Ar1は2価の芳香族基、Ar2は4価の
芳香族基、Ar3は3価の芳香族基を、それぞれ、
あらわし、n,mは0または正の整数(ただしn
+m>0)をあらわしている。〕 〔上記式中Ar4は、前記Ar2と同一かまたは異な
る4価の芳香族基をあらわし、R1,R2は水素原
子、ハロゲン原子またはアルキル基をあらわし、
R1,R2のうちの少なくとも一方は常にアルキル
基である。また、pは正の整数をあらわしてい
る。〕 2 硬化剤として、ルイス酸化合物をも含んでい
る特許請求の範囲第1項記載の硬化性樹脂組成
物。 3 エポキシ樹脂がブロム化エポキシ樹脂を含ん
でおり、その配合量が、全樹脂中のBr原子含有
量に換算して8重量%以上である特許請求の範囲
第1項または第2項に記載の硬化性樹脂組成物。
[Scope of Claims] 1. Curing made by reacting an aromatic compound having a plurality of imide groups and a plurality of amino groups in the molecule with an epoxy resin, and adding at least an unsaturated imide compound as a curing agent. The aromatic compound having a plurality of imide groups and a plurality of amino groups each in the molecule has the following general formula ().
A curable resin composition comprising at least one of the following. [In the above formula, Ar 1 is a divalent aromatic group, Ar 2 is a tetravalent aromatic group, and Ar 3 is a trivalent aromatic group, respectively,
Expression, n and m are 0 or positive integers (however, n
+m>0). ] [In the above formula, Ar 4 represents a tetravalent aromatic group that is the same as or different from Ar 2 , R 1 and R 2 represent a hydrogen atom, a halogen atom, or an alkyl group,
At least one of R 1 and R 2 is always an alkyl group. Further, p represents a positive integer. 2. The curable resin composition according to claim 1, which also contains a Lewis acid compound as a curing agent. 3. The epoxy resin according to claim 1 or 2, wherein the epoxy resin contains a brominated epoxy resin, and the amount thereof is 8% by weight or more in terms of the Br atom content in the entire resin. Curable resin composition.
JP14853287A 1987-06-15 1987-06-15 Curable polymer composition Granted JPS63312315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14853287A JPS63312315A (en) 1987-06-15 1987-06-15 Curable polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14853287A JPS63312315A (en) 1987-06-15 1987-06-15 Curable polymer composition

Publications (2)

Publication Number Publication Date
JPS63312315A JPS63312315A (en) 1988-12-20
JPH0478647B2 true JPH0478647B2 (en) 1992-12-11

Family

ID=15454885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14853287A Granted JPS63312315A (en) 1987-06-15 1987-06-15 Curable polymer composition

Country Status (1)

Country Link
JP (1) JPS63312315A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176128B2 (en) * 2006-04-14 2013-04-03 日立化成株式会社 Polyamideimide resin, method for producing the same, and resin composition containing the polyamideimide resin

Also Published As

Publication number Publication date
JPS63312315A (en) 1988-12-20

Similar Documents

Publication Publication Date Title
EP0676456B1 (en) Heat-resistant adhesive film for printed board and method of use thereof
JP6872081B2 (en) Polyamic acid resin, polyimide resin and resin composition containing these
JP3136942B2 (en) Polyimide siloxane composition
KR950004150B1 (en) Laminates utilizing chemically etchable adhesives
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
JP3243963B2 (en) Polyimide siloxane composition
KR20170077826A (en) Polyimide-based adhesive
US5916688A (en) Resin solution compositions for electronic materials and protective membranes prepared therefrom for circuits in printed wiring boards
CN106947079B (en) Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer substrate
JP2943953B2 (en) Heat resistant adhesive
JP2952868B2 (en) Heat resistant adhesive
JP2597215B2 (en) Polyimide siloxane composition and solidified film
JP3079867B2 (en) Polyimide copolymer, method for producing the same, and polyimide film
JPH08157597A (en) Copolyimide and its production
JPH04207094A (en) Flexible printed-circuit board and its manufacture
JP3275723B2 (en) Polyimide siloxane composition
KR102261516B1 (en) Polyimide resin composition, adhesive composition, film-shaped adhesive material, adhesive sheet, copper foil with resin, copper clad laminate, printed wiring board and polyimide film
JP3356096B2 (en) Polyimide siloxane used as an essential component of adhesives
KR20220117851A (en) Polyimide resin composition, adhesive composition, film-shaped adhesive material, adhesive sheet, copper foil with resin, copper clad laminate, printed wiring board and polyimide film
JPH0478647B2 (en)
JP3339205B2 (en) Method for producing polyimide copolymer
JPH07316294A (en) Polyimide copolymer and production thereof
JP3819057B2 (en) Resin composition for printing
JP3111441B2 (en) Substrate for printed wiring board
JP3039854B2 (en) Heat resistant resin adhesive sheet and substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees