JPH0478316A - Superconducting bearing - Google Patents

Superconducting bearing

Info

Publication number
JPH0478316A
JPH0478316A JP18869390A JP18869390A JPH0478316A JP H0478316 A JPH0478316 A JP H0478316A JP 18869390 A JP18869390 A JP 18869390A JP 18869390 A JP18869390 A JP 18869390A JP H0478316 A JPH0478316 A JP H0478316A
Authority
JP
Japan
Prior art keywords
rotating shaft
magnetic flux
superconductor
superconducting
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18869390A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
良一 高畑
Shoji Eguchi
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP18869390A priority Critical patent/JPH0478316A/en
Priority to US07/730,164 priority patent/US5330967A/en
Priority to DE69131639T priority patent/DE69131639T2/en
Priority to EP98118588A priority patent/EP0887569A3/en
Priority to EP91111965A priority patent/EP0467341B1/en
Publication of JPH0478316A publication Critical patent/JPH0478316A/en
Priority to US08/160,796 priority patent/US5438038A/en
Priority to US08/543,884 priority patent/US5633548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To simplify a manufacture design by allowing the intrusionn of the magnetic flux of a permanent magnet, and locating a superconducting bearing at a separated position where a predetermined quantity of the magnetic flux of the permanent magnet intrudes and the distribution of the intruded magnetic flux is evened independently from the rotation of a rotating member. CONSTITUTION:When a rotating shaft 2 is pressed to a superconducting member 1 side to come close to a position with a predetermined distance, most of the magnetic flux generated from the rotating shaft 2 intrude inside of the superconducting member 1. At this stage, since superconducting particles exist evenly inside of the superconducting member 1, the distribution of the magnetic flux intruded inside of the superconducting member 1 becomes constant, and as if the rotating shaft 2 is stuck by a virtual pin stood in the superconducting member 1, and the rotating shaft 2 is restricted against the superconducting member 1. The rotating shaft 2 is therefore supported under the extremely stable floated condition. Under the condition that the magnetic flux of the rotating shaft 2 intrudes the superconducting member 1, the rotating shaft 2 is stably rotated for support with the centrifugal work.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、磁束侵入を許容する超伝導体を用いた超伝導
軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a superconducting bearing using a superconductor that allows magnetic flux penetration.

〈従来の技術〉 超伝導軸受として、例えば、特開昭63−243523
号公報に示すようなものがある。
<Prior art> As a superconducting bearing, for example, Japanese Patent Application Laid-Open No. 63-243523
There is something like the one shown in the publication.

この公報の超伝導軸受は、第1種超伝導体すなわち磁束
侵入を完全に阻止する超伝導体を用いており、超伝導体
の完全反磁性現象を利用したものである。この超伝導軸
受は、超伝導体からなる回転軸の両端を、それぞれ一方
磁極の磁気を帯びた磁性体からなる一対の支持部材の凹
みにそれぞれ入れ、回転軸をアキシャル方向およびラジ
アル方向で非接触支持するように構成している。
The superconducting bearing disclosed in this publication uses a type 1 superconductor, that is, a superconductor that completely blocks magnetic flux penetration, and utilizes the perfect diamagnetic phenomenon of the superconductor. In this superconducting bearing, both ends of a rotating shaft made of a superconductor are placed in recesses of a pair of supporting members made of a magnetic material with one magnetic pole, respectively, and the rotating shaft is moved in the axial and radial directions without contact. It is configured to support.

〈発明が解決しようとする課題〉 ところで、上記従来の超伝導軸受では、上述したように
、完全反磁性の性質を利用して非接触支持を行うものゆ
え、反発方向と直交する方向が不安定となるため、回転
軸の両端を支持する支持部材について、回転軸の両端を
包み込む形状に加工する必要があるとともに、回転軸の
両端と支持部材との間でアキシャル方向およびラジアル
方向で対向する部分を、磁化させる必要があり、製作設
計が面倒なものであった。
<Problems to be Solved by the Invention> By the way, as mentioned above, in the conventional superconducting bearing, since the non-contact support is performed using the property of complete diamagnetic property, the direction perpendicular to the direction of repulsion is unstable. Therefore, it is necessary to process the support member that supports both ends of the rotating shaft into a shape that wraps around both ends of the rotating shaft, and also to process the parts that face each other in the axial and radial directions between both ends of the rotating shaft and the supporting member. It was necessary to magnetize the material, making the manufacturing design complicated.

本発明はこのような事情に鑑みて創案されたもので、簡
単な構成で、安定的に回転の支持が行える超伝導軸受の
提供を目的としている。
The present invention was devised in view of the above circumstances, and an object of the present invention is to provide a superconducting bearing that has a simple configuration and can stably support rotation.

〈課題を解決するための手段〉 本発明は、このような目的を達成するために、次のよう
な構成をとる。
<Means for Solving the Problems> In order to achieve the above object, the present invention has the following configuration.

本発明の超伝導軸受は、回転体に備える永久磁石と、こ
の永久磁石に対向配置される超伝導体とからなるもので
あって、 前記永久磁石は、回転体の回転軸心に対する磁束分布が
回転軸心の周囲において絶えず均一となるものであり、 前記超伝導体は、前記永久磁石の磁束侵入を許容するも
ので、前記永久磁石の磁束が所定量侵入する離間位置に
かつ回転体の回転に関係なく侵入磁束の分布が均一とな
る位置に配置されるものであることに特徴を有する。
The superconducting bearing of the present invention includes a permanent magnet provided in a rotating body and a superconductor disposed opposite to the permanent magnet, wherein the permanent magnet has a magnetic flux distribution with respect to the rotational axis of the rotating body. The superconductor is one that allows the magnetic flux of the permanent magnet to enter, and is located at a spaced apart position where a predetermined amount of the magnetic flux of the permanent magnet enters, and that the superconductor is constantly uniform around the rotational axis. It is characterized in that it is placed at a position where the distribution of penetrating magnetic flux is uniform regardless of the magnetic flux.

〈作用〉 上記構成によると、超伝導体に侵入した永久磁石の磁束
による拘束作用でもって、永久磁石と超伝導体とが所定
の間隔をへて相対した状態で保持される。この状態にお
いては、永久磁石を備える回転体をその軸心周りに回転
させることが可能である。このとき、超伝導体に侵入し
た磁束は、磁束分布が回転軸心に対して均一で不変であ
る限り回転を妨げる抵抗とならない。
<Function> According to the above configuration, the permanent magnet and the superconductor are held in a state where they face each other with a predetermined spacing due to the restraining effect of the magnetic flux of the permanent magnet that has entered the superconductor. In this state, it is possible to rotate the rotating body including the permanent magnet around its axis. At this time, the magnetic flux that has entered the superconductor does not become a resistance that impedes rotation as long as the magnetic flux distribution is uniform and unchanged with respect to the rotation axis.

つまり、本発明構成によれば、超伝導体に対して所定の
位置に回転体に備える永久磁石を相対配置させるだけで
、アキシャル方向およびラジアル方向に非接触で支持す
ることができ、回転体を支持する超伝導体に回転体端部
を包み込む凹みを設ける必要がない。
In other words, according to the configuration of the present invention, by simply arranging the permanent magnets included in the rotating body at predetermined positions relative to the superconductor, it is possible to support the rotating body in a non-contact manner in the axial and radial directions. There is no need to provide a recess in the supporting superconductor to wrap around the end of the rotating body.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図に本発明の第1実施例を示しでいる。図中、■は
平板状の超伝導体、2は円柱形状に形成された永久磁石
からなる回転軸である。
FIG. 1 shows a first embodiment of the present invention. In the figure, ■ is a flat superconductor, and 2 is a rotating shaft made of a cylindrical permanent magnet.

超伝導体Iは、イツトリウム系高温超伝導体、例えばY
B a z Cuz OXからなる基板の内部に常伝導
粒子(Yz Ba+ Cut OX )を均一に混在さ
せたものからなり、永久磁石から発っせられる磁束侵入
を拘束する性質を持つものである。
Superconductor I is a yttrium-based high-temperature superconductor, such as Y
It is made of a substrate made of B az Cuz OX with normal conductive particles (Yz Ba+ Cut OX) evenly mixed inside it, and has the property of restraining the intrusion of magnetic flux emitted from a permanent magnet.

回転軸2は、−軸端に一方磁極(N極またはS極)の磁
気を、他軸端に他方磁極(S極またはN極)の磁気をそ
れぞれ帯びたものであり、回転体と永久磁石とを一体と
したものである。
The rotating shaft 2 has one magnetic pole (N pole or S pole) magnetized at the negative shaft end and the other magnetic pole (S pole or N pole) magnetized at the other shaft end, and has a rotating body and a permanent magnet. It is a combination of

そして、水平姿勢に配置した超伝導体1の上面上方に回
転軸2をその中心軸が超伝導体1の長手方向と平行とな
るように対向させる。なお、超伝導体1上に回転軸2を
置いただけでは、回転軸2の磁束が超伝導体1の内部に
僅かしか侵入していないので、回転軸2は、超伝導体1
のマイスナー効果による反発力でもって浮上するだけに
とどまっており、支持状態が不安定になっている。
Then, the rotating shaft 2 is opposed above the upper surface of the superconductor 1 placed in a horizontal position so that its central axis is parallel to the longitudinal direction of the superconductor 1. Note that if the rotating shaft 2 is simply placed on the superconductor 1, the magnetic flux of the rotating shaft 2 will only slightly penetrate into the superconductor 1.
The support state is unstable, as it only floats up due to the repulsive force caused by the Meissner effect.

この状態から、回転軸2を超伝導体1側へ押し付けて所
定離間位置まで近づけると、回転軸2から発っせられる
磁束の多くが超伝導体1の内部に侵入することになる(
トラップ現象)。ここで、超伝導体1はその内部に常伝
導粒子が均一に混在されているために、超伝導体1内部
への侵入磁束の分布が一定となり、そのため、あたかも
、超伝導体1に立設した仮想ピンに回転軸2が貫かれた
ようになり、超伝導体1に対して回転軸2が拘束される
。そのため、回転軸2は極めて安定的に浮上した状態で
支持されることになる。
From this state, when the rotating shaft 2 is pushed toward the superconductor 1 and brought closer to a predetermined distance, most of the magnetic flux emitted from the rotating shaft 2 will enter the inside of the superconductor 1 (
trap phenomenon). Here, since normal conductive particles are uniformly mixed inside the superconductor 1, the distribution of the magnetic flux entering the inside of the superconductor 1 is constant, and therefore, it is as if the superconductor 1 were placed vertically. The rotating shaft 2 appears to be penetrated by the virtual pin, and the rotating shaft 2 is restrained with respect to the superconductor 1. Therefore, the rotating shaft 2 is supported in an extremely stable floating state.

この非接触支持状態においては、回転軸2をその軸心周
りに回転させると、超伝導体1への侵入磁束が回転抵抗
とならないとともに、すべり軸受や転がり軸受のような
摩棒抵抗がないので、永久に回転し続けるはずであるけ
れども、実質的には空気抵抗や地磁気の影響があるので
、最終的には回転が停止する。しかし、これらの回転抵
抗は、軸受にとっては非常に小さいものであり、はぼ無
視できる。
In this non-contact supported state, when the rotating shaft 2 is rotated around its axis, the magnetic flux penetrating the superconductor 1 does not cause rotational resistance, and there is no frictional resistance as in sliding bearings or rolling bearings. Although it is supposed to continue rotating forever, it will eventually stop due to the effects of air resistance and geomagnetism. However, these rotational resistances are very small for bearings and can be almost ignored.

ところで、上記非接触支持状態において、回転軸2を一
方向に軽く押してみると、回転軸2は一旦押された方向
に変位するものの、その位置から元の位置側へ変位し、
しばらくその振子運動を繰り返した後に、当初の位置に
復帰して止まる。しかし、回転軸2を一方向に強く押し
やると、回転軸2は、当初位置から押しやられた位置ま
で移動して停止する。つまり、回転軸2の磁束が超伝導
体1の内部に侵入し、かつ侵入磁束の分布が一定になる
と、超伝導体1と回転軸2との相対位置が定まることに
なり、その位置で拘束されることになる。このような現
象は、上記構成の超伝導体1特有のいわゆるピン止め力
によってなされる。
By the way, when the rotating shaft 2 is lightly pushed in one direction in the above-mentioned non-contact supported state, the rotating shaft 2 is once displaced in the pushed direction, but then displaced from that position to the original position.
After repeating this pendulum movement for a while, it returns to its original position and stops. However, if the rotating shaft 2 is strongly pushed in one direction, the rotating shaft 2 moves from the initial position to the pushed position and stops. In other words, when the magnetic flux of the rotating shaft 2 enters the inside of the superconductor 1 and the distribution of the penetrating magnetic flux becomes constant, the relative position between the superconductor 1 and the rotating shaft 2 is determined, and they are restrained at that position. will be done. Such a phenomenon is caused by the so-called pinning force peculiar to the superconductor 1 having the above structure.

以上説明したように、回転軸2の磁束を超伝導体1に侵
入させた状態とすれば、回転軸2は常に求心作用を持っ
て安定的に回転支持されるようになる。
As explained above, if the magnetic flux of the rotating shaft 2 is allowed to penetrate into the superconductor 1, the rotating shaft 2 will always be stably rotationally supported with a centripetal action.

第2図に本発明の第2実施例を示している。この実施例
では、回転軸2をその軸心が超伝導体1の長手方向に対
し直交するよう鉛直方向に平行とした例を挙げている。
FIG. 2 shows a second embodiment of the invention. In this embodiment, an example is given in which the rotating shaft 2 is parallel to the vertical direction so that its axis is perpendicular to the longitudinal direction of the superconductor 1.

この実施例においても、上記第1実施例と同様に、超伝
導体1の上方に回転軸2が浮いて支持される。
In this embodiment as well, the rotating shaft 2 is supported floating above the superconductor 1, similar to the first embodiment.

なお、上記各実施例において、超伝導体1と回転軸2と
の配置を上下逆、つまり、超伝導体1の下面下方に回転
軸2を配置しておいて、回転軸2を超伝導体1側へ近づ
ければ回転軸2は釣り下げられたように浮いた状態で保
持される。さらに、超伝導体1を斜め姿勢として、回転
軸2を前記同様に所定間隔をへて対向させれば、回転軸
2も斜め姿勢で浮いて支持される。
In each of the above embodiments, the superconductor 1 and the rotating shaft 2 are arranged upside down, that is, the rotating shaft 2 is arranged below the bottom surface of the superconductor 1, and the rotating shaft 2 is If the rotating shaft 2 is brought closer to the 1 side, the rotating shaft 2 is held in a floating state as if suspended. Furthermore, if the superconductor 1 is placed in an oblique position and the rotary shaft 2 is opposed to each other with a predetermined distance in the same manner as described above, the rotary shaft 2 is also supported in an oblique position in a floating manner.

〈発明の効果〉 以上説明したように、本発明の超伝導軸受によれば、従
来のようにアキシャル方向およびラジアル方向での非接
触支持を行わせるために超伝導体や永久磁石に余分な加
工をせずに済むなど製作設計が簡単になる。しかも、非
接触支持する回転体の姿勢が特に限定されないし、狭い
スペースへの設置が可能となるので、−船釣な軸受から
は想像もできないような利用が可能となり、特に宇宙空
間での装置やリニアモーターカーの軸受への利用に有効
である。
<Effects of the Invention> As explained above, according to the superconducting bearing of the present invention, there is no need for extra processing on the superconductor or permanent magnet in order to provide non-contact support in the axial and radial directions as in the conventional bearing. This simplifies the manufacturing design, as it eliminates the need for Moreover, the posture of the rotating body to be supported without contact is not particularly limited, and it can be installed in a narrow space, making it possible to use it in ways that would be unimaginable for bearings used in boats, especially for equipment in space. It is effective for use in bearings for linear motor cars and linear motor cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る超伝導軸受を示す側
面図、第2図は本発明の第2実施例に係る超伝導軸受を
示す側面図である。
FIG. 1 is a side view of a superconducting bearing according to a first embodiment of the present invention, and FIG. 2 is a side view of a superconducting bearing according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)回転体に備える永久磁石と、この永久磁石に対向
配置される超伝導体とからなる超伝導軸受であって、 前記永久磁石は、回転体の回転軸心に対する磁束分布が
回転軸心の周囲において絶えず均一となるものであり、 前記超伝導体は、前記永久磁石の磁束侵入を許容するも
ので、前記永久磁石の磁束が所定量侵入する離間位置に
かつ回転体の回転に関係なく侵入磁束の分布が均一とな
る位置に配置されるものであることを特徴とする超伝導
軸受。
(1) A superconducting bearing consisting of a permanent magnet provided in a rotating body and a superconductor disposed opposite to the permanent magnet, wherein the permanent magnet has a magnetic flux distribution with respect to the rotation axis of the rotating body such that the magnetic flux distribution is centered on the rotation axis. The superconductor allows the magnetic flux of the permanent magnet to enter the superconductor, and the superconductor allows the magnetic flux of the permanent magnet to enter at a spaced position where a predetermined amount of the magnetic flux of the permanent magnet enters, regardless of the rotation of the rotating body. A superconducting bearing characterized in that it is arranged at a position where the distribution of penetrating magnetic flux is uniform.
JP18869390A 1990-07-17 1990-07-17 Superconducting bearing Pending JPH0478316A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18869390A JPH0478316A (en) 1990-07-17 1990-07-17 Superconducting bearing
US07/730,164 US5330967A (en) 1990-07-17 1991-07-16 Superconducting bearing device stabilized by trapped flux
DE69131639T DE69131639T2 (en) 1990-07-17 1991-07-17 Superconducting bearing device
EP98118588A EP0887569A3 (en) 1990-07-17 1991-07-17 Method for setting up a superconducting bearing device
EP91111965A EP0467341B1 (en) 1990-07-17 1991-07-17 Superconducting bearing device
US08/160,796 US5438038A (en) 1990-07-17 1993-12-03 Superconducting bearing device stabilized by trapped flux
US08/543,884 US5633548A (en) 1990-07-17 1995-10-17 Method for setting up a superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18869390A JPH0478316A (en) 1990-07-17 1990-07-17 Superconducting bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001143304A Division JP2002031136A (en) 2001-05-14 2001-05-14 Superconductive bearing

Publications (1)

Publication Number Publication Date
JPH0478316A true JPH0478316A (en) 1992-03-12

Family

ID=16228174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18869390A Pending JPH0478316A (en) 1990-07-17 1990-07-17 Superconducting bearing

Country Status (1)

Country Link
JP (1) JPH0478316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191520A (en) * 1990-07-27 1992-07-09 Shikoku Sogo Kenkyusho:Kk Superconducting bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191520A (en) * 1990-07-27 1992-07-09 Shikoku Sogo Kenkyusho:Kk Superconducting bearing device

Similar Documents

Publication Publication Date Title
US5438038A (en) Superconducting bearing device stabilized by trapped flux
US4797386A (en) Superconductor-magnet induced separation
US4939120A (en) Superconducting rotating assembly
DE69126210D1 (en) SUPREME CONDUCTING MAGNETIC BEARINGS FOR HIGH TEMPERATURES
EP0575618B1 (en) Superconductive bearing device
JPH06323334A (en) Superconductive bearing device
JPH0478316A (en) Superconducting bearing
JP2893291B2 (en) Braking device
US5633548A (en) Method for setting up a superconducting bearing device
JP3177847B2 (en) Superconducting bearing device
JP2002031136A (en) Superconductive bearing
JP3616856B2 (en) Bearing device
JPS6049214A (en) Inclination detector
JPH0194560A (en) Tape guide
JP3174876B2 (en) Superconducting bearing device
JPH01141223A (en) Bearing
JPH04281377A (en) Slide device
JP2605200B2 (en) Superconducting bearing device
JPH09170620A (en) Superconducting magnetic bearing device
JP3114175B2 (en) Shaft and bearing
JPH01247822A (en) Support construction for rotary shaft
JPH01255716A (en) Superconductive bearing
JPH048913A (en) Non-contact bearing using superconductor
JPH0544728A (en) Drive device
JPH06313427A (en) Oxide superconducting bearing