JPH0478171A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0478171A
JPH0478171A JP2192790A JP19279090A JPH0478171A JP H0478171 A JPH0478171 A JP H0478171A JP 2192790 A JP2192790 A JP 2192790A JP 19279090 A JP19279090 A JP 19279090A JP H0478171 A JPH0478171 A JP H0478171A
Authority
JP
Japan
Prior art keywords
gate electrode
oxide film
gate
wiring
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2192790A
Other languages
Japanese (ja)
Inventor
Shinichi Inoue
信一 井上
Hiroshi Baba
浩志 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP2192790A priority Critical patent/JPH0478171A/en
Publication of JPH0478171A publication Critical patent/JPH0478171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

PURPOSE:To prevent dielectric breakdown in a gate oxide film by burying a ring-shaped gate electrode which is formed through a gate oxide film in a region wherein a field oxide film does not exist, an insulating film with a contact hole and the contact hole and by providing a wiring which extends on an insulating film. CONSTITUTION:A gate electrode 5 is formed to a ring shape through a gate oxide film 4 in an element region 3. A source region 6 (or a drain region 7) is formed in an element region enclosed with the gate electrode 5, and a drain 7 (or the source region 6) is formed in an element region outside the gate electrode 5. Such configuration and arrangement eliminate the necessity to lead out the gate electrode 5 as far as on a field oxide film 2, thereby preventing production of a step part. Accordingly, even if a high voltage is applied to the gate electrode 5, field concentration is not produced in the gate oxide film 4 and dielectric breakdown is not thereby produced. Furthermore, if a contact hole 8 is buried on the gate electrode 5 and a wiring 10 which extends on the insulating film 9 extends onto the field oxide film 2, field concentration is not produced in a step part since the insulating film 9 is interposed.

Description

【発明の詳細な説明】 〔概要〕 半導体装置に係り、特にMO8型トランジスタを有する
半導体装置に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a semiconductor device, and particularly to a semiconductor device having an MO8 type transistor.

素子領域とフィールド酸化膜の境界の段差部でゲート酸
化膜に絶縁破壊が生じるのを防止することを目的とし。
The purpose of this is to prevent dielectric breakdown in the gate oxide film at the step between the element region and the field oxide film.

フィールド酸化膜を有する半導体基板表面において、該
フィールド酸化膜が存在しない領域に。
On the surface of a semiconductor substrate having a field oxide film, in an area where the field oxide film does not exist.

ゲート酸化膜を介して形成されたリング状のゲート電極
と、少なくとも該フィールド酸化膜と該ゲート電極とを
含む該半導体基板上に形成され、該ゲート電極上にコン
タクトホールを有する絶縁膜と2該コンタクトホールを
埋め込み、該絶縁膜上に展延する配線とを有する半導体
装置により構成する。
a ring-shaped gate electrode formed through a gate oxide film, an insulating film formed on the semiconductor substrate including at least the field oxide film and the gate electrode, and having a contact hole on the gate electrode; It is constituted by a semiconductor device having a contact hole buried therein and wiring extending over the insulating film.

また、異なる複数のゲート電極を有し、少なくとも一対
のゲート電極は、前記フィールド酸化膜上において前記
絶縁膜を介して形成された配線により接続されている半
導体装置により構成する。
Further, the semiconductor device includes a plurality of different gate electrodes, and at least one pair of gate electrodes are connected by a wiring formed on the field oxide film via the insulating film.

また、異なる複数のゲート電極を有し、第2のゲート電
極は第1のゲート電極の内側に形成されている半導体装
置により構成する。
Further, the semiconductor device includes a plurality of different gate electrodes, and the second gate electrode is formed inside the first gate electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に係り、特にMO8型トランジスタ
を有する半導体装置に関する。
The present invention relates to a semiconductor device, and particularly to a semiconductor device having an MO8 type transistor.

〔従来の技術〕[Conventional technology]

第4図は従来のCMOSインバータを説明するための図
で、(a)は平面図、(b)はA−A断面図を示し、■
は半導体基板、2はフィールド酸化膜。
FIG. 4 is a diagram for explaining a conventional CMOS inverter, in which (a) shows a plan view, (b) shows a sectional view taken along line A-A, and
is a semiconductor substrate, and 2 is a field oxide film.

3は素子領域、4はゲート酸化膜、5はゲート電極、6
はソース領域、7はドレイン領域、8はコンタクトホー
ル、9は絶縁膜、 10は配線を表す。
3 is an element region, 4 is a gate oxide film, 5 is a gate electrode, 6
is a source region, 7 is a drain region, 8 is a contact hole, 9 is an insulating film, and 10 is a wiring.

ゲート電極5は9例えばポリSiで形成され。The gate electrode 5 is made of poly-Si, for example.

フィールド酸化膜2上に引き出され、そこで絶縁膜9に
形成されたコンタクトホール8を埋め込む配線IOに接
続するっ配線IOは1例えばAIで形成され、外部信号
線に接続する。
The wiring IO drawn out onto the field oxide film 2 and connected there to the wiring IO filling the contact hole 8 formed in the insulating film 9 is made of, for example, AI, and is connected to an external signal line.

ところで、ケート電極5が素子領域3上からフィールド
酸化膜2上に移行する部分に段差があり。
Incidentally, there is a step difference in the portion where the gate electrode 5 transitions from above the element region 3 to above the field oxide film 2.

ゲート電極5はそこで急に折れ曲がる。このような部分
には電荷集中が起こり、高電圧がゲート電極5に印加さ
れた場合、その下のゲート酸化膜4に絶縁破壊か起こる
ことがある。
The gate electrode 5 bends sharply there. Charge concentration occurs in such a portion, and when a high voltage is applied to the gate electrode 5, dielectric breakdown may occur in the gate oxide film 4 below.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はケート電極5の形状の工夫により、ゲート電極
5がフィールド酸化膜2と交叉しないようにして、ゲー
ト酸化膜4に絶縁破壊が起こらないようにすることを目
的とする。
An object of the present invention is to prevent dielectric breakdown from occurring in the gate oxide film 4 by devising the shape of the gate electrode 5 so that the gate electrode 5 does not intersect with the field oxide film 2.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の半導体装置を説明するための図で、(
a)は平面図、(b)は断面図であり1図中の符号は第
4図の符号と同じものを表す。
FIG. 1 is a diagram for explaining the semiconductor device of the present invention.
A) is a plan view, and (b) is a cross-sectional view, and the reference numerals in FIG. 1 represent the same reference numerals as in FIG. 4.

上記課題は、フィールド酸化膜2を有する半導体基板1
表面において、該フィールド酸化膜2が存在しない領域
に、ゲート酸化膜4を介して形成されたリング状のゲー
ト電極5と、少なくとも該フィールド酸化膜2と該ゲー
ト電極5とを含む該半導体基板l上に形成され、該ゲー
ト電極5上にコンタクトホール8を有する絶縁膜9と、
該コンタクトホール8を埋め込み、該絶縁膜9上に展延
する配線lOとを有する半導体装置によって解決される
The above problem is solved by a semiconductor substrate 1 having a field oxide film 2.
A ring-shaped gate electrode 5 is formed on the surface in a region where the field oxide film 2 is not present, with a gate oxide film 4 interposed therebetween, and the semiconductor substrate l includes at least the field oxide film 2 and the gate electrode 5. an insulating film 9 formed thereon and having a contact hole 8 on the gate electrode 5;
The problem is solved by a semiconductor device having a wiring lO that fills the contact hole 8 and extends over the insulating film 9.

また、異なる複数のゲート電極を有し、少なくとも一対
のゲート電極は、前記フィールド酸化膜2上において前
記絶縁膜9を介して形成された配線IOにより接続され
ている半導体装置によって解決される。
Further, the present invention is solved by a semiconductor device having a plurality of different gate electrodes, and at least one pair of gate electrodes are connected by a wiring IO formed on the field oxide film 2 via the insulating film 9.

また、異なる複数のゲート電極を有し、第2のゲート電
極G2は第1のゲート電極G、の内側に形成されている
半導体装置によって解決される。
Further, the problem is solved by a semiconductor device having a plurality of different gate electrodes, in which the second gate electrode G2 is formed inside the first gate electrode G.

〔作用〕[Effect]

本発明では第1図(a)、 (b)に示すように、ゲー
ト電極5は素子領域3にゲート酸化膜4を介してリング
状に形成されている。ゲート電極5に囲まれた素子領域
にはソース領域6(またはドレイン領域7)、ゲート電
極5外側の素子領域にはトレイン7(またはソース領域
6)が形成されている。
In the present invention, as shown in FIGS. 1(a) and 1(b), a gate electrode 5 is formed in a ring shape in an element region 3 with a gate oxide film 4 interposed therebetween. A source region 6 (or drain region 7) is formed in the device region surrounded by the gate electrode 5, and a train 7 (or source region 6) is formed in the device region outside the gate electrode 5.

ゲート電極、ソース領域、ドレイン領域をこのような形
状と配置にすれば、ゲート電極5はフィールド酸化膜2
上まで引き出す必要がなく9段差部が生じない。したが
って、ゲート電極5に高電圧が印加されてもゲート酸化
膜4に電界集中の生じることがなく、絶縁破壊を生じな
い。
If the gate electrode, source region, and drain region are shaped and arranged in this way, the gate electrode 5 becomes the field oxide film 2.
There is no need to pull it out all the way to the top, so there is no 9-step difference. Therefore, even if a high voltage is applied to the gate electrode 5, electric field concentration does not occur in the gate oxide film 4, and dielectric breakdown does not occur.

また、ケート電極5上にコンタクトホール8を埋め込み
、該絶縁膜9上に展延する配線IOはフィールド酸化膜
2上に延びるとしても、絶縁膜9が介在しているから段
差部に電界集中の生じることかない。
In addition, even if the contact hole 8 is buried on the gate electrode 5 and the wiring IO extending on the insulating film 9 extends over the field oxide film 2, the electric field will not be concentrated at the step part because the insulating film 9 is interposed. It never happens.

〔実施例〕〔Example〕

第2図は実施例■を説明するための図で、(a)は回路
図、(b)は平面図、(C)はA−A断面図を示す。こ
の例はCMOSインバータ回路に本発明を適用した例で
あり、 3a、 5a、 6a、 7aは、それぞれ、
Pチャネルの素子領域、ゲート電極、ソース領域、ドレ
イン領域を表し、 3b、 5b、 6b、 7bはそ
れぞれ、Nチャネルの素子領域、ゲート電極。
FIG. 2 is a diagram for explaining the embodiment (2), in which (a) is a circuit diagram, (b) is a plan view, and (C) is a sectional view taken along line A-A. This example is an example in which the present invention is applied to a CMOS inverter circuit, and 3a, 5a, 6a, and 7a are respectively
3b, 5b, 6b, and 7b represent an N-channel device region and gate electrode, respectively.

ソース領域、ドレイン領域を表し、8はコンタクトホー
ル、 lOaはゲート配線、 lla、 llbはソー
ス配線、 12はドレイン配線を表す。また、Gはゲー
ト、Sはソース、Dはドレインを表す。
They represent a source region and a drain region, 8 is a contact hole, lOa is a gate wiring, lla and llb are source wirings, and 12 is a drain wiring. Further, G represents a gate, S represents a source, and D represents a drain.

フィールド酸化膜2の厚さは数千人〜1μm程度、ゲー
ト酸化膜4の厚さは50〜200人程度である。ゲート
電極5a、 5bは厚さ4000人程度0ポリSi膜を
パターニングして9例えば外枠が正方形で、その−辺の
一部を外側に膨らまし、かつ各コーナ一部を丸め、内枠
が正方形で、かつ各コーナ一部を丸めた形状に形成する
。この形状は、いわば一部分が外側に膨れたトーナッッ
形であるっ上記のようなケート電極5a、 5bを用い
た本実施例における半導体装置は1例えば以下のように
して製造する。
The thickness of the field oxide film 2 is approximately several thousand to 1 μm, and the thickness of the gate oxide film 4 is approximately 50 to 200. The gate electrodes 5a and 5b are formed by patterning a poly-Si film with a thickness of about 4,000.For example, the outer frame is square, a portion of the sides are bulged outward, and a portion of each corner is rounded, and the inner frame is square. , and each corner is formed into a partially rounded shape. This shape is, so to speak, a tornado shape with a portion bulging outward. The semiconductor device in this embodiment using the above-mentioned gate electrodes 5a and 5b is manufactured, for example, as follows.

ゲート電極5a、 5bをマスクにして1例えばほう素
及び燐をイオン注入し、Pチャネルのソース領域6a及
びトレイン領域7a、 Nチャネルのソース領域6b及
びトレイン領域7bを形成する。
Using the gate electrodes 5a and 5b as masks, ions such as boron and phosphorus are implanted to form a P channel source region 6a and a train region 7a, and an N channel source region 6b and train region 7b.

絶縁膜9として全面に1例えば、厚さ8000〜100
00人のPSG膜を形成し、絶縁膜9にゲート電極5a
、 5b、  ソース領域6a’、 6b、  ドレイ
ン領域7a。
1 on the entire surface as the insulating film 9, for example, with a thickness of 8000 to 100
00 PSG film is formed, and gate electrode 5a is formed on insulating film 9.
, 5b, source regions 6a', 6b, drain region 7a.

7bと導通をとるためのコンタクトホール8を形成する
A contact hole 8 is formed to establish conduction with 7b.

ついで、全面にAIをスパッタリングしてそれをパター
ニングし、ゲート配線10a、  ソース配線11a、
 llb、  ドレイン配線12を形成する。
Next, AI is sputtered on the entire surface and patterned to form gate wiring 10a, source wiring 11a,
llb, drain wiring 12 is formed.

ゲート電極5a、 5bのコーナ一部を丸めるのは。Part of the corners of the gate electrodes 5a and 5b are rounded.

できるだけ電荷の集中を避け、その下のゲート酸化膜4
に絶縁破壊を生じさせないためである。
Avoid charge concentration as much as possible, and remove the gate oxide film 4 below.
This is to prevent dielectric breakdown from occurring.

また、第2図はソース領域6a、 6bがケート電極5
a、 5bに囲まれ、ドレイン領域7a、 7bがゲー
ト電極5a、 5bの外側に配置されているが、ソース
領域とドレイン領域の配置を逆にしてもよい。
Further, in FIG. 2, the source regions 6a and 6b are connected to the gate electrode 5.
Although the drain regions 7a and 7b are located outside the gate electrodes 5a and 5b, the arrangement of the source and drain regions may be reversed.

第3図は実施例■を説明するための図で、 (a)。FIG. 3 is a diagram for explaining Example 2, and is (a).

(b)は回路図、(C)は平面図、(d)はA−A断面
図を示す。この例は縦積みトランジスタ回路の例であり
2例えば第1のゲート電極G、の内側に第2のゲート電
極G2を形成している。そして、第1のゲート電極G1
と第2のゲート電極G2に挟まれた領域には第1のドレ
インDI、第2のゲート電極G2に囲まれた領域に第2
のドレインD2、第1のゲート電極G、の外側にはそ−
すSを形成する。この場合も、第1のゲート電極G1と
第2のゲート電極Gtの各コーナー龍は電荷の集中を避
けるため丸める。
(b) shows a circuit diagram, (C) shows a plan view, and (d) shows a sectional view taken along line A-A. This example is an example of a vertically stacked transistor circuit, in which a second gate electrode G2 is formed inside a first gate electrode G, for example. And the first gate electrode G1
The first drain DI is located in the region sandwiched between the gate electrode G2 and the second gate electrode G2, and the second drain DI is located in the region surrounded by the second gate electrode G2.
On the outside of the drain D2 and the first gate electrode G,
form S. Also in this case, each corner of the first gate electrode G1 and the second gate electrode Gt is rounded to avoid concentration of charges.

絶縁膜9として全面に9例えば、厚さ8000〜1oo
oo人のPSG膜を形成し、絶縁膜9に第1のゲート電
極G1.第2のゲート電極G2.ソースS、第1のドレ
インD+、第2のドレインD2と導通をとるためのコン
タクトホール8を形成する。
For example, the thickness of the insulating film 9 is 8000 to 100 mm.
oo PSG film is formed, and the first gate electrode G1. Second gate electrode G2. A contact hole 8 is formed to establish conduction with the source S, the first drain D+, and the second drain D2.

ついで、全面にAIをスパッタリングしてそれをパター
ニングし、第1のケート配線tab 、第2のゲート配
線10c 、  ソース配線11.第1のドレイン配線
12a 、第2のドレイン配線12bを形成する。
Next, AI is sputtered on the entire surface and patterned to form the first gate wiring tab, the second gate wiring 10c, the source wiring 11 . A first drain wiring 12a and a second drain wiring 12b are formed.

以上の実施例に見るように、ゲート電極の形状を本発明
のようにすると、信号線とのコンタクトが素子領域内で
とれるので、従来のようにフィールド酸化膜上に張り出
す必要がないから、レイアウトの縮小化にも有効である
As seen in the above embodiments, when the gate electrode is shaped as in the present invention, contact with the signal line can be made within the element region, so there is no need to protrude over the field oxide film as in the conventional case. It is also effective in reducing layout size.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明によれば、ゲート電極がフ
ィールド酸化膜と交叉しなくなり、ゲートに入る信号線
とのコンタクトを素子領域内でとることができるから、
フィールド酸化膜との境界のゲート酸化膜に過度の電界
集中が生じなくなり。
As explained above, according to the present invention, the gate electrode does not intersect with the field oxide film, and contact with the signal line entering the gate can be made within the device region.
Excessive electric field concentration no longer occurs in the gate oxide film at the boundary with the field oxide film.

ゲート酸化膜を絶縁破壊から守ることができる。The gate oxide film can be protected from dielectric breakdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置を説明するための図で、(
a)は平面図、(b)はA−A断面図。 第2図は実施例■を説明するための図で、(a)は回路
図、(b)は平面図、(C)はA−A断面図。 第3図は実施例■を説明するための図で、 (a)。 (b)は回路図、(C)は平面図、(d)はA−A断面
図。 第4図は従来のCMOSインバータを説明するための図
で、(a)は平面図、(b)はA−A断面図である。 図において。 lは半導体基板。 2はフィールド酸化膜。 3、3a、 3bは素子領域 4はゲート酸化膜。 5、5a、 5bはゲート電極。 6、6a、 6bはソース領域。 7、7a、 7bはドレイン領域。 8はコンタクトホール。 9は絶縁膜。 10は配線 1.0aは配線てあってケート配線。 10bは配線であって第1のケート配線。 10cは配線であって第2のゲート配線。 11、、  lla、  llbはソース配線。 12はドレイン配線 12aは第1のトレイン配線。 12bは第2のドレイン配線 Sはソース。 Gはゲート。 Dはドレイン。 G、は第1のゲートであって第1のゲート電極。 G2は第2のゲートであって第2のゲート電極。 Dlは第1のドレイン。 D2は第2のトレイン (αン Cl7) 2ト)力18月)つ−’f−1f=4≦奎り]乞噛ンL
日Fr1で5升9つノアE日71 記 実損fll r b説E’RV’)El)/)f3冨 
λ ロ 丈)を食1は乞KWs月ちT=ハダ汗日γ 3 ロ (α) (し) 資米f)CMOSイ〕/バータ乞説a8す51こ〃2罫
 + 図
FIG. 1 is a diagram for explaining the semiconductor device of the present invention.
a) is a plan view, and (b) is a sectional view taken along line A-A. FIG. 2 is a diagram for explaining the embodiment (2), in which (a) is a circuit diagram, (b) is a plan view, and (C) is a sectional view taken along line A-A. FIG. 3 is a diagram for explaining Example 2, (a). (b) is a circuit diagram, (C) is a plan view, and (d) is an AA sectional view. FIG. 4 is a diagram for explaining a conventional CMOS inverter, in which (a) is a plan view and (b) is a sectional view taken along line A-A. In fig. l is a semiconductor substrate. 2 is a field oxide film. 3, 3a, and 3b, the element region 4 is a gate oxide film. 5, 5a, and 5b are gate electrodes. 6, 6a, and 6b are source regions. 7, 7a, and 7b are drain regions. 8 is the contact hole. 9 is an insulating film. 10 is wiring 1.0a is wired and Kate wiring. 10b is a wiring, which is a first cable wiring. 10c is a wiring, which is a second gate wiring. 11, lla, llb are source wiring. 12, a drain wiring 12a is a first train wiring. 12b, the second drain wiring S is the source. G is gate. D is drain. G is a first gate and a first gate electrode. G2 is a second gate and is a second gate electrode. Dl is the first drain. D2 is the second train (αn Cl7)
Day Fr1 5 sho 9 Noah E Day 71 Recorded actual loss fll r b theory E'RV') El)/) f3 wealth
λ B Length) Eating 1 is begging KWs month T = Hada sweat day γ 3 L (α) (shi) Capital f) CMOS A]/Bata begging theory a8 51 ko〃2 lines + figure

Claims (1)

【特許請求の範囲】 〔1〕フィールド酸化膜(2)を有する半導体基板(1
)表面において、該フィールド酸化膜(2)が存在しな
い領域に、ゲート酸化膜(4)を介して形成されたリン
グ状のゲート電極(5)と、 少なくとも該フィールド酸化膜(2)と該ゲート電極(
5)とを含む該半導体基板(1)上に形成され、該ゲー
ト電極(5)上にコンタクトホール(8)を有する絶縁
膜(9)と、 該コンタクトホール(8)を埋め込み、該絶縁膜(9)
上に展延する配線(10)とを 有することを特徴とする半導体装置。 〔2〕異なる複数のゲート電極を有し、少なくとも一対
のゲート電極は、前記フィールド酸化膜(2)上におい
て前記絶縁膜(9)を介して形成された配線(10)に
より接続されていることを特徴とする請求項1記載の半
導体装置。 〔3〕異なる複数のゲート電極を有し、第2のゲート電
極(G_2)は第1のゲート電極(G_1)の内側に形
成されていることを特徴とする請求項1または2記載の
半導体装置。
[Claims] [1] Semiconductor substrate (1) having a field oxide film (2)
) a ring-shaped gate electrode (5) formed through a gate oxide film (4) in a region where the field oxide film (2) does not exist on the surface; and at least the field oxide film (2) and the gate. electrode(
an insulating film (9) formed on the semiconductor substrate (1) and having a contact hole (8) on the gate electrode (5); (9)
A semiconductor device characterized by having a wiring (10) extending upwardly. [2] It has a plurality of different gate electrodes, and at least one pair of gate electrodes are connected by a wiring (10) formed on the field oxide film (2) via the insulating film (9). The semiconductor device according to claim 1, characterized in that: [3] The semiconductor device according to claim 1 or 2, wherein the semiconductor device has a plurality of different gate electrodes, and the second gate electrode (G_2) is formed inside the first gate electrode (G_1). .
JP2192790A 1990-07-19 1990-07-19 Semiconductor device Pending JPH0478171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192790A JPH0478171A (en) 1990-07-19 1990-07-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192790A JPH0478171A (en) 1990-07-19 1990-07-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0478171A true JPH0478171A (en) 1992-03-12

Family

ID=16297043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192790A Pending JPH0478171A (en) 1990-07-19 1990-07-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0478171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456481B2 (en) 2003-10-10 2008-11-25 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
KR100884855B1 (en) * 2006-06-16 2009-02-23 가부시끼가이샤 도시바 Semiconductor device and method of manufactruing the same
CN109524306A (en) * 2017-09-18 2019-03-26 中芯国际集成电路制造(上海)有限公司 The forming method of transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456481B2 (en) 2003-10-10 2008-11-25 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
KR100884855B1 (en) * 2006-06-16 2009-02-23 가부시끼가이샤 도시바 Semiconductor device and method of manufactruing the same
CN109524306A (en) * 2017-09-18 2019-03-26 中芯国际集成电路制造(上海)有限公司 The forming method of transistor
CN109524306B (en) * 2017-09-18 2022-03-25 中芯国际集成电路制造(上海)有限公司 Method for forming transistor

Similar Documents

Publication Publication Date Title
JP4805600B2 (en) Semiconductor device
KR100492642B1 (en) Liquid crystal display device
JPH021928A (en) Semiconductor integrated circuit
JPH01283863A (en) Mos type semiconductor device
US5932917A (en) Input protective circuit having a diffusion resistance layer
JPH0478171A (en) Semiconductor device
US6777756B2 (en) Semiconductor device
EP0097375A1 (en) Three-dimensional semiconductor device
JPS62183555A (en) Semiconductor device
KR940003606B1 (en) Semiconductor device
JPH0814667B2 (en) Method for manufacturing semiconductor device
JP2598446B2 (en) MIS-FET
JPS60136374A (en) Semiconductor device and manufacture thereof
JPH11218782A (en) Active matrix type liquid crystal display device
JPS5944787B2 (en) MOS type ROM
JPH0472769A (en) Thin film transistor
JP2509300B2 (en) Input circuit of semiconductor device
GB2286286A (en) Semiconductor device having shield conduction lines
JPS6041464B2 (en) memory cell
JPS62224076A (en) Semiconductor integrated circuit device
JP2003115490A (en) Semiconductor device and its designing method
KR100290790B1 (en) Antistatic Structure of Semiconductor Device and Manufacturing Method Thereof
JPH0327684A (en) Solid-state image pickup device
JPS6123662B2 (en)
JPH01305573A (en) Semiconductor device