JPH0477974B2 - - Google Patents

Info

Publication number
JPH0477974B2
JPH0477974B2 JP58188793A JP18879383A JPH0477974B2 JP H0477974 B2 JPH0477974 B2 JP H0477974B2 JP 58188793 A JP58188793 A JP 58188793A JP 18879383 A JP18879383 A JP 18879383A JP H0477974 B2 JPH0477974 B2 JP H0477974B2
Authority
JP
Japan
Prior art keywords
optical memory
substrate
film
transparent dielectric
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188793A
Other languages
Japanese (ja)
Other versions
JPS6080144A (en
Inventor
Hiroyuki Katayama
Junji Hirokane
Akira Takahashi
Kenji Oota
Hideyoshi Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58188793A priority Critical patent/JPS6080144A/en
Publication of JPS6080144A publication Critical patent/JPS6080144A/en
Publication of JPH0477974B2 publication Critical patent/JPH0477974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Description

【発明の詳細な説明】 <技術分野> 本発明はレーザ等の光により情報の記録・再
生・消去等を行なう光メモリ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an optical memory device that records, reproduces, erases, etc. information using light such as a laser.

<従来技術> 近年、光メモリ素子は高密度・大容量のメモリ
である為に将来性を期待され、多方面で種々の研
究開発が行なわれている。この光メモリ素子が高
密度及び大容量となる理由は情報の記録単位であ
るビツトが光のビーム径だけで決まるため、その
形状を1μm程度の大きさにすることができるか
らである。しかしこの事は光メモリ素子に対する
情報の書き込み・読み取りを行なう装置に多くの
制限を加える事になる。即ちある定まつた場所に
情報を記録したりあるいは定まつた場所に記録さ
れた情報を再生したりするためには光ビームを極
めて正確に位置決めしなければならないのであ
る。一般に、再生専用の光メモリでは、記録した
ビツトに予め番地情報を入れておく事ができるの
で記録情報を再生しながら光ビームの位置決めが
可能となるが、追加記録メモリあるいは書き換え
可能なメモリにおいては、応報記録時に番地情報
まで一緒に記録する事が困難なため、この場合メ
モリ基板上に予め何等かのガイド信号及びガイド
番地を入れておく方法が採られる。例えば第1図
に従来の追加記録メモリあるいは書き換え可能な
メモリのメモリ基板の一部斜視図を示すが、同図
に示す如く基板に凹凸の溝を形成しておき、この
溝に添つて情報を記録あるいは再生するのであ
る。また上記凹凸の溝は円周方向に断続した形状
を有し、これが溝の番地を示すビツト情報を与え
る。この凹凸の溝の形成方法はすでに何種類か提
案されているものの、生産性の点を考えた場合次
に挙げる2方法が一般的である。1つは第2図に
示す如く凹凸の溝の入つたスタンパー(例えば
Ni製)1を用い射出成形によりアクリルやポリ
カーボネート等の樹脂基板2に直接凹凸の溝を転
写する方法であり、他の1つは第3図に示す如く
ガラスあるいはアクリル等の基板4と凹凸の溝の
入つたスタンパー1との間に紫外線硬化樹脂3を
挿入し該紫外線硬化樹脂3に凹凸の溝を転写する
方法(2P法と呼ぶ)である。こうして作製され
た凹凸溝付基板上に引き続いて記録媒体が形成さ
れる。この記録媒体としては追加記録型に
TeOx、TeSe、TeC等の材料があり、書き換え
可能型にGdTbFe、GdTbDyFe、TbFe等の材料
が知られている。しかし、これらの記録媒体の大
半は耐食性に欠けておりこのことが光メモリ素子
としてしばしば不都合な点となつていた。例えば
追加記録型の代表であるTeベースの材料におい
ては酸化腐食の進行により反射率・透過率が変化
し再生特性が悪化した。また書き換え可能型の媒
体である希土類・遷移金属合金においても希土類
金属が特に酸化しやすいため、酸化腐食の進行に
伴い保磁力の変化を生じ、その為に記録感度の変
動という好ましくない問題を生じていた。こうし
た腐食の誘因としては記録媒体形成前に基板上に
吸着していた酸素や水分あるいはスパツタリング
法のような成膜法であれば基板上への成膜中に基
板成分の分離によつて生ずる酸素等、及び媒体形
成後の酸化物保護膜作成時に混入する分離酸素等
が挙げられる。又、凹凸溝付樹脂製基板を備えた
光メモリ素子ではその樹脂製基板を通して侵入す
る酸素あるいは水分等も大きな問題となつてい
た。
<Prior Art> In recent years, optical memory devices are high-density, large-capacity memories, and are therefore expected to have a promising future, and various research and development efforts are being carried out in a variety of fields. The reason why this optical memory element has a high density and a large capacity is that the bit, which is the unit of recording information, is determined only by the beam diameter of the light, so its shape can be reduced to a size of about 1 μm. However, this imposes many restrictions on devices that write and read information to and from optical memory elements. That is, in order to record information at a fixed location or to reproduce information recorded at a fixed location, the light beam must be positioned extremely accurately. Generally, in a playback-only optical memory, address information can be stored in advance in the recorded bits, making it possible to position the light beam while playing back the recorded information, but in an additional recording memory or a rewritable memory, Since it is difficult to record address information at the time of response recording, in this case a method is adopted in which some kind of guide signal and guide address are stored in advance on the memory board. For example, Fig. 1 shows a partial perspective view of a memory board of a conventional additional recording memory or rewritable memory.As shown in the figure, uneven grooves are formed on the board, and information is stored along the grooves. It is recorded or played back. Further, the uneven groove has a shape that is interrupted in the circumferential direction, and this provides bit information indicating the address of the groove. Although several methods for forming the uneven grooves have already been proposed, the following two methods are common in terms of productivity. One is a stamper with uneven grooves (for example, as shown in Figure 2).
There is a method in which uneven grooves are directly transferred to a resin substrate 2 such as acrylic or polycarbonate by injection molding using Ni (made of Ni) 1, and the other method is to transfer uneven grooves directly to a substrate 4 made of glass or acrylic etc. as shown in Fig. 3. This is a method (referred to as 2P method) in which an ultraviolet curing resin 3 is inserted between a stamper 1 having grooves and uneven grooves are transferred to the ultraviolet curing resin 3. A recording medium is subsequently formed on the uneven grooved substrate thus produced. This recording medium is an additional recording type.
There are materials such as TeOx, TeSe, and TeC, and rewritable materials such as GdTbFe, GdTbDyFe, and TbFe are known. However, most of these recording media lack corrosion resistance, which is often a disadvantage as optical memory devices. For example, in Te-based materials, which are representative of the additional recording type, progress of oxidative corrosion caused changes in reflectance and transmittance, resulting in deterioration of playback characteristics. In addition, rare earth metals in rare earth/transition metal alloys that are used in rewritable media are particularly susceptible to oxidation, which causes changes in coercive force as oxidation corrosion progresses, resulting in the undesirable problem of fluctuations in recording sensitivity. was. The cause of such corrosion is oxygen and moisture adsorbed on the substrate before the recording medium is formed, or oxygen generated by separation of substrate components during film formation on the substrate in the case of film formation methods such as sputtering. etc., and separated oxygen mixed in during formation of the oxide protective film after medium formation. Furthermore, in optical memory devices equipped with a resin substrate with grooves and grooves, oxygen, moisture, and the like entering through the resin substrate has been a major problem.

<目的> 本発明は以上の従来技術に改良を加えたもの
で、水分、酸素等による記録媒体の腐食に対して
高い信頼性を有する光メモリ素子を提供すること
を目的とするものである。
<Objective> The present invention is an improvement on the above-described conventional technology, and an object of the present invention is to provide an optical memory element that has high reliability against corrosion of a recording medium due to moisture, oxygen, etc.

<実施例> 以下、本発明に係る光メモリ素子の一実施例に
ついて図面を用いて詳細に説明する。第4図は本
発明に係る光メモリ素子の一実施例の構造を示す
一部側面断面図である。5はガラスまたはアクリ
ル製の基板でありその上に前述した2P法にて形
成された凹凸溝を有した紫外線硬化樹脂層3が設
けられ、その上に膜厚900〜1000ÅのAlN(窒化
アルミニウム)膜6(透明誘電体膜)が、窒素雰
囲気中でのアルミニウムの反応性スパツタリング
によつて形成され、その上に膜厚300〜500Åの
GdTbFe非晶質合金薄膜7(希土類・遷移金属か
らなる記録媒体)がスパツタリングによつて形成
され、その上に膜厚400〜500ÅのAlN膜8が形
成され、その上にCu、Al、ステンレス、Ni等の
金属からなる反射膜9が形成される。上記窒化膜
6は溝付紫外線樹脂層3側からの酸素及び水分の
上記合金薄膜7への混入を防止している。この窒
化膜6及び外部より侵入する酸素・水分を防禦す
る窒化膜8はともに窒化物であるが故に成膜時の
分離酸素が発生する虞れも無い。また本例では上
記窒化膜6,8及び反射膜9は磁気光学効果の特
性向上も促している。
<Example> Hereinafter, an example of the optical memory device according to the present invention will be described in detail with reference to the drawings. FIG. 4 is a partial side sectional view showing the structure of an embodiment of the optical memory device according to the present invention. Reference numeral 5 denotes a glass or acrylic substrate, on which is provided an ultraviolet curable resin layer 3 having uneven grooves formed by the 2P method described above, and on top of which is formed AlN (aluminum nitride) with a film thickness of 900 to 1000 Å. Film 6 (transparent dielectric film) is formed by reactive sputtering of aluminum in a nitrogen atmosphere, and a film thickness of 300-500 Å is deposited thereon.
A GdTbFe amorphous alloy thin film 7 (recording medium made of rare earth/transition metals) is formed by sputtering, an AlN film 8 with a thickness of 400 to 500 Å is formed on top of it, and Cu, Al, stainless steel, etc. A reflective film 9 made of metal such as Ni is formed. The nitride film 6 prevents oxygen and moisture from entering the alloy thin film 7 from the grooved ultraviolet resin layer 3 side. Since both this nitride film 6 and the nitride film 8 that protects against oxygen and moisture entering from the outside are nitrides, there is no possibility that separated oxygen will be generated during film formation. Further, in this example, the nitride films 6, 8 and the reflective film 9 also promote improvement in the characteristics of the magneto-optic effect.

なお、窒化膜としては実施例で使用したAlN
(窒化アルミニウム)の他にTiN(窒化チタン)
等を使用することができる。
Note that the nitride film is AlN used in the example.
(aluminum nitride) and TiN (titanium nitride)
etc. can be used.

<効果> 本発明によれば、射出成形や2P法によつてガ
イド溝を形成した樹脂材を備えた光メモリ素子に
おいて、記録媒体を酸素を含まない窒化膜にて挾
持した構造とすることで記録媒体の酸化による劣
化を防ぎ信頼性の高い光メモリ素子を得ることが
できるものである。
<Effects> According to the present invention, in an optical memory element equipped with a resin material in which guide grooves are formed by injection molding or the 2P method, recording is possible by having a structure in which a recording medium is sandwiched between oxygen-free nitride films. This makes it possible to prevent deterioration of the medium due to oxidation and to obtain a highly reliable optical memory element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリ基板の一部斜視図、第2
図及び第3図は溝付きメモリ基板の製造過程を示
す説明図、第4図は本発明に係る光メモリ素子の
一実施例の構成を示す一部側面断面図を示す。 図中、1:スタンパー、2:樹脂基板、3:紫
外線硬化樹脂、4:基板、5:ガラスまたはアク
リル基板、6:AlN膜、7:合金薄膜、8:
AlN膜、9:反射膜。
Figure 1 is a partial perspective view of a conventional memory board, Figure 2 is a partial perspective view of a conventional memory board.
3 and 3 are explanatory diagrams showing the manufacturing process of the grooved memory substrate, and FIG. 4 is a partial side sectional view showing the structure of an embodiment of the optical memory element according to the present invention. In the figure, 1: stamper, 2: resin substrate, 3: ultraviolet curing resin, 4: substrate, 5: glass or acrylic substrate, 6: AlN film, 7: alloy thin film, 8:
AlN film, 9: reflective film.

Claims (1)

【特許請求の範囲】 1 ガラス又はアクリル製の基板と、 該基板上に形成された凹凸溝を有する紫外線硬
化樹脂層と、 該紫外線硬化樹脂層上に形成された窒化アルミ
ニウム又は窒化チタンからなる第1の透明誘電体
膜と、 該第1の透明誘電体膜上に接して形成された希
土類・遷移金属合金からなる光メモリ記録媒体薄
膜と、 該記録媒体薄膜上に接して形成された窒化アル
ミニウム又は窒化チタンからなる第2の透明誘電
体膜と、 金属反射膜とを 備えることを特徴とする光メモリ素子。
[Claims] 1. A substrate made of glass or acrylic, an ultraviolet curable resin layer having uneven grooves formed on the substrate, and a third layer made of aluminum nitride or titanium nitride formed on the ultraviolet curable resin layer. a transparent dielectric film of No. 1; an optical memory recording medium thin film made of a rare earth/transition metal alloy formed in contact with the first transparent dielectric film; and an optical memory recording medium thin film made of a rare earth/transition metal alloy formed in contact with the first transparent dielectric film; An optical memory element comprising: a second transparent dielectric film made of titanium nitride; and a metal reflective film.
JP58188793A 1983-10-07 1983-10-07 Optical memory element Granted JPS6080144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188793A JPS6080144A (en) 1983-10-07 1983-10-07 Optical memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188793A JPS6080144A (en) 1983-10-07 1983-10-07 Optical memory element

Publications (2)

Publication Number Publication Date
JPS6080144A JPS6080144A (en) 1985-05-08
JPH0477974B2 true JPH0477974B2 (en) 1992-12-09

Family

ID=16229892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188793A Granted JPS6080144A (en) 1983-10-07 1983-10-07 Optical memory element

Country Status (1)

Country Link
JP (1) JPS6080144A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163248A (en) * 1984-02-03 1985-08-26 Kyocera Corp Magnetic recording element
JPH0697514B2 (en) * 1985-02-21 1994-11-30 シャープ株式会社 Magneto-optical storage element
JPS6246449A (en) * 1985-08-23 1987-02-28 Konishiroku Photo Ind Co Ltd Production of photomagnetic recording medium
JPS62184639A (en) * 1986-02-07 1987-08-13 Matsushita Electric Ind Co Ltd Optical disk
JPS62222450A (en) * 1986-03-25 1987-09-30 Hitachi Ltd Recording medium
JP2526864B2 (en) * 1986-04-16 1996-08-21 ソニー株式会社 Optical recording medium
JPS62285256A (en) * 1986-06-04 1987-12-11 Konica Corp Magneto-optical recording medium
JPS6383940A (en) * 1986-09-29 1988-04-14 Fujitsu Ltd Production of magneto-optical disk
JPH01211253A (en) * 1988-02-17 1989-08-24 Victor Co Of Japan Ltd Optical information signal recording medium
JPH01298544A (en) * 1988-05-26 1989-12-01 Nippon Columbia Co Ltd Optical information recording medium
JPH0291837A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Magneto-optical recording medium
JPH02226531A (en) * 1989-02-27 1990-09-10 Hitachi Ltd Structure of optical disk
JPH02134739A (en) * 1988-11-15 1990-05-23 Nippon Columbia Co Ltd Optical information recording medium

Also Published As

Publication number Publication date
JPS6080144A (en) 1985-05-08

Similar Documents

Publication Publication Date Title
US4544443A (en) Method for manufacturing an optical memory element
JP3210549B2 (en) Optical information recording medium
JPH0477974B2 (en)
EP0724259A2 (en) Optical information recording medium and method for optical recording, reproducing and erasing information
JPH0444333B2 (en)
JP2007506219A (en) Optical disc dedicated for high-density reproduction and manufacturing method thereof
JPH034974B2 (en)
US7163730B2 (en) Optical information storage medium and method for manufacturing the same
JPH02152029A (en) Optical information recording medium
JPS61144744A (en) Optomagnetic recording medium and its production
JPS6332751A (en) Magneto-optical recording medium
US5340647A (en) Optomagnetic recording medium
JPH0373938B2 (en)
JPH0263261B2 (en)
JPS59210547A (en) Manufacture of optical memory element
KR100595189B1 (en) Method for fabricating of multilayer disk
JP2897862B2 (en) Magneto-optical recording method and method for producing magneto-optical recording information carrying medium
JPH0350342B2 (en)
JP2565884B2 (en) Magneto-optical storage element
JPH03263635A (en) Production of optical memory element
JPS6266445A (en) Production of optical memory element
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPS61194659A (en) Optical recording carrier
JPH0442736B2 (en)
JPH04284289A (en) Optical information record medium