JPH034974B2 - - Google Patents

Info

Publication number
JPH034974B2
JPH034974B2 JP8067682A JP8067682A JPH034974B2 JP H034974 B2 JPH034974 B2 JP H034974B2 JP 8067682 A JP8067682 A JP 8067682A JP 8067682 A JP8067682 A JP 8067682A JP H034974 B2 JPH034974 B2 JP H034974B2
Authority
JP
Japan
Prior art keywords
film
thin film
sio
magneto
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8067682A
Other languages
Japanese (ja)
Other versions
JPS58196641A (en
Inventor
Akira Takahashi
Hiroyuki Katayama
Kenji Oota
Hideyoshi Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8067682A priority Critical patent/JPS58196641A/en
Publication of JPS58196641A publication Critical patent/JPS58196641A/en
Publication of JPH034974B2 publication Critical patent/JPH034974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing

Description

【発明の詳細な説明】 本発明はレーザ光により情報の記録・再生・消
去を行なう磁気光学記憶素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magneto-optical storage element that records, reproduces and erases information using laser light.

近年、高密度・大容量・高速アクセス等の要求
を満足する光メモリ装置の研究開発が活発に推進
されている。そして既に実用化に達したものとし
て、情報記憶用デイスクに情報に対応した微細ピ
ツト列を形成し各ピツトにレーザ光を照射した際
の回折現象を利用して情報を読み取る光デイスク
装置、あるいは情報記憶用デイスクの記憶媒体に
情報に対応した反射率変化部分列を形成し各部分
にレーザ光を照射した際の反射光量変化を利用し
て情報を読み取る光デイスク装置がある。
In recent years, research and development of optical memory devices that meet requirements for high density, large capacity, high speed access, etc. have been actively promoted. One example that has already been put into practical use is an optical disk device that reads information by forming a row of minute pits corresponding to information on an information storage disk and using the diffraction phenomenon when each pit is irradiated with a laser beam. 2. Description of the Related Art There is an optical disk device that forms a reflectance change partial sequence corresponding to information on a storage medium of a storage disk and reads information by utilizing changes in the amount of reflected light when each portion is irradiated with a laser beam.

しかしながらこれらの装置は再生専用であるか
又は再生と追加記録が可能なものに留まつてお
り、情報の消去が可能なものは実用化迄には到つ
ていないのが現状である。
However, these devices are either only for reproduction or only capable of reproduction and additional recording, and currently no device capable of erasing information has been put into practical use.

本発明は情報の再生・記録・消去が可能な光デ
イスク装置のメモリ素子として期待される磁気光
学記憶素子の改良に関するものである。磁気光学
記憶素子をメモリ素子として用いた場合の難点の
一つは再生信号レベルが低いことである。特に磁
気光学記憶素子にレーザ光を照射しその反射光に
よつて情報の再生を行なう所謂カー効果再生方式
では、カー回転角が小さいので信号雑音比(S/
N)を高める事が困難であつた。その為従来では
記憶媒体である磁性材料の改良を行なつたり、記
憶媒体上にSiOやSiO2の誘電体膜を形成してカー
回転角を高める工夫をしている。
The present invention relates to improvements in magneto-optical storage elements that are expected to be used as memory elements in optical disk devices capable of reproducing, recording, and erasing information. One of the difficulties when using a magneto-optical storage element as a memory element is that the reproduction signal level is low. In particular, in the so-called Kerr effect reproduction method, in which a magneto-optical memory element is irradiated with a laser beam and information is reproduced using the reflected light, the signal-to-noise ratio (S/
It was difficult to increase N). To this end, conventional efforts have been made to increase the Kerr rotation angle by improving the magnetic material used as the storage medium or by forming a dielectric film of SiO or SiO 2 on the storage medium.

後者の例として例えばTbFe磁性体薄膜上に
SiO膜を形成することによつてカー回転角が0.15
度から0.6度に増大した例が報告されている
(IEEE Trans of Mag Vol−16 No.−5 1980
P1194)。しかしながら上記SiOやSiO2の誘電体膜
では、磁性体に腐蝕の恐れのある場合はその腐蝕
の実質的な防御とはなり得ず、又1μm程度の小
さなほこりやゴミが該誘電体膜に付着した場合は
記録ビツト径が1μm程度であるためビツト検出
が不可能になり、よつて上記SiO、SiO2の誘電体
膜を形成することは実用に適さなかつた。そして
前記腐蝕の防御及びほこりやゴミに対する対策の
為には0.5〜2mm程度のガラス又は透明樹脂を磁
性体に被覆することが望ましいとされている。し
かしこの被覆材料では当然ながらカー回転角の増
大は難しく従つてS/Nの増大の効果を得ること
も困難である。
As an example of the latter, for example, on a TbFe magnetic thin film
Kerr rotation angle is 0.15 by forming SiO film.
An example of an increase from 0.6 degrees to 0.6 degrees has been reported (IEEE Trans of Mag Vol−16 No.−5 1980
P1194). However, the SiO or SiO 2 dielectric film described above cannot provide substantial protection against corrosion if there is a risk of corrosion in the magnetic material, and dust and dirt as small as 1 μm may adhere to the dielectric film. In this case, since the recorded bit diameter is about 1 μm, bit detection becomes impossible, and therefore it is not suitable for practical use to form the dielectric film of SiO or SiO 2 described above. In order to prevent the above-mentioned corrosion and to take measures against dust and dirt, it is considered desirable to cover the magnetic material with glass or transparent resin having a thickness of about 0.5 to 2 mm. However, with this coating material, it is naturally difficult to increase the Kerr rotation angle, and it is also difficult to obtain the effect of increasing the S/N ratio.

又以上の手法とは別にカー効果再生方式の磁気
光学記憶素子において、記録媒体の背後に反射膜
を形成することによつて見かけのカー回転角を向
上させる手法を出願人は提案(特願昭55−85695)
している。
In addition to the above-mentioned method, the applicant has proposed a method for improving the apparent Kerr rotation angle by forming a reflective film behind the recording medium in a magneto-optical storage element using the Kerr effect reproduction method (patent application No. 55−85695)
are doing.

この構造の特徴は磁性体薄膜表面で反射された
レーザ光と磁性体薄膜を透過し次に反射膜にて反
射されたレーザ光が合成される為に上記反射膜が
存在しない構造体に比べて見かけのカー回転角が
向上することである。この場合カー回転角の増大
率は使用するレーザ光の波長、磁性体膜の種類及
び膜厚、反射膜の膜厚等によつて変化することが
確認されている。又第1図の構造の磁気光学記憶
素子も既に出願人は提案している。1はガラス等
の基板、2はGdTbFe非晶質薄膜、3はSiO2透明
膜、4はCu金属膜である。そしてこの構造体に
おいてSiO2透明膜3の膜厚を変化させるとカー
回転角が大きく変化することを確認している。第
2図はレーザ光の波長を632.8nmとし、上記SiO2
透明膜3の膜厚を変化した時のカー回転角の変化
する様子を示したグラフ図である。
The feature of this structure is that the laser light reflected on the surface of the magnetic thin film and the laser light transmitted through the magnetic thin film and then reflected on the reflective film are combined, compared to a structure without the above reflective film. The apparent Kerr rotation angle is improved. In this case, it has been confirmed that the increase rate of the Kerr rotation angle varies depending on the wavelength of the laser beam used, the type and thickness of the magnetic film, the thickness of the reflective film, etc. The applicant has also already proposed a magneto-optical storage element having the structure shown in FIG. 1 is a substrate such as glass, 2 is a GdTbFe amorphous thin film, 3 is a SiO 2 transparent film, and 4 is a Cu metal film. It has been confirmed that in this structure, when the thickness of the SiO 2 transparent film 3 is changed, the Kerr rotation angle changes greatly. In Figure 2, the wavelength of the laser beam is 632.8 nm, and the SiO 2
FIG. 3 is a graph diagram showing how the Kerr rotation angle changes when the thickness of the transparent film 3 is changed.

SiO2透明膜3及びCu金属膜4が無い時のカー
回転角は0.27°であるのでCu金属膜4の存在の重
要性が判る。又、SiO2透明膜3が無い場合のカ
ー回転角は他の条件(磁性体膜厚、反射膜膜厚
等)を変えても最大で0.5°であるからSiO2透明膜
3の膜厚を適度に調整すればカー回転角を大きく
増加させることができることが判る。
Since the Kerr rotation angle without the SiO 2 transparent film 3 and the Cu metal film 4 is 0.27°, the importance of the presence of the Cu metal film 4 can be seen. In addition, the Kerr rotation angle without the SiO 2 transparent film 3 is at most 0.5° even if other conditions (magnetic material film thickness, reflective film thickness, etc.) are changed, so the film thickness of the SiO 2 transparent film 3 is It can be seen that the Kerr rotation angle can be greatly increased by making appropriate adjustments.

本発明は以上の点に鑑み、反射膜を備えた磁気
光学記憶素子において更に実用的な構造を得んと
するものである。
In view of the above points, the present invention aims to provide a more practical structure in a magneto-optical memory element provided with a reflective film.

以下、本発明に係わる磁気光学記憶素子の一実
施例を図面を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a magneto-optical memory element according to the present invention will be described in detail below with reference to the drawings.

第3図は本発明に係わる磁気光学記憶素子の一
実施例の一部側面断面図である。同図で5はガラ
ス、アクリル樹脂等の基板であり、該基板の厚さ
は0.5〜2mm程度である。6は上記基板上にスパ
ツタリング、蒸着等によつて形成された膜面に垂
直な磁化容易軸を有する希土類−遷移金属非晶質
薄膜である。この希土類−遷移金属非晶質薄膜の
材質はGdTbFe、TbDyFe、TbFe、GdTbDyFe
及びこれらの材質に若干の不純物例えばBi、Sn、
Co等を加えたもの等を用い得る。7は上記非晶
質薄膜上に形成されるMgF2、SiO2、SiO、
TiO2、Si34、Ta2O5等の透明薄膜であり、8はス
テンレス薄膜である。このステンレス薄膜として
は18−8ステンレス鋼SUS304(JIS規格)を用い
た。上記ステンレス薄膜8は反射膜として動作す
るものである。ステンレス薄膜は耐腐蝕性に優れ
ている点で反射膜として好ましい。又ステンレス
薄膜は熱伝導率が低いので前記非晶質薄膜6にレ
ーザスポツトを照射して光熱磁気記録を行なう場
合に反射膜へ熱が逃げることが少ない。従つて光
熱磁気記録時のパワーロスが小さく記録速度を向
上することができるものである。
FIG. 3 is a partial side cross-sectional view of one embodiment of the magneto-optic memory element according to the present invention. In the figure, 5 is a substrate made of glass, acrylic resin, etc., and the thickness of the substrate is about 0.5 to 2 mm. Reference numeral 6 denotes a rare earth-transition metal amorphous thin film having an axis of easy magnetization perpendicular to the film surface, which is formed on the substrate by sputtering, vapor deposition, or the like. The materials of this rare earth-transition metal amorphous thin film are GdTbFe, TbDyFe, TbFe, and GdTbDyFe.
And these materials contain some impurities such as Bi, Sn,
A material containing Co or the like may be used. 7 is MgF 2 , SiO 2 , SiO, formed on the above amorphous thin film;
These are transparent thin films of TiO 2 , Si 34 , Ta 2 O 5 or the like, and 8 is a stainless steel thin film. As this stainless steel thin film, 18-8 stainless steel SUS304 (JIS standard) was used. The stainless steel thin film 8 acts as a reflective film. A stainless steel thin film is preferable as a reflective film because it has excellent corrosion resistance. Furthermore, since the stainless steel thin film has a low thermal conductivity, when the amorphous thin film 6 is irradiated with a laser spot to perform photothermal magnetic recording, less heat escapes to the reflective film. Therefore, the power loss during photothermal magnetic recording is small and the recording speed can be improved.

ただし、レーザ波長632.8nmでGdTbFe非晶質
薄膜を用い、この非晶質薄膜とステンレス薄膜の
間に透明薄膜を設けなかつた場合カー回転角は最
大で0.33°と小さく実用上難しかつた。しかし上
記透明薄膜としてSiO2を500nmの厚さで設けた
時カー回転角は0.57°に上昇した。このカー回転
角であれば実用上(S/N)問題無い。
However, when a GdTbFe amorphous thin film was used at a laser wavelength of 632.8 nm and a transparent thin film was not provided between the amorphous thin film and the stainless steel thin film, the Kerr rotation angle was at most 0.33°, which was difficult in practice. However, when SiO 2 was provided as the transparent thin film with a thickness of 500 nm, the Kerr rotation angle increased to 0.57°. With this Kerr rotation angle, there is no problem in practical terms (S/N).

ここで、上述の構成に加えて基板5と非晶質薄
膜6の間にSiO、TiO2等の透明誘電体膜を設けて
もよい。これは基板1がアクリル、ポリカーボ等
の樹脂からなる場合腐蝕に弱い為に設けた膜であ
る。この場合、上記透明誘電体膜の屈折率を上記
基板5の屈折率より大きく、かつ上記透明誘電体
膜の膜厚を略入×(1/4n+m)……入:入射レー ザ波長、n:透明誘電体膜の屈折率、m:整数、
とすれば上記基板5より入射した光は上記透明誘
電体膜内で干渉しそれによつてカー回転角が増大
しS/Nが向上するものである。
Here, in addition to the above-described configuration, a transparent dielectric film such as SiO, TiO 2 or the like may be provided between the substrate 5 and the amorphous thin film 6. This film is provided because the substrate 1 made of resin such as acrylic or polycarbonate is susceptible to corrosion. In this case, the refractive index of the transparent dielectric film is larger than the refractive index of the substrate 5, and the film thickness of the transparent dielectric film is approximately equal to (1/4n+m)...where: incident laser wavelength, n: transparent refractive index of dielectric film, m: integer,
If so, the light incident from the substrate 5 interferes within the transparent dielectric film, thereby increasing the Kerr rotation angle and improving the S/N ratio.

又、上記基板5に凹凸状のガイドトラツクを形
成したり、上記ステンレス膜8の両面に透明薄膜
7、非晶質薄膜6、基板5を形成する両面構造体
としても勿論構わない。
Of course, it is also possible to form a guide track with an uneven shape on the substrate 5, or to form a double-sided structure in which the transparent thin film 7, the amorphous thin film 6, and the substrate 5 are formed on both sides of the stainless steel film 8.

以上詳細に説明した本発明によればステンレス
薄膜を磁気光学記憶素子の反射膜として設けたも
のであるから、耐腐蝕性に優れ、又熱伝導率が低
いので光熱磁気記録の際のパワーロスが小さいも
のである。
According to the present invention described in detail above, since a stainless steel thin film is provided as a reflective film of a magneto-optical memory element, it has excellent corrosion resistance and has low thermal conductivity, so power loss during photothermal magnetic recording is small. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気光学記憶素子の一部側面断
面図、第2図は特性グラフ図、第3図は本発明に
係る磁気光学記憶素子の一実施例の一部側面断面
図を示す。 図中、1,5:基板、2,6:非晶質薄膜、
3,7:透明膜、4:反射膜、8:ステンレス薄
膜。
FIG. 1 is a partial side cross-sectional view of a conventional magneto-optical memory element, FIG. 2 is a characteristic graph, and FIG. 3 is a partial side cross-sectional view of an embodiment of the magneto-optical memory element according to the present invention. In the figure, 1, 5: substrate, 2, 6: amorphous thin film,
3, 7: Transparent film, 4: Reflective film, 8: Stainless steel thin film.

Claims (1)

【特許請求の範囲】 1 基板上に、希土類遷移金属合金薄膜と透明膜
とステンレス薄膜とをこの順に形成したことを特
徴とする磁気光学記憶素子。 2 前記透明膜はSiO2、SiO、MgF2、TiO2
Si3N4、Ta2O5の少なくとも一つの物質を含んで
なることを特徴とする特許請求の範囲第1項記載
の磁気光学記憶素子。 3 前記希土類遷移金属合金薄膜はGdTbFe、
TbDyFe、TbFe、GdTbDyFeもしくはこれらに
Bi、Sn、Co等の不純物を含有した物質のいずれ
かから成ることを特徴とする特許請求の範囲第1
項又は第2項記載の磁気光学記憶素子。
[Scope of Claims] 1. A magneto-optical memory element characterized in that a rare earth transition metal alloy thin film, a transparent film, and a stainless steel thin film are formed in this order on a substrate. 2 The transparent film is made of SiO 2 , SiO, MgF 2 , TiO 2 ,
2. The magneto-optical storage element according to claim 1, comprising at least one of Si 3 N 4 and Ta 2 O 5 . 3 The rare earth transition metal alloy thin film is made of GdTbFe,
TbDyFe, TbFe, GdTbDyFe or these
Claim 1, characterized in that it is made of any one of substances containing impurities such as Bi, Sn, and Co.
3. The magneto-optical memory element according to item 1 or 2.
JP8067682A 1982-05-12 1982-05-12 Magnetooptic memorizing element Granted JPS58196641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8067682A JPS58196641A (en) 1982-05-12 1982-05-12 Magnetooptic memorizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067682A JPS58196641A (en) 1982-05-12 1982-05-12 Magnetooptic memorizing element

Publications (2)

Publication Number Publication Date
JPS58196641A JPS58196641A (en) 1983-11-16
JPH034974B2 true JPH034974B2 (en) 1991-01-24

Family

ID=13724951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067682A Granted JPS58196641A (en) 1982-05-12 1982-05-12 Magnetooptic memorizing element

Country Status (1)

Country Link
JP (1) JPS58196641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497616B1 (en) * 2014-01-10 2015-03-19 (주)성미 Door for ship having an emergency exit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551403B2 (en) * 1984-07-09 1996-11-06 京セラ株式会社 Magneto-optical recording element
JPH0766582B2 (en) * 1985-01-26 1995-07-19 京セラ株式会社 Magneto-optical recording element
JPH0775085B2 (en) * 1985-07-10 1995-08-09 三菱化学株式会社 Magneto-optical medium
JPH0777044B2 (en) * 1985-07-24 1995-08-16 ダイセル化学工業株式会社 Magneto-optical disk
JPS62170050A (en) * 1986-01-22 1987-07-27 Sumitomo Electric Ind Ltd Photomagnetic disk
JP2578418B2 (en) * 1986-12-29 1997-02-05 三菱化学株式会社 Method for manufacturing magneto-optical recording medium
JPH03181041A (en) * 1990-11-28 1991-08-07 Ricoh Co Ltd Magneto-optical recording medium
JPH0490024U (en) * 1991-05-30 1992-08-06
JPH0589517A (en) * 1991-09-25 1993-04-09 Sony Corp Optical disk
JPH0644626A (en) * 1992-08-27 1994-02-18 Canon Inc Magnetic thin film recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497616B1 (en) * 2014-01-10 2015-03-19 (주)성미 Door for ship having an emergency exit

Also Published As

Publication number Publication date
JPS58196641A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
JPS6227458B2 (en)
JPH034974B2 (en)
JPS586542A (en) Magnetooptic storage element
JPS6080144A (en) Optical memory element
JPH0444333B2 (en)
JPH0263262B2 (en)
JPH02779B2 (en)
JPS61196445A (en) Photomagnetic disk
JPS6314342A (en) Magneto-optical recording medium
JPH0263261B2 (en)
JPH034973B2 (en)
JPH0479076B2 (en)
JP2801984B2 (en) Magneto-optical storage element
JPH0512778B2 (en)
JP2565884B2 (en) Magneto-optical storage element
JP2787077B2 (en) Magneto-optical recording medium
JPH0462140B2 (en)
JP2672914B2 (en) Magneto-optical storage element
JPH0350342B2 (en)
JPS62289945A (en) Optical recording element
JPS60209946A (en) Optomagnetic recording medium
JPH0427617B2 (en)
JPS61276148A (en) Photomagnetic disk
JPS63124249A (en) Magneto-optical disk
JPH0442736B2 (en)