JPH0477554B2 - - Google Patents

Info

Publication number
JPH0477554B2
JPH0477554B2 JP58059604A JP5960483A JPH0477554B2 JP H0477554 B2 JPH0477554 B2 JP H0477554B2 JP 58059604 A JP58059604 A JP 58059604A JP 5960483 A JP5960483 A JP 5960483A JP H0477554 B2 JPH0477554 B2 JP H0477554B2
Authority
JP
Japan
Prior art keywords
vibrator
elastic
driven
motor
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059604A
Other languages
Japanese (ja)
Other versions
JPS59185179A (en
Inventor
Kenji Abe
Kazuo Ishikawa
Ichiro Shimizu
Mitsuhiro Otogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58059604A priority Critical patent/JPS59185179A/en
Publication of JPS59185179A publication Critical patent/JPS59185179A/en
Publication of JPH0477554B2 publication Critical patent/JPH0477554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は超音波モータ、特に、弾性振動子に進
行弾性波を発生させ、これにより移動体を駆動す
る様な超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an ultrasonic motor, and more particularly to an ultrasonic motor that generates traveling elastic waves in an elastic vibrator and drives a moving body using the traveling elastic waves.

(従来技術) 超音波モータとは、例えば、固定体と移動体を
備え、これらの固定体と移動体のうち少なくとも
一方は複数の電歪素子で駆動される少なくとも一
つの振動子を含み、前記電歪素子の引出しリード
は駆動電源に接続され、固定体と移動体はトルク
を伝達するために振動子の表面上の少なくとも一
点において互いに押し合い、そして電歪素子に加
える超音波電気エネルギーを機械振動エネルギー
に変換させ、該機械的振動エネルギーを移動体の
一方向運動に変える様な装置であり、この種の装
置に関しては、すでに特開昭52−29192号公報等
で開示されている。
(Prior Art) An ultrasonic motor includes, for example, a fixed body and a moving body, and at least one of the fixed body and the moving body includes at least one vibrator driven by a plurality of electrostrictive elements, and the ultrasonic motor includes at least one vibrator driven by a plurality of electrostrictive elements. The extraction lead of the electrostrictive element is connected to a driving power source, the fixed body and the movable body press each other at at least one point on the surface of the vibrator to transmit torque, and the ultrasonic electric energy applied to the electrostrictive element is converted into mechanical vibration. This is a device that converts the mechanical vibration energy into energy and converts the mechanical vibration energy into unidirectional movement of a moving body, and this type of device has already been disclosed in Japanese Patent Application Laid-Open No. 52-29192.

特にここでは機械的振動エネルギーとして、表
面弾性波を用い、該弾性波によつて移動体を摩擦
駆動する様にし、且つ、その際少なくとも一つの
電歪素子の振動によつて定在波を発生させる様な
構成のモータについて述べる。
In particular, here, a surface acoustic wave is used as the mechanical vibration energy, and the moving body is frictionally driven by the elastic wave, and at this time, a standing wave is generated by the vibration of at least one electrostrictive element. The following describes a motor configured to allow

第1図はこの種のモータの駆動原理を示すもの
で、1を移動体、2を弾性振動子とする。X軸は
振動子2の表面上に起きる表面波の進行方向を示
しZ軸をその法線方向とする。
FIG. 1 shows the driving principle of this type of motor, where 1 is a moving body and 2 is an elastic vibrator. The X-axis indicates the traveling direction of a surface wave occurring on the surface of the vibrator 2, and the Z-axis is its normal direction.

弾性振動子2に不図示の電歪素子により振動を
与えると、表面弾性波が発生し振動子表面上を伝
搬していく。この弾性波は縦波と横波を伴つた表
面波で、その質点の運動は楕円軌道を描く振動と
なる。質点Aについて着目すると、縦振巾u、横
振巾wの楕円運動を行つており、表面波の進行方
向を+X方向とすると楕円運動は反時計方向に回
転している。この表面波は一波長ごとに頂点A,
A′……を有し、その頂点速度はX成分のみであ
つて、V=2πfu(但しfは振動数)である。そこ
でこの表面に移動体1の表面を加圧接触させると
移動体表面は頂点A,A′……のみに接触するか
ら、移動体1は振動子2との間の摩擦力により矢
印Nの方向に駆動されることになる。
When the elastic vibrator 2 is vibrated by an electrostrictive element (not shown), a surface acoustic wave is generated and propagates on the surface of the vibrator. This elastic wave is a surface wave with longitudinal waves and transverse waves, and the motion of the mass point is vibration that describes an elliptical orbit. Focusing on mass point A, it is performing an elliptical motion with a longitudinal amplitude u and a lateral amplitude w, and if the traveling direction of the surface wave is the +X direction, the elliptical motion is rotating counterclockwise. This surface wave has a peak A for each wavelength,
A′..., whose apex velocity is only the X component, and V=2πfu (where f is the frequency). Therefore, when the surface of the movable body 1 is brought into pressure contact with this surface, the surface of the movable body contacts only the vertices A, A'..., so the movable body 1 moves in the direction of arrow N due to the frictional force between it and the vibrator 2. It will be driven by

矢印N方向の移動体1は移動速度は振動数fに
比例する。又、加圧接触による摩擦駆動を行うた
め縦振巾uばかりでなく、横振巾wにも依存す
る。即ち、移動体1の移動速度は楕円運動の大き
さに比例し、楕円運動の大きい方が速度が高い。
従つて、移動体速度は電歪素子に加える電圧に比
例する。
The moving speed of the moving body 1 in the direction of arrow N is proportional to the frequency f. Furthermore, since frictional drive is performed by pressurized contact, it depends not only on the vertical oscillation width u but also on the lateral oscillation width w. That is, the moving speed of the moving body 1 is proportional to the size of the elliptical motion, and the larger the elliptical motion, the higher the speed.
Therefore, the speed of the moving body is proportional to the voltage applied to the electrostrictive element.

第2図は第1図に示した弾性振動子2に表面波
を発生させるための原理を示すものである。3a
及び3bは弾性振動子2の共振周波数から最も効
率よく弾性波を得ることのできる様な間隔で弾性
振動子2に貼り付けた、例えば、PzT等の電歪素
子であり、3aは線Aに、3bは線Bに接続され
ている。4はこのモータの駆動用の電源であり、
V=Vosin〓tという電圧を供給しており、図か
らも明らかなように、線AにはV=Vosin〓tの
電圧が加わる。線Bには90°位相シフタ5により
V=Vosin(〓t±π/2)の電圧が加えられる。+、 −は移動体の移動方向により切換える。即ち90°
位相シフタ5によつて+90°位相をずらす場合と
−90°位相をずらす場合によつて移動体進行方向
が異なる。
FIG. 2 shows the principle for generating surface waves in the elastic vibrator 2 shown in FIG. 1. 3a
and 3b are electrostrictive elements, such as PzT, attached to the elastic vibrator 2 at intervals such that elastic waves can be obtained most efficiently from the resonance frequency of the elastic vibrator 2, and 3a is an electrostrictive element such as PzT. , 3b are connected to line B. 4 is a power source for driving this motor,
A voltage of V=Vosin〓t is supplied, and as is clear from the figure, a voltage of V=Vosin〓t is applied to line A. A voltage of V=Vosin (〓t±π/2) is applied to the line B by the 90° phase shifter 5. + and - are switched depending on the moving direction of the moving object. i.e. 90°
The moving direction of the moving object differs depending on whether the phase shifter 5 shifts the phase by +90° or by -90°.

(イ)〜(ニ)は時間に応じた振動子2の振動状態を示
し、(イ)はt=2nπ/ω、(ロ)はt=π/2ω+2nπ/
ω、(ハ)はt π/ω+2nπ/ω、(ニ)はt3π/2ω+2nπ/ωの状態
である。
(a) to (d) show the vibration state of the vibrator 2 depending on time, (a) is t = 2nπ/ω, and (b) is t = π/2ω + 2nπ/
ω, (c) is the state of tπ/ω+2nπ/ω, and (d) is the state of t3π/2ω+2nπ/ω.

弾性波は第2図中右方向に進むが、振動子2の
駆動面の任意の質点は反時計方向の楕円運動を行
う。従つて駆動面に圧接される不図示の移動体は
左方向に移動する。
Although the elastic wave propagates to the right in FIG. 2, any mass point on the drive surface of the vibrator 2 performs an elliptical motion in the counterclockwise direction. Therefore, the moving body (not shown) that is pressed against the drive surface moves to the left.

第3図は、以上説明した原理に基づいて構成し
た超音波モータの一従来例を示すもので、図にお
いて、6は回転体、7は摩擦体(例えばゴム)
で、これらは接着されて一体構成とされる。8は
振動子、9は振動吸収部材で、これらはホルダ1
0に取付けられる。回転体6は調圧バネ11と調
圧ナツト12により摩擦体7を介して振動子8
に、適度に加圧接触される。そして、振動子8の
表面8aに、その裏面に固着された不図示の電歪
素子を通じて進行弾性波を発生させる事により、
回転子6が駆動される。振動吸収部材9は振動子
8とホルダ10との間で振動による悪影響が出な
いよう、例えばフエルトの様な振動を吸収する材
料で出来ている。
FIG. 3 shows a conventional example of an ultrasonic motor constructed based on the principle explained above. In the figure, 6 is a rotating body, and 7 is a friction body (for example, rubber).
These are then glued together to form an integral structure. 8 is a vibrator, 9 is a vibration absorbing member, and these are the holder 1
Attached to 0. The rotating body 6 is connected to a vibrator 8 via a friction body 7 by a pressure regulating spring 11 and a pressure regulating nut 12.
is brought into contact with moderate pressure. By generating a traveling elastic wave on the front surface 8a of the vibrator 8 through an electrostrictive element (not shown) fixed to the back surface thereof,
The rotor 6 is driven. The vibration absorbing member 9 is made of a material that absorbs vibrations, such as felt, so that there is no adverse effect due to vibrations between the vibrator 8 and the holder 10.

以上に述べた従来の超音波モータではその原理
上、回転体6と振動子8を加圧接触させる必要が
あるため、バネ11等の機械的手段を用いて加圧
接触を行つていた。そのため、第3図のように、
バネ11と回転体6が接触する事により回転体6
の回転の妨げとなり、モータの効率を悪くしてい
た。
In the conventional ultrasonic motor described above, since it is necessary to bring the rotating body 6 and the vibrator 8 into pressure contact due to its principle, mechanical means such as a spring 11 is used to bring about the pressure contact. Therefore, as shown in Figure 3,
When the spring 11 and the rotating body 6 come into contact with each other, the rotating body 6
This obstructs the rotation of the motor and reduces the efficiency of the motor.

又、機械的にも複雑になり、小型化の妨げにな
つていた。
Moreover, it is mechanically complicated, which hinders miniaturization.

(目的) 本発明は上述従来例の欠点を除去し、駆動効率
に優れ、構造も簡単で煩雑な調整も不要となる新
規な超音波モータを提供せんとするものである。
(Objective) It is an object of the present invention to provide a novel ultrasonic motor that eliminates the drawbacks of the conventional examples described above, has excellent drive efficiency, has a simple structure, and does not require complicated adjustments.

(実施例) 第4図は、本発明の一実施例を示すもので、図
中、13は回転体、14は永久磁石、5は摩擦体
で、これら13,14,15で示す要素は接着さ
れ一体構成とされている。16は振動子、17は
振動吸収部材で、これら16,17で示す要素は
接着され、ホルダ18に取付けられる。ホルダ1
8は磁性体で出来ている。
(Embodiment) Fig. 4 shows an embodiment of the present invention. In the figure, 13 is a rotating body, 14 is a permanent magnet, and 5 is a friction body, and these elements 13, 14, and 15 are bonded. It is an integrated structure. 16 is a vibrator, 17 is a vibration absorbing member, and these elements 16 and 17 are bonded and attached to a holder 18. Holder 1
8 is made of magnetic material.

回転体13は永久磁石14の、磁性ホルダ18
に対する磁力による接着力により、振動子16に
対し加圧接触させられる。そして、振動子16の
表面16aに、その裏面16bに固着された不図
示の電歪素子を通じて進行弾性波を発生させる事
により、回転子13が駆動される。
The rotating body 13 is a magnetic holder 18 of a permanent magnet 14.
The vibrator 16 is brought into pressure contact with the vibrator 16 by the adhesive force caused by the magnetic force. The rotor 13 is driven by generating traveling elastic waves on the front surface 16a of the vibrator 16 through an electrostrictive element (not shown) fixed to the back surface 16b.

第5図は、本発明の他の実施例を示すもので、
図中21,22は永久磁石で、互いに面方向に反
発するように配置されている。23は回転体、2
4は摩擦体で、これら22,23,24で示す要
素は接着され一体構成とされる。25は振動子、
26は振動吸収部材で、27で示す下ホルダに取
付けられる。永久磁石21は20で示す上ホルダ
に取付けられている。上ホルダ20と下ホルダ2
7は19a,19b,19cで示すねじビスによ
り結合され、超音波モータを構成する。ここで磁
石21と22は接触せず、磁力により互いに反発
し合つている。回転体23と振動子25は磁石2
1,22の互いの磁力による反発力により適度に
加圧接触させられる。そして、振動子25の表面
25aに、その裏面に固着された不図示の電歪素
子を通じて進行弾性波を発生させる事により、回
転体23が駆動される。
FIG. 5 shows another embodiment of the present invention,
In the figure, permanent magnets 21 and 22 are arranged so as to repel each other in the plane direction. 23 is a rotating body, 2
4 is a friction body, and these elements 22, 23, and 24 are bonded to form an integral structure. 25 is a vibrator,
26 is a vibration absorbing member, which is attached to the lower holder 27. A permanent magnet 21 is attached to the upper holder shown at 20. Upper holder 20 and lower holder 2
7 are connected by screws 19a, 19b, and 19c to form an ultrasonic motor. Here, the magnets 21 and 22 are not in contact with each other and repel each other due to magnetic force. The rotating body 23 and the vibrator 25 are magnets 2
1 and 22 are brought into contact under appropriate pressure due to the repulsive force due to mutual magnetic force. The rotating body 23 is driven by generating traveling elastic waves on the front surface 25a of the vibrator 25 through an electrostrictive element (not shown) fixed to the back surface thereof.

特にこのようなドーナツ形のモータの場合、従
来においては、機械的加圧手段(バネ等)による
加圧は回転体に対し、その回転中心付近では行え
ないため加圧手段と回転体との間の接触による駆
動損失は大きかつたが、本実施例によれば、斯か
る駆動損失がなくなるものである。
Especially in the case of such a donut-shaped motor, conventionally, pressure cannot be applied to the rotating body by mechanical pressure means (springs, etc.) near the center of rotation, so there is no pressure between the pressure means and the rotating body. However, according to this embodiment, such driving loss is eliminated.

以上、2つの実施例では、回転型のモータにつ
いて説明したが、リニア型であつても振動子と移
動体とを加圧接触させるのに磁力を用いる構造は
同様に有効である。
In the above two embodiments, a rotary type motor has been described, but a structure that uses magnetic force to pressurize the vibrator and the moving body is equally effective even in a linear type motor.

(効果) 以上、説明したように本発明によれば弾性振動
子に弾性進行波を発生させ、これにより被駆動体
としての移動体を駆動する超音波モータとし、振
動子と移動体の加圧接触を磁力発生機構からの磁
力により行うため、必要な圧力だけで弾性振動子
と被駆動体としての移動体が接触し、従来のよう
に被駆動体としての移動体の駆動の妨げになる加
圧手段と被駆動体としての移動体との間の機械的
接触がなく、モータの駆動効率が飛躍的に向上す
る。特に、ドーナツ形のモータについては加圧を
回転中心により近い位置で行う方が接触による損
失が少ない処、ドーナツ形のためそれが行えず、
損失が極めて大きかつたものが、加圧手段と移動
体とが無接触であるためモータの駆動効率が飛躍
的に向上する。
(Effects) As explained above, according to the present invention, an elastic traveling wave is generated in an elastic vibrator, and an ultrasonic motor that drives a moving body as a driven body is used, thereby pressurizing the vibrator and the moving body. Since the contact is made using the magnetic force from the magnetic force generation mechanism, the elastic vibrator and the moving body as the driven body come into contact with only the necessary pressure, eliminating the need for the conventional application of force that would interfere with the drive of the moving body as the driven body. There is no mechanical contact between the pressure means and the moving body as a driven body, and the driving efficiency of the motor is dramatically improved. In particular, with a donut-shaped motor, applying pressure closer to the center of rotation would reduce loss due to contact, but due to the donut shape, this cannot be done.
Although the loss is extremely large, since there is no contact between the pressurizing means and the moving body, the driving efficiency of the motor is dramatically improved.

又、加圧するための構造も、磁力により吸着あ
るいは反発する一組の機構を持つだけで済むため
極めて簡単化され小型化できると共に、煩雑な調
整の手間も省ける様になる等、多大の利点が得ら
れる様になる。尚16又は25が弾性振動子を構
成し、13,15又は23,24が被駆動体を構
成し、14,18又は21,22が磁力発生機構
を構成する。
In addition, the structure for applying pressure can be extremely simplified and downsized because it only requires a set of mechanisms that attract or repel magnetically, and it also has many advantages, such as eliminating the need for complicated adjustments. You will be able to get it. Note that 16 or 25 constitutes an elastic vibrator, 13, 15 or 23, 24 constitutes a driven body, and 14, 18 or 21, 22 constitutes a magnetic force generating mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弾性振動子の表面弾性波を利用した超
音波モータの原理説明図、第2図は超音波モータ
の駆動方法の説明図、第3図は超音波モータの一
従来例を示す分解斜視図、第4図は本発明に係る
超音波モータの一実施例の分解斜視図、第5図は
本発明の他の実施例の分解斜視図である。 13;23……移動体(回転体)、16;25
……振動子、15;24……摩擦体、15;2
1,22……永久磁石、18……磁性ホルダ。
Figure 1 is an explanatory diagram of the principle of an ultrasonic motor that uses surface acoustic waves of an elastic vibrator, Figure 2 is an explanatory diagram of the driving method of an ultrasonic motor, and Figure 3 is an exploded view of a conventional example of an ultrasonic motor. FIG. 4 is an exploded perspective view of one embodiment of the ultrasonic motor according to the present invention, and FIG. 5 is an exploded perspective view of another embodiment of the present invention. 13;23... moving body (rotating body), 16;25
... Vibrator, 15; 24 ... Friction body, 15; 2
1, 22...Permanent magnet, 18...Magnetic holder.

Claims (1)

【特許請求の範囲】 1 弾性振動子16;25と、被駆動体13,1
5;23,24と、 磁力発生機構14,18;21,22とを有す
る超音波モータであつて、 前記被駆動体13,15;23,24は前記弾
性振動子16;25に接触して駆動されるもので
あり、また前記被駆動体13,15;23,24
と前記弾性振動子16;25は前記磁力発生機構
14,18;21,22からの磁力によつて加圧
接触されるものである超音波モータ。
[Claims] 1. Elastic vibrator 16; 25 and driven body 13, 1
5; 23, 24; and a magnetic force generating mechanism 14, 18; 21, 22, wherein the driven bodies 13, 15; 23, 24 are in contact with the elastic vibrator 16; is driven, and the driven bodies 13, 15; 23, 24
and the elastic vibrator 16; 25 are brought into pressure contact with each other by magnetic force from the magnetic force generating mechanisms 14, 18; 21, 22.
JP58059604A 1983-04-04 1983-04-04 Supersonic motor Granted JPS59185179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059604A JPS59185179A (en) 1983-04-04 1983-04-04 Supersonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059604A JPS59185179A (en) 1983-04-04 1983-04-04 Supersonic motor

Publications (2)

Publication Number Publication Date
JPS59185179A JPS59185179A (en) 1984-10-20
JPH0477554B2 true JPH0477554B2 (en) 1992-12-08

Family

ID=13118020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059604A Granted JPS59185179A (en) 1983-04-04 1983-04-04 Supersonic motor

Country Status (1)

Country Link
JP (1) JPS59185179A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173683A (en) * 1985-01-28 1986-08-05 Matsushita Electric Ind Co Ltd Supersonic drive motor
JP2555572B2 (en) * 1986-11-07 1996-11-20 株式会社ニコン Ultrasonic motor
JP2512726B2 (en) * 1986-11-14 1996-07-03 日立マクセル株式会社 Ultrasonic motor using nonlinear resonance system
JPS63242181A (en) * 1987-03-27 1988-10-07 Hitachi Maxell Ltd Rotary vibrator type magnetically pressing ultrasonic motor
JPS63294280A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPS63294281A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JP4756916B2 (en) 2005-05-31 2011-08-24 キヤノン株式会社 Vibration wave motor

Also Published As

Publication number Publication date
JPS59185179A (en) 1984-10-20

Similar Documents

Publication Publication Date Title
JPS61224881A (en) Vibration wave motor
JPH0117354B2 (en)
JP3412648B2 (en) Ultrasonic motor
JPH0510912B2 (en)
JPS61224878A (en) Vibration wave motor
JPS6022479A (en) Stator of surface wave motor and improvement in movable element
JPH0532991B2 (en)
JPH0477554B2 (en)
JPS59185180A (en) Supersonic motor
JPS63316676A (en) Piezoelectric linear motor
JPH0588073B2 (en)
JPH01264582A (en) Ultrasonic linear motor
KR20000019345A (en) Linear supersonic motor of flat type
JPH02188169A (en) Ultrasonic motor
JPH0223070A (en) Linear type ultrasonic motor
JP2971971B2 (en) Ultrasonic actuator
JPS62135279A (en) Ultrasonic motor
JPS61102177A (en) Surface wave drive motor
JPS60162487A (en) Piezoelectric driving device
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPS61173683A (en) Supersonic drive motor
JPS63294276A (en) Ultrasonic wave motor
JPH05111268A (en) Piezoelectric actuator
JP2543163B2 (en) Ultrasonic linear motor
JPH0251379A (en) Ultrasonic motor