JPH0477293B2 - - Google Patents

Info

Publication number
JPH0477293B2
JPH0477293B2 JP27434690A JP27434690A JPH0477293B2 JP H0477293 B2 JPH0477293 B2 JP H0477293B2 JP 27434690 A JP27434690 A JP 27434690A JP 27434690 A JP27434690 A JP 27434690A JP H0477293 B2 JPH0477293 B2 JP H0477293B2
Authority
JP
Japan
Prior art keywords
optical waveguide
electric field
buffer layer
insulating buffer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27434690A
Other languages
Japanese (ja)
Other versions
JPH04149408A (en
Inventor
Hiroshi Myamoto
Yoshihide Myagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP27434690A priority Critical patent/JPH04149408A/en
Publication of JPH04149408A publication Critical patent/JPH04149408A/en
Publication of JPH0477293B2 publication Critical patent/JPH0477293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電界印加により屈折率が変化する材料
を利用した光変調素子に関する。 〔概要〕 本発明は、電界印加により屈折率が変化する光
導波路に絶縁バツフア層を介して高周波電界を印
加する構造の光変調素子において、 電極を導波路側に凸形状とすることにより、 光の強度が強い場所に強い変調電界を印加でき
るようにするものである。 〔従来の技術〕 ニオブ酸リチウムやタンタル酸リチウムは、電
界を印加することにより屈折率が変化する電気光
学効果を示すことから、このような性質を利用し
た光変調素子が従来から知られている。 第3図はニオブ酸リチウムを用いた従来例光変
調素子の断面図である。 ニオブ酸リチウム基板1には光導波路2が形成
され、基板1の表面にはSiO2絶縁バツフア層3
が形成され、この絶縁バツフア層3を介して光導
波路2に高周波電界を印加するため、絶縁バツフ
ア層3の表面に電極4,4′が設けられている。 電極4,4′間に高周波、特にマイクロ波を供
給すると、光導波路2の部分に高周波電界が印加
される。この電界により光導波路2の屈折率が変
化し、その内部を伝搬する光に位相変調を施すこ
とができる。 〔発明が解決しようとする課題〕 しかし、従来の構造の光変調素子では、電極の
下に印加される電界強度が弱く、しかも、光の強
度分布に対して電界分布が整合していなかつた。 本発明は、以上の課題を解決し、光の強度が強
い場所に強い変調電界を印加できる光変調素子を
提供することを目的とする。 〔課題を解決するための手段〕 本発明の光変調素子は、光導波路の近傍の絶縁
バツフア層の表面に光導波路に沿つて一以上の溝
が設けられ、電極にはこの溝と相補的な凸形状が
設けられたことを特徴とする。 〔作用〕 電極が光導波路側に凸形状となつているため、
電界を光導波路に集中させることができる。これ
により、変調効率を高めることができ、駆動電圧
を引き下げることができる。 〔実施例〕 第1図は本発明第一実施例の光変調素子の斜視
図を示し、第2図は断面図を示す。 この実施例は、電界印加により屈折率が変化す
る材料としてニオブ酸リチウムLiNbO3を用い、
LiNbO3基板1の一部に光導波路2を形成したも
のである。この光変調素子はさらに、光導波路2
に沿つて配置されこの光導波路2に高周波電界を
印加する実質的に平行な二つの電極4,4′と、
この二つの電極4,4′のそれぞれと光導波路2
との間に設けられたSiO2絶縁バツフア層3とを
備える。電極4,4′の一端には電源5が接続さ
れ、他端には終端抵抗6が接続される。 電極4,4′の一端に電源5から高周波、特に
マイクロ波を入力すると、この高周波は電極4,
4′に沿つて伝搬し、電極4,4′の他端に接続さ
れた終端抵抗6に伝わる。このとき、高周波の電
界が絶縁バツフア層3を通つて光導波路2に伝わ
り、その領域の屈折率を変化させる。これによ
り、光導波路2を伝搬する光の位相が変化する。 このときの変調感度は、光のパワー分布と高周
波電界との重なりの状態によつて決まり、光のよ
り強い部分に強い高周波電界を集中させると、低
電圧駆動が可能となる。 そこで本実施例では、光導波路2の近傍の絶縁
バツフア層3の表面に光導波路2に沿つて溝7を
設け、電極4にはこの溝7と相補的な凸形状を設
けている。 この構造により、絶縁バツフア層3の真下、す
なわち光導波路2の部分に高周波電界が効率的に
印加され、変調効率が高まる。 第1図および第2図には光導波路2に隣接する
部分に溝および凸形状を設けた例を示したが、こ
れに加えて、光導波路2と離れた電極4′の側に
も溝および凸形状を設けてもよい。 第4図ないし第6図は電極4および溝7の形状
の変形例を示す。 第1図および第2図では、溝の断面形状が矩形
の場合の例を示した。本発明はこの形状に限定さ
れるものではなく、例えば第4図の例では、溝の
断面形状および電極の凸形状が三角形である。ま
た、第5図の例では、矩形の角が切り取られた形
状である。第6図の例では、溝の断面形状および
電極の凸形状は矩形であるが、電極の他の部分が
絶縁バツフア層から離れた形状である。 第7図は本発明第二実施例の光変調素子を示す
断面図である。 この実施例は、MZ型強度変調器に本発明を実
施したものであり、入力側で光導波路2から分岐
して電極4′側を通過した後に再び光導波路2と
合流する光導波路2′を備え、絶縁バツフア層3
の光導波路2′の近傍の表面には光導波路2′に沿
つて溝7′を備え、電極4′にはこの溝7′と相補
的な凸形状が設けられていることが第一実施例と
異なる。 MZ型強度変調器は分岐干渉型変調器とも呼ば
れ、入力側で光を二つに分岐し、少なくともその
一方の位相を変化させた後に二つの光を合波して
干渉させるものである。第7図には、光導波路が
二つに分岐した部分の断面を示した。このような
変調器の詳細は、例えば、西原他共著、オーム社
刊、光集積回路、第1版、第300頁ないし第301頁
に示されている。 第8図は本発明第三実施例の光変調素子を示す
断面図である。 この実施例は、絶縁バツフア層3が電極4,
4′より狭い幅に形成され、電極4,4′のそれぞ
れの側の絶縁バツフア層3にそれぞれ溝7,7′
が設けられ、これに対応して電極4,4′のそれ
ぞれに凸形状が設けられたことが第一実施例と異
なる。絶縁バツフア層3の幅が電極4,4′より
狭い構造の光変調素子については、本願出願人に
よりすでに特許出願されている(特願平1−
211013、特願平1−311467)。本実施例は、この
先の特許出願で示された構造に本発明を組み合わ
せたものである。 電気光学効果を利用した光変調素子の変調感
度、すなわちπの位相変化を生じさせるのに要す
る駆動電圧(以下「半波長電圧」という)Vπは、 1/Vπ∝∬ E(x,y)P(x,y)dxdy と表される。ただし、 E(x,y):変調電界分布 P(x,y):光の強度分布 である。 すなわち、光の強度の強い場所に強い変調電界
が印加されるように変調電界分布を制御できれ
ば、半波長電圧Vπを下げることができる。実際
に、光導波路内での光の強度分布はその光導波路
の中央付近に集中するため、この部分に強い電界
を印加すれば、半波長電圧Vπを下げることがで
きる。 第9図および第10図は電界分布の計算値を示
す。第9図は従来例の電界分布であり、第10図
は第三実施例の電界分布である。この計算は有限
要素法により行つた。この計算において、基板1
および光導波路2の材質をLiNbO3、絶縁バツフ
ア層3の材質をSiO2、電極4,4′の材質を金Au
とした。また、各部の寸法は、 電極4の幅W=10μm 電極4,4′の間隔G=10μm 電極4,4′の厚さt1=10μm 絶縁バツフア層3の厚さt2=1.2μm(第9図) 絶縁バツフア層3の厚い部分の厚さ t2=1.6μm(第10図) 絶縁バツフア層3の薄い部分の厚さ t3=0.4μm 電極4の下の絶縁バツフア層3の幅a1=8μm 溝7の幅a2=2μm とし、第10図の場合には、絶縁バツフア層3が
電極4の中央に配置され、溝7が絶縁バツフア層
3の中央に配置されているものとした。 第9図に示したように、従来例の場合には、電
界分布は電極の真下の部分において均一で、不要
な部分にも電界が印加される結果となつている。
これに対して第10図に示した実施例では、凸型
形状を取り入れることにより、凸の真下に強い電
界が印加される。この効果を利用して、光導波路
を凸の真下に配置すれば、半波長電圧Vπを低下
させることが可能となる。 第11図ないし第13図は、光と変調電界との
相互作用長を1cmとしたときの半波長電圧Vπ、
特性インピーダンスZ0、変調帯域Δfの関係を示
す。第11図は、第3図に示した従来例の構造に
ついて、絶縁バツフア層3の厚さt2をパラメータ
として計算により求めた値である。また、第12
図および第13図は、第8図に示した第三実施例
の構造について、絶縁バツフア層3の薄い部分の
厚さt3および溝7の幅a2をそれぞれパラメータと
して求めた値である。 第12図および第13図の値は、 電極4の幅W=10μm 電極4,4′の間隔G=10μm 電極4,4′の厚さt1=10μm 絶縁バツフア層3の厚い部分の厚さ t2=2μm(第12図、第13図) 絶縁バツフア層3の薄い部分の厚さ t3=0.4μm(第13図) 電極4の下の絶縁バツフア層3の幅 a1=8μm(第12図、第13図) 溝7の幅a2=4μm(第12図) とし、第12図、第13図の場合には、絶縁バツ
フア層3が電極4の中央に配置され、溝7が絶縁
バツフア層3の中央に配置されているものとして
求めた。 また、半波長電圧Vπの計算については、深さ
5.5μm、幅11μmのスポツトサイズで光導波路2
を伝搬する光を対象とした。 ここで、特性インピーダンス50Ωとして第11
図ないし第13図を参照すると、半波長電圧Vπ
および変調帯域Δfは次の表のようになる。
[Industrial Application Field] The present invention relates to a light modulation element using a material whose refractive index changes upon application of an electric field. [Summary] The present invention provides an optical modulation element having a structure in which a high-frequency electric field is applied to an optical waveguide whose refractive index changes due to the application of an electric field via an insulating buffer layer. This makes it possible to apply a strong modulated electric field to locations where the intensity is strong. [Prior art] Lithium niobate and lithium tantalate exhibit an electro-optic effect in which the refractive index changes when an electric field is applied, and light modulation elements that utilize this property have been known for a long time. . FIG. 3 is a cross-sectional view of a conventional optical modulation element using lithium niobate. An optical waveguide 2 is formed on a lithium niobate substrate 1, and an SiO 2 insulating buffer layer 3 is formed on the surface of the substrate 1.
is formed, and electrodes 4 and 4' are provided on the surface of the insulating buffer layer 3 in order to apply a high frequency electric field to the optical waveguide 2 via the insulating buffer layer 3. When high frequency waves, particularly microwaves, are supplied between the electrodes 4 and 4', a high frequency electric field is applied to the optical waveguide 2 portion. This electric field changes the refractive index of the optical waveguide 2, making it possible to phase modulate the light propagating inside the waveguide. [Problems to be Solved by the Invention] However, in the light modulation element having the conventional structure, the electric field strength applied under the electrode is weak, and moreover, the electric field distribution does not match the light intensity distribution. An object of the present invention is to solve the above problems and provide a light modulation element that can apply a strong modulation electric field to a place where the intensity of light is strong. [Means for Solving the Problems] In the optical modulation element of the present invention, one or more grooves are provided along the optical waveguide on the surface of the insulating buffer layer near the optical waveguide, and the electrode has grooves complementary to the grooves. It is characterized by having a convex shape. [Operation] Since the electrode has a convex shape on the optical waveguide side,
The electric field can be concentrated in the optical waveguide. Thereby, modulation efficiency can be increased and drive voltage can be lowered. [Embodiment] FIG. 1 shows a perspective view of a light modulation element according to a first embodiment of the present invention, and FIG. 2 shows a sectional view. This example uses lithium niobate LiNbO 3 as a material whose refractive index changes with the application of an electric field.
An optical waveguide 2 is formed on a part of a LiNbO 3 substrate 1. This optical modulation element further includes an optical waveguide 2.
two substantially parallel electrodes 4, 4' arranged along the optical waveguide 2 and applying a high frequency electric field to the optical waveguide 2;
Each of these two electrodes 4, 4' and the optical waveguide 2
and a SiO 2 insulating buffer layer 3 provided between. A power source 5 is connected to one end of the electrodes 4, 4', and a terminating resistor 6 is connected to the other end. When high frequency, especially microwave, is input from the power source 5 to one end of the electrodes 4, 4', this high frequency is transmitted to the electrodes 4, 4'.
4' and is transmitted to the terminating resistor 6 connected to the other ends of the electrodes 4, 4'. At this time, a high frequency electric field is transmitted to the optical waveguide 2 through the insulating buffer layer 3, changing the refractive index of that region. As a result, the phase of the light propagating through the optical waveguide 2 changes. The modulation sensitivity at this time is determined by the state of overlap between the optical power distribution and the high-frequency electric field, and by concentrating the strong high-frequency electric field on the stronger part of the light, low-voltage driving becomes possible. Therefore, in this embodiment, a groove 7 is provided along the optical waveguide 2 on the surface of the insulating buffer layer 3 near the optical waveguide 2, and a convex shape complementary to the groove 7 is provided in the electrode 4. With this structure, a high-frequency electric field is efficiently applied directly below the insulating buffer layer 3, that is, to the portion of the optical waveguide 2, and the modulation efficiency is increased. 1 and 2 show examples in which grooves and convex shapes are provided in the portion adjacent to the optical waveguide 2, but in addition to this, grooves and convex shapes are also provided on the side of the electrode 4' that is distant from the optical waveguide 2. A convex shape may also be provided. 4 to 6 show modifications of the shapes of the electrodes 4 and grooves 7. FIG. FIG. 1 and FIG. 2 show an example in which the cross-sectional shape of the groove is rectangular. The present invention is not limited to this shape; for example, in the example shown in FIG. 4, the cross-sectional shape of the groove and the convex shape of the electrode are triangular. In the example shown in FIG. 5, the shape is a rectangle with the corners cut off. In the example shown in FIG. 6, the cross-sectional shape of the groove and the convex shape of the electrode are rectangular, but the other part of the electrode is separated from the insulating buffer layer. FIG. 7 is a sectional view showing a light modulation element according to a second embodiment of the present invention. In this embodiment, the present invention is implemented in an MZ type intensity modulator, and an optical waveguide 2' is branched from the optical waveguide 2 on the input side, passes through the electrode 4' side, and then merges with the optical waveguide 2 again. Insulating buffer layer 3
According to the first embodiment, the surface near the optical waveguide 2' is provided with a groove 7' along the optical waveguide 2', and the electrode 4' is provided with a convex shape complementary to the groove 7'. different from. The MZ intensity modulator is also called a branching interference type modulator, and it splits light into two on the input side, changes the phase of at least one of them, and then combines the two lights and causes them to interfere. FIG. 7 shows a cross section of a portion where the optical waveguide branches into two. Details of such a modulator are shown, for example, in Nishihara et al., published by Ohm Publishing, Optical Integrated Circuits, 1st edition, pages 300 to 301. FIG. 8 is a sectional view showing a light modulation element according to a third embodiment of the present invention. In this embodiment, the insulating buffer layer 3 is connected to the electrode 4,
Grooves 7 and 7' are formed in the insulating buffer layer 3 on each side of the electrodes 4 and 4'.
This embodiment differs from the first embodiment in that a convex shape is provided on each of the electrodes 4 and 4' correspondingly. The applicant has already filed a patent application for an optical modulation element in which the width of the insulating buffer layer 3 is narrower than that of the electrodes 4, 4' (Japanese Patent Application No.
211013, patent application No. 1-311467). This embodiment combines the present invention with the structure shown in the earlier patent application. The modulation sensitivity of an optical modulation element using the electro-optic effect, that is, the drive voltage (hereinafter referred to as "half-wave voltage") required to generate a phase change of π, Vπ, is 1/Vπ∝∬ E(x,y)P It is expressed as (x,y)dxdy. However, E(x, y): Modulated electric field distribution P(x, y): Light intensity distribution. That is, if the modulation electric field distribution can be controlled so that a strong modulation electric field is applied to a location where the light intensity is strong, the half-wavelength voltage Vπ can be lowered. In fact, the intensity distribution of light within an optical waveguide is concentrated near the center of the optical waveguide, so if a strong electric field is applied to this part, the half-wave voltage Vπ can be lowered. 9 and 10 show calculated values of electric field distribution. FIG. 9 shows the electric field distribution of the conventional example, and FIG. 10 shows the electric field distribution of the third embodiment. This calculation was performed using the finite element method. In this calculation, substrate 1
The material of the optical waveguide 2 is LiNbO 3 , the material of the insulating buffer layer 3 is SiO 2 , and the material of the electrodes 4 and 4' is gold (Au).
And so. In addition, the dimensions of each part are as follows: Width W of electrode 4 = 10 μm Distance G between electrodes 4 and 4' = 10 μm Thickness of electrodes 4 and 4' t 1 = 10 μm Thickness of insulating buffer layer 3 t 2 = 1.2 μm (Fig. 9) Thickness of the thick part of the insulating buffer layer 3 t 2 = 1.6 μm (Fig. 10) Thickness of the thin part of the insulating buffer layer 3 t 3 = 0.4 μm Width a of the insulating buffer layer 3 under the electrode 4 1 = 8 μm, the width a 2 of the groove 7 = 2 μm, and in the case of FIG. did. As shown in FIG. 9, in the case of the conventional example, the electric field distribution is uniform in the portion directly below the electrode, resulting in the electric field being applied even to unnecessary portions.
In contrast, in the embodiment shown in FIG. 10, by incorporating a convex shape, a strong electric field is applied directly below the convexity. By utilizing this effect and arranging the optical waveguide directly under the convexity, it becomes possible to lower the half-wavelength voltage Vπ. Figures 11 to 13 show the half-wavelength voltage Vπ when the interaction length between the light and the modulating electric field is 1 cm,
The relationship between characteristic impedance Z 0 and modulation band Δf is shown. FIG. 11 shows values calculated for the conventional structure shown in FIG. 3 using the thickness t 2 of the insulating buffer layer 3 as a parameter. Also, the 12th
The figure and FIG. 13 show values determined for the structure of the third embodiment shown in FIG. 8 using the thickness t 3 of the thin portion of the insulating buffer layer 3 and the width a 2 of the groove 7 as parameters, respectively. The values in FIGS. 12 and 13 are as follows: Width of electrode 4 W = 10 μm Distance between electrodes 4 and 4' G = 10 μm Thickness of electrodes 4 and 4' t 1 = 10 μm Thickness of thick portion of insulating buffer layer 3 t 2 = 2 μm (Figs. 12 and 13) Thickness of the thin part of the insulating buffer layer 3 t 3 = 0.4 μm (Fig. 13) Width of the insulating buffer layer 3 under the electrode 4 a 1 = 8 μm (Fig. 13) (Figs. 12 and 13) The width a 2 of the groove 7 is 4 μm (Fig. 12), and in the case of Figs. 12 and 13, the insulating buffer layer 3 is placed in the center of the electrode 4, It was determined that the insulating buffer layer 3 was placed at the center. In addition, for calculation of half-wave voltage Vπ, depth
Optical waveguide 2 with spot size of 5.5μm and width of 11μm
The target is light that propagates. Here, the characteristic impedance is 50Ω, and the 11th
Referring to Figures 13 to 13, the half-wave voltage Vπ
and the modulation band Δf are as shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光変調素子は、
変調効率が高く、小さな変調電圧(電力)で動作
させることが可能となる効果がある。また、絶縁
バツフアの溝および電極の形状を選択することに
より、電圧強度分布プロフアイルを所望の形状に
設定できる効果がある。
As explained above, the light modulation element of the present invention is
It has the effect of having high modulation efficiency and being able to operate with a small modulation voltage (power). Furthermore, by selecting the shapes of the grooves and electrodes of the insulating buffer, it is possible to set the voltage intensity distribution profile to a desired shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第一実施例光変調素子の斜視
図。第2図は断面図。第3図は従来例光変調素子
の断面図。第4図ないし第6図は電極および溝の
形状の変形例を示す図。第7図は本発明第二実施
例の光変調素子を示す断面図。第8図は本発明第
三実施例の光変調素子を示す断面図である。第9
図は従来例における電界分布の計算値を示す図。
第10図は第三実施例における電界分布の計算値
を示す図。第11図は従来例における半波長電圧
Vπ、特性インピーダンスZ0および変調帯域Δfの
関係を示す図。第12図は第三実施例における半
波長電圧Vπ、特性インピーダンスZ0および変調
帯域Δfの関係を示す図。第13図は第三実施例
における半波長電圧Vπ、特性インピーダンスZ0
および変調帯域Δfの関係を示す図。第14図は
溝が複数の場合の電界分布の計算値を示す図。 1……基板、2,2′……光導波路、3……絶
縁バツフア層、4,4′……電極、5……電源、
6……終端抵抗、7,7′……溝。
FIG. 1 is a perspective view of a light modulation element according to a first embodiment of the present invention. Figure 2 is a sectional view. FIG. 3 is a cross-sectional view of a conventional optical modulation element. FIGS. 4 to 6 are diagrams showing modified examples of the shapes of electrodes and grooves. FIG. 7 is a sectional view showing a light modulation element according to a second embodiment of the present invention. FIG. 8 is a sectional view showing a light modulation element according to a third embodiment of the present invention. 9th
The figure shows calculated values of electric field distribution in a conventional example.
FIG. 10 is a diagram showing calculated values of electric field distribution in the third embodiment. Figure 11 shows the half-wave voltage in the conventional example.
A diagram showing the relationship between Vπ, characteristic impedance Z 0 and modulation band Δf. FIG. 12 is a diagram showing the relationship between half-wavelength voltage Vπ, characteristic impedance Z 0 and modulation band Δf in the third embodiment. Figure 13 shows the half-wave voltage Vπ and characteristic impedance Z 0 in the third embodiment.
and a diagram showing the relationship between modulation band Δf. FIG. 14 is a diagram showing calculated values of electric field distribution when there are a plurality of grooves. 1... Substrate, 2, 2'... Optical waveguide, 3... Insulating buffer layer, 4, 4'... Electrode, 5... Power supply,
6...Terminal resistor, 7,7'...groove.

Claims (1)

【特許請求の範囲】 1 電界印加により屈折率が変化する材料で形成
された光導波路と、 この光導波路に沿つて配置されこの光導波路に
高周波電界を印加する実質的に平行な二つの電極
と、 この二つの電極のそれぞれと前記光導波路との
間に設けられた絶縁バツフア層と を備えた光変調素子において、 前記光導波路の近傍の前記絶縁バツフア層の表
面には前記光導波路に沿つて一以上の溝が設けら
れ、 前記二つの電極のうち前記溝に接する電極には
その溝と相補的な凸形状が設けられた ことを特徴とする光変調素子。 2 絶縁バツフア層は二つの電極のそれぞれに対
応して二つの領域に分断された形状であり、それ
ぞれの領域の幅は対応する電極の幅に等しくまた
は狭く形成された請求項1記載の光変調素子。
[Claims] 1. An optical waveguide formed of a material whose refractive index changes when an electric field is applied, and two substantially parallel electrodes arranged along the optical waveguide and applying a high-frequency electric field to the optical waveguide. , in an optical modulation element comprising an insulating buffer layer provided between each of the two electrodes and the optical waveguide, the surface of the insulating buffer layer near the optical waveguide has a layer along the optical waveguide. 1. A light modulation element, characterized in that one or more grooves are provided, and one of the two electrodes in contact with the groove is provided with a convex shape complementary to the groove. 2. The light modulation according to claim 1, wherein the insulating buffer layer has a shape divided into two regions corresponding to each of the two electrodes, and the width of each region is equal to or narrower than the width of the corresponding electrode. element.
JP27434690A 1990-10-12 1990-10-12 Optical modulation element Granted JPH04149408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27434690A JPH04149408A (en) 1990-10-12 1990-10-12 Optical modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27434690A JPH04149408A (en) 1990-10-12 1990-10-12 Optical modulation element

Publications (2)

Publication Number Publication Date
JPH04149408A JPH04149408A (en) 1992-05-22
JPH0477293B2 true JPH0477293B2 (en) 1992-12-08

Family

ID=17540380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27434690A Granted JPH04149408A (en) 1990-10-12 1990-10-12 Optical modulation element

Country Status (1)

Country Link
JP (1) JPH04149408A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850950B2 (en) * 1996-01-19 1999-01-27 日本電気株式会社 Waveguide type optical device
JP2806425B2 (en) * 1996-05-10 1998-09-30 日本電気株式会社 Waveguide type optical device
JP3362105B2 (en) * 1997-03-31 2003-01-07 住友大阪セメント株式会社 Waveguide type optical modulator
US6522792B1 (en) 1998-08-10 2003-02-18 Sumitomo Osaka Cement Co., Ltd. Light modulator of waveguide type
GB0002277D0 (en) 2000-02-01 2000-03-22 Sdl Integrated Optics Ltd Intergrated optical components
FR2852109A1 (en) * 2003-03-06 2004-09-10 Centre Nat Rech Scient Electrode system for electro-optical modulator, has electrodes with lower part entirely buried in buffer layer, where length of lower part is lower or equal to breadth of upper part at level of upper surface of buffer layer

Also Published As

Publication number Publication date
JPH04149408A (en) 1992-05-22

Similar Documents

Publication Publication Date Title
US5214724A (en) Optical waveguide device with suppressed dc drift
JP4445977B2 (en) Light control element
US8600197B2 (en) Optical control device
JP2008116865A (en) Nested modulator
EP0813092B1 (en) Optical waveguide modulator with travelling-wave type electrodes
JP2008089936A (en) Optical control element
US6304685B1 (en) Low drive voltage LiNbO3 intensity modulator with reduced electrode loss
JP2728150B2 (en) Light modulation element
JPH1090638A (en) Optical control element
JP3570735B2 (en) Optical waveguide device
US20030016896A1 (en) Electro-optic waveguide devices
JPH0477293B2 (en)
JPH05173099A (en) Optical control element
US6950218B2 (en) Optical modulator
JPH0588124A (en) Optical modulator
JPH05264937A (en) Light control device
WO2004086126A1 (en) Waveguide optical modulator
JP3719563B2 (en) Light modulator
JP5622293B2 (en) Nested modulator
JP2013210568A (en) Optical modulator
JPH03229215A (en) Optical modulation element
JP3019278B2 (en) Waveguide type optical device
JPH11316359A (en) Optical control device
JP2692715B2 (en) Light switch
JPH0529889B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees