JP5622293B2 - Nested modulator - Google Patents

Nested modulator Download PDF

Info

Publication number
JP5622293B2
JP5622293B2 JP2012281359A JP2012281359A JP5622293B2 JP 5622293 B2 JP5622293 B2 JP 5622293B2 JP 2012281359 A JP2012281359 A JP 2012281359A JP 2012281359 A JP2012281359 A JP 2012281359A JP 5622293 B2 JP5622293 B2 JP 5622293B2
Authority
JP
Japan
Prior art keywords
sub
waveguide
mach
branch
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012281359A
Other languages
Japanese (ja)
Other versions
JP2013080251A (en
Inventor
市川 潤一郎
潤一郎 市川
日隈 薫
薫 日隈
太 山本
太 山本
及川哲
哲 及川
森 慎吾
慎吾 森
栗村 直
直 栗村
北村 健二
健二 北村
川西 哲也
哲也 川西
昌弘 土屋
昌弘 土屋
井筒 雅之
雅之 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
National Institute for Materials Science
National Institute of Information and Communications Technology
Original Assignee
Sumitomo Osaka Cement Co Ltd
National Institute for Materials Science
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, National Institute for Materials Science, National Institute of Information and Communications Technology filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2012281359A priority Critical patent/JP5622293B2/en
Publication of JP2013080251A publication Critical patent/JP2013080251A/en
Application granted granted Critical
Publication of JP5622293B2 publication Critical patent/JP5622293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect

Description

本発明は、主マッハツェンダ型導波路の2つの分岐導波路に副マッハツェンダ型導波路を組み込んだネスト型変調器に関する。   The present invention relates to a nested modulator in which a sub Mach-Zehnder type waveguide is incorporated in two branch waveguides of a main Mach-Zehnder type waveguide.

従来、光通信技術や光計測技術において、主マッハツェンダ型導波路(以下、「主MZ型導波路」という)の2つの分岐導波路に副マッハツェンダ型導波路(以下、「副MZ型導波路」という)を組み込んだネスト型変調器の一種であるSSB(Single Side Band、単側波帯)変調器が利用されている。これは、以下の特許文献1にも開示されているように、例えば、主MZ型導波路1に周波数ωの光波を導入すると共に、2つの副MZ型光導波路2,3に、単一周波数のRF信号(周波数Ω)RFと該信号をヒルベルト変換した信号RFとを印加し、主MZ型導波路及び各副MZ型導波路に印加するDCバイアスDC,DC,DCを調整することにより、主MZ型導波路から出射する変調光(周波数ω+nΩの離散的スペクトル。nは整数)の特定スペクトルを抑圧することを可能とするものである(図1参照)。また、ネスト型変調器には、図1のDCバイアスDCの代わりにRF信号RFを印加するFSK変調器や、DQPSK変調器などがある。 Conventionally, in optical communication technology and optical measurement technology, a sub Mach-Zehnder type waveguide (hereinafter referred to as “sub-MZ type waveguide”) is divided into two branch waveguides of a main Mach-Zehnder type waveguide (hereinafter referred to as “main MZ type waveguide”). SSB (Single Side Band) modulators, which are a type of nested modulators, are incorporated. As disclosed in the following Patent Document 1, for example, a light wave having a frequency ω is introduced into the main MZ type waveguide 1 and a single frequency is supplied to the two sub MZ type optical waveguides 2 and 3. DC bias DC A , DC B , and DC C applied to the main MZ type waveguide and each sub MZ type waveguide are applied to the RF signal (frequency Ω) RF A and the signal RF B obtained by Hilbert transform of the signal. By adjusting, it is possible to suppress a specific spectrum of modulated light (discrete spectrum of frequency ω + nΩ, where n is an integer) emitted from the main MZ waveguide (see FIG. 1). In addition, the nested modulator, and the like FSK modulator and, DQPSK modulator for applying a RF signal RF C instead of the DC bias DC C of FIG.

しかしながら、図2のように、ネスト型変調器の基板としてXカット板を利用した場合には、基板10上の各副MZ型導波路2,3の副分岐導波路11,12及び13,14に対し、変調電極である信号電極を15,16の位置に形成し、さらに接地電極を17,18,19の位置に形成することとなる。なお、図2は、図1のネスト型変調器の一点鎖線Aにおける断面図を示す。
図2の場合には、副MZ型導波路毎に単一の信号電極を形成するだけであるため、比較的構造がシンプルなものとなる利点があるものの、導波路と信号電極間が離間するため、駆動電圧が高くなるという欠点を有している。
However, as shown in FIG. 2, when an X-cut plate is used as the substrate of the nested modulator, the sub-branch waveguides 11, 12 and 13, 14 of the sub-MZ waveguides 2, 3 on the substrate 10 are used. On the other hand, the signal electrode, which is a modulation electrode, is formed at positions 15 and 16, and further, the ground electrode is formed at positions 17, 18, and 19. FIG. 2 is a cross-sectional view taken along one-dot chain line A of the nested modulator shown in FIG.
In the case of FIG. 2, since only a single signal electrode is formed for each sub-MZ waveguide, there is an advantage that the structure is relatively simple, but the waveguide and the signal electrode are separated from each other. Therefore, there is a drawback that the drive voltage becomes high.

これに対し、図3のように、ネスト型変調器の基板としてZカット板を利用した場合には、基板20上の各副MZ型導波路2,3の副分岐導波路21,22及び23,24に対し、信号電極26,27,28,29を各副分岐導波路に近接位置することが可能となるため、駆動電圧の低減を実現することが可能となる。なお、25は、バッファ層を示す。
しかしながら、各副MZ型導波路2,3に対し、常に2つの信号電極を確保する必要があり、信号電極の取り回しなどが煩雑化する上、各副分岐導波路に対して逆位相の変調信号を印加することが必要であるため、信号電極の作用部までの長さを調整することが、大変難しい。
On the other hand, when a Z-cut plate is used as the substrate of the nested modulator as shown in FIG. 3, the sub-branch waveguides 21, 22, and 23 of the sub-MZ waveguides 2, 3 on the substrate 20 are used. , 24, the signal electrodes 26, 27, 28, 29 can be positioned close to the sub-branch waveguides, so that the drive voltage can be reduced. Reference numeral 25 denotes a buffer layer.
However, it is necessary to always ensure two signal electrodes for each sub-MZ type waveguide 2 and 3, and the handling of the signal electrodes becomes complicated, and the modulation signal having an antiphase with respect to each sub-branch waveguide Therefore, it is very difficult to adjust the length to the action part of the signal electrode.

特開2004−245750号公報JP 2004-245750 A

本発明が解決しようとする課題は、上述した問題を解決し、信号電極を含む変調電極の回路配置を簡素化すると共に、駆動電圧の低減化を実現可能なネスト型変調器を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, simplify the circuit arrangement of the modulation electrode including the signal electrode, and provide a nested modulator capable of realizing a reduction in drive voltage. is there.

請求項1に係る発明では、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路を導波する光波を変調する変調電極とを含み、該光導波路が主マッハツェンダ型導波路と該主マッハツェンダ型導波路の2つの分岐導波路に設けられた副マッハツェンダ型導波路とを有し、該変調電極は該副マッハツェンダ型導波路の副分岐導波路に対し設けられているネスト型変調器において、各副マッハツェンダ型導波路には、副マッハツェンダ型導波路における光伝播方向の右側又は左側のいずれか同じ側の副分岐導波路の一部に分極反転領域を形成し、該変調電極が、信号電極と接地電極とから形成され、各副マッハツェンダ型導波路に対し、単一の導入信号電極から分岐する信号電極を2つの副分岐導波路に作用するよう配置すると共に、分岐した信号電極を合流して導出することを特徴とする。 The invention according to claim 1 includes a substrate made of a material having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave guided through the optical waveguide. Has a main Mach-Zehnder type waveguide and a sub-Mach-Zehnder type waveguide provided in two branch waveguides of the main Mach-Zehnder type waveguide, and the modulation electrode is connected to the sub-branch waveguide of the sub-Mach-Zehnder type waveguide In the provided nest type modulator, each sub-Mach-Zehnder type waveguide has a polarization inversion region in a part of the sub-branch waveguide on either the right side or the left side of the light propagation direction in the sub-Mach-Zehnder type waveguide. The modulation electrode is formed of a signal electrode and a ground electrode, and for each sub-Mach-Zehnder type waveguide, a signal electrode branched from a single introduction signal electrode acts on the two sub-branch waveguides While so that arrangement, and wherein the deriving and merges the branched signal electrodes.

請求項2に係る発明では、請求項1に記載のネスト型変調器において、前記分岐した信号電極が形成する電界が該副分岐導波路に作用する作用長は、該副マッハツェンダ型導波路毎に等しく設定されていることを特徴とする。   According to a second aspect of the present invention, in the nested modulator according to the first aspect, the action length that the electric field formed by the branched signal electrode acts on the sub-branch waveguide is different for each sub-Mach-Zehnder type waveguide. It is characterized by being set equally.

請求項3に係る発明では、請求項1又は2に記載のネスト型変調器において、該基板はニオブ酸リチウム又はタンタル酸リチウムからなるZカット板であり、該分岐した信号電極は該副分岐導波路上を通過するよう設定されていることを特徴とする。   In the invention according to claim 3, in the nested modulator according to claim 1 or 2, the substrate is a Z-cut plate made of lithium niobate or lithium tantalate, and the branched signal electrode is the sub-branch conductor. It is set so that it may pass on a waveguide.

請求項1に係る発明により、各副マッハツェンダ型導波路には、副マッハツェンダ型導波路における光伝播方向の右側又は左側のいずれか同じ側の副分岐導波路の一部に分極反転領域を形成し、変調電極が信号電極と接地電極とから形成され、各副マッハツェンダ型導波路に対し、単一の導入信号電極から分岐する信号電極を2つの副分岐導波路に作用するよう配置すると共に、分岐した信号電極を合流して導出するため、各副MZ型導波路に導入する信号電極が単一となり、電極の取り回しが簡素化できる。しかも、各副MZ型導波路においては基板の分極反転と分岐した信号電極により、各副分岐導波路毎に信号電極を設ける場合と同様に、効率的な変調動作が実現でき、駆動電圧の低下を達成することができる。 According to the first aspect of the present invention, each sub-Mach-Zehnder type waveguide is formed with a domain-inverted region in a part of the sub-branch waveguide on either the right side or the left side of the light propagation direction in the sub-Mach-Zehnder type waveguide. The modulation electrode is formed of a signal electrode and a ground electrode, and for each sub Mach-Zehnder type waveguide, a signal electrode branched from a single introduction signal electrode is arranged to act on the two sub branch waveguides and branched. Therefore, the signal electrodes introduced into the sub-MZ waveguides are single, and the handling of the electrodes can be simplified. In addition, in each sub-MZ waveguide, the signal inversion and branching of the substrate can be used to realize an efficient modulation operation as in the case of providing a signal electrode for each sub-branch waveguide, and the drive voltage is reduced. Can be achieved.

請求項2に係る発明により、分岐した信号電極が形成する電界が副分岐導波路に作用する作用長は、副マッハツェンダ型導波路毎に等しく設定されているため、副分岐導波路の一部に分極反転領域を形成すると共に、導入された信号電極を分岐して各副分岐導波路に作用する信号電極を形成するだけで、各副MZ型導波路内の2つの副分岐導波路に、逆位相状態で変調強度の等しい光変調を容易に実現することが可能となる。   According to the second aspect of the present invention, the action length at which the electric field formed by the branched signal electrode acts on the sub-branch waveguide is set to be equal for each sub-Mach-Zehnder waveguide. In addition to forming a domain-inverted region and branching the introduced signal electrode to form a signal electrode that acts on each sub-branch waveguide, the two sub-branch waveguides in each sub-MZ waveguide are inverted. It is possible to easily realize optical modulation having the same modulation intensity in the phase state.

請求項3に係る発明により、基板はニオブ酸リチウム又はタンタル酸リチウムからなるZカット板であり、分岐した信号電極は副分岐導波路上を通過するよう設定されているため、基板の分極反転が容易に実現できると共に、極めて変調効率の高いネスト型変調器を提供することが可能となる。   According to the invention of claim 3, the substrate is a Z-cut plate made of lithium niobate or lithium tantalate, and the branched signal electrode is set so as to pass over the sub-branch waveguide. It is possible to provide a nested modulator that can be easily realized and has extremely high modulation efficiency.

ネスト型変調器の原理を示す図である。It is a figure which shows the principle of a nest type modulator. 従来のXカット板を用いたネスト型変調器の断面図である。It is sectional drawing of the nest type modulator using the conventional X cut board. 従来のZカット板を用いたネスト型変調器の断面図である。It is sectional drawing of the nest type modulator using the conventional Z cut board. 本発明のネスト型変調器を示す平面図である。It is a top view which shows the nest type | mold modulator of this invention. 本発明のネスト型変調器を示す断面図である。It is sectional drawing which shows the nest type | mold modulator of this invention. 本発明のネスト型変調器に形成する分極反転領域の例を示す図である。It is a figure which shows the example of the polarization inversion area | region formed in the nest type | mold modulator of this invention.

本発明に係るネスト型変調器について、以下に詳細に説明する。
図4は、本発明に係るネスト型変調器の概略平面図であり、図5は、図4の一点鎖線Bにおける断面図を示す。
基板20は、電気光学効果を有する基板であり、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料から構成され、具体的には、これら単結晶材料の、Xカット板、Yカット板、及びZカット板から構成され、特に、光導波路デバイスとして構成されやすく、かつ異方性が大きいという理由から、ニオブ酸リチウム(LN)やタンタル酸リチウムを用いることが好ましい。また、後述する分極反転の形成し易さを考慮して、図5ではZカット板を利用する例を示す。
The nested modulator according to the present invention will be described in detail below.
FIG. 4 is a schematic plan view of a nested modulator according to the present invention, and FIG. 5 is a cross-sectional view taken along the alternate long and short dash line B of FIG.
The substrate 20 is a substrate having an electro-optic effect, and is composed of, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), and a quartz-based material. It is composed of X-cut plate, Y-cut plate, and Z-cut plate of materials, especially lithium niobate (LN) and lithium tantalate for the reason that it is easy to be configured as an optical waveguide device and has large anisotropy. It is preferable to use it. Further, considering the ease of forming polarization inversion described later, FIG. 5 shows an example using a Z-cut plate.

基板20上には、主MZ型導波路1の2つの分岐導波路に副MZ型導波路2,3を組み込んだ形状の光導波路が形成されており、これらの光導波路は、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。また、変調電極を構成する信号電極(40〜45)や該信号電極を取り巻く接地電極(50〜54)並びにDCバイアスを印加するDCバイアス電極(不図示)などは、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層25を設けることや、信号電極が形成する電界が効率的に導波路に印加されるようにリッジ構造を設けることも可能である。 On the substrate 20, optical waveguides having a shape in which the sub-MZ waveguides 2 and 3 are incorporated in the two branch waveguides of the main MZ waveguide 1 are formed. These optical waveguides heat Ti and the like. It can be formed by diffusing to the substrate surface by a diffusion method or a proton exchange method. Further, the signal electrode (40 to 45) constituting the modulation electrode, the ground electrode (50 to 54) surrounding the signal electrode, the DC bias electrode (not shown) for applying the DC bias, etc. are formed of a Ti / Au electrode pattern. It can be formed by a method such as formation and gold plating. Furthermore, if necessary, a buffer layer 25 such as dielectric SiO 2 is provided on the substrate surface after the optical waveguide is formed, or a ridge structure is provided so that the electric field formed by the signal electrode is efficiently applied to the waveguide. It is also possible.

図5に示すように、副分岐導波路21〜24の内、各副MZ型導波路のいずれか一方の副分岐導波路22,23の一部には、基板の分極反転領域46,47が形成されている。基板結晶内の自発分極方向は、図5において基板20内に示す矢印の方向で示している。
なお、分極反転を形成する領域については、図4の領域に限らず、例えば、図6(a)〜(d)に示すように、ネスト型変調器を構成する主MZ型導波路1及び副MZ型導波路2,3に対し、各種の分極反転領域60〜65を選択することが可能である。図6(d)においては、分極反転領域65を形成し、主MZ型導波路の一部66に同一のDCバイアスやRF信号を印加することにより、バイアス電圧や駆動電圧の低減を図ることが可能となる。
As shown in FIG. 5, among the sub-branch waveguides 21 to 24, the polarization inversion regions 46 and 47 of the substrate are formed in a part of one of the sub-branch waveguides 22 and 23 of each sub-MZ type waveguide. Is formed. The direction of spontaneous polarization in the substrate crystal is indicated by the direction of the arrow shown in the substrate 20 in FIG.
Note that the region where the polarization inversion is formed is not limited to the region shown in FIG. 4, and for example, as shown in FIGS. 6A to 6D, the main MZ waveguide 1 and the sub-waveguide 1 constituting the nested modulator. Various polarization inversion regions 60 to 65 can be selected for the MZ waveguides 2 and 3. In FIG. 6D, the polarization inversion region 65 is formed, and the same DC bias and RF signal are applied to a part 66 of the main MZ type waveguide, thereby reducing the bias voltage and the drive voltage. It becomes possible.

次に、本発明に係るネスト型変調器の信号電極の形状について説明する。
各副MZ型導波路2,3の副分岐導波路21〜24に対し、単一の信号電極40,43を各々に導入すると共に、該導入信号電極40,43から分岐する信号電極41,44(図5では、41−1と41−2並びに44−1と44−2)を、各副MZ型導波路2,3の2つの副分岐導波路(図5では、21と22並びに23と24)に作用するよう、各副分岐導波路上に配置する。さらに、各副MZ型導波路に対し、分岐された信号電極(41−1と41−2並びに44−1と44−2)は合流され、導出電極42,45を介して、終端器に接続されている。なお、上記合流を行わず、分岐した信号電極の状態で、直接、終端器に接続するよう構成することも可能である。
このような信号電極の形状により、各副MZ型導波路に導入する信号電極が単一であるため、電極の取り回しなどの回路配置が簡素化できる。
Next, the shape of the signal electrode of the nested modulator according to the present invention will be described.
A single signal electrode 40, 43 is introduced into each of the sub-branch waveguides 21-24 of the sub-MZ type waveguides 2, 3, and signal electrodes 41, 44 branched from the introduction signal electrodes 40, 43, respectively. (In FIG. 5, 41-1 and 41-2 and 44-1 and 44-2) are connected to two sub-branch waveguides (in FIG. 5, 21 and 22 and 23 and sub-MZ waveguides 2 and 3, respectively). It is arranged on each sub-branch waveguide so as to act on 24). Further, the branched signal electrodes (41-1 and 41-2 and 44-1 and 44-2) are joined to each sub-MZ type waveguide and connected to the terminator via the lead electrodes 42 and 45. Has been. In addition, it is also possible to connect directly to the terminator in the state of the branched signal electrode without performing the merging.
With such a shape of the signal electrode, a single signal electrode is introduced into each sub-MZ waveguide, so that circuit arrangement such as electrode handling can be simplified.

本発明に係るネスト型変調器においては、上述した分極反転の形成及び分岐した信号電極の形状により、各副MZ型導波路における2つの副分岐導波路に逆位相で同一の変調強度を有する変調信号を印加することができ、副分岐導波路毎に信号電極を設ける場合と同様に、効率的な変調動作が実現でき、駆動電圧の低下を達成することができる。特に、分岐した信号電極が形成する電界が副分岐導波路に作用する作用長を、副MZ型導波路毎に等しく設定することにより、各副MZ型導波路内の2つの副分岐導波路を伝播する光波に対し、常に、逆位相状態で変調強度の等しい光変調を実現することが可能となる。   In the nested modulator according to the present invention, the two sub-branch waveguides in each sub-MZ waveguide have the same modulation intensity in the opposite phase due to the formation of polarization inversion and the shape of the branched signal electrode. A signal can be applied, and as in the case where a signal electrode is provided for each sub-branch waveguide, an efficient modulation operation can be realized, and a reduction in driving voltage can be achieved. In particular, by setting the length of action of the electric field formed by the branched signal electrode on the sub-branch waveguides to be equal for each sub-MZ waveguide, the two sub-branch waveguides in each sub-MZ waveguide are With respect to the propagating light wave, it is possible to always realize light modulation having the same modulation intensity in an antiphase state.

以上のように、本発明によれば、信号電極を含む変調電極の回路配置を簡素化すると共に、駆動電圧の低減化を実現可能なネスト型変調器を提供することができる。   As described above, according to the present invention, it is possible to provide a nested modulator capable of simplifying the circuit arrangement of the modulation electrode including the signal electrode and reducing the drive voltage.

1 主MZ型導波路
2,3 副MZ型導波路
20 基板
40,43 導入信号電極
41,44 分岐した信号電極
42,45 導出信号電極
46,47 分極反転領域
DESCRIPTION OF SYMBOLS 1 Main MZ type | mold waveguide 2,3 Sub MZ type | mold waveguide 20 Board | substrate 40,43 Introduction | transduction signal electrode 41,44 Branched signal electrode 42,45 Derived signal electrode 46,47 Polarization inversion area | region

Claims (3)

電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路を導波する光波を変調する変調電極とを含み、該光導波路が主マッハツェンダ型導波路と該主マッハツェンダ型導波路の2つの分岐導波路に設けられた副マッハツェンダ型導波路とを有し、該変調電極は該副マッハツェンダ型導波路の副分岐導波路に対し設けられているネスト型変調器において、
各副マッハツェンダ型導波路には、副マッハツェンダ型導波路における光伝播方向の右側又は左側のいずれか同じ側の副分岐導波路の一部に分極反転領域を形成し、
該変調電極が、信号電極と接地電極とから形成され、
各副マッハツェンダ型導波路に対し、単一の導入信号電極から分岐する信号電極を2つの副分岐導波路に作用するよう配置すると共に、分岐した信号電極を合流して導出することを特徴とするネスト型変調器。
A substrate made of a material having an electro-optic effect; an optical waveguide formed on the substrate; and a modulation electrode that modulates a light wave guided through the optical waveguide, the optical waveguide including the main Mach-Zehnder type waveguide and the And a sub-Mach-Zehnder type waveguide provided in two branch waveguides of the main Mach-Zehnder type waveguide, and the modulation electrode is provided for the sub-branch waveguide of the sub-Mach-Zehnder type waveguide In
In each sub-Mach-Zehnder type waveguide, a polarization inversion region is formed in a part of the sub-branch waveguide on either the right side or the left side of the light propagation direction in the sub-Mach-Zehnder type waveguide ,
The modulation electrode is formed of a signal electrode and a ground electrode;
For each sub-Mach-Zehnder type waveguide, a signal electrode branched from a single lead-in signal electrode is arranged to act on two sub-branch waveguides, and the branched signal electrodes are merged and derived. Nested modulator.
請求項1に記載のネスト型変調器において、前記分岐した信号電極が形成する電界が該副分岐導波路に作用する作用長は、該副マッハツェンダ型導波路毎に等しく設定されていることを特徴とするネスト型変調器。   2. The nested modulator according to claim 1, wherein an action length of the electric field formed by the branched signal electrode acting on the sub-branch waveguide is set equal for each sub-Mach-Zehnder waveguide. Nested modulator. 請求項1又は2に記載のネスト型変調器において、該基板はニオブ酸リチウム又はタンタル酸リチウムからなるZカット板であり、該分岐した信号電極は該副分岐導波路上を通過するよう設定されていることを特徴とするネスト型変調器。   3. The nested modulator according to claim 1, wherein the substrate is a Z-cut plate made of lithium niobate or lithium tantalate, and the branched signal electrode is set to pass on the sub-branch waveguide. Nested modulator characterized by that.
JP2012281359A 2012-12-25 2012-12-25 Nested modulator Active JP5622293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281359A JP5622293B2 (en) 2012-12-25 2012-12-25 Nested modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281359A JP5622293B2 (en) 2012-12-25 2012-12-25 Nested modulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006302327A Division JP2008116865A (en) 2006-11-08 2006-11-08 Nested modulator

Publications (2)

Publication Number Publication Date
JP2013080251A JP2013080251A (en) 2013-05-02
JP5622293B2 true JP5622293B2 (en) 2014-11-12

Family

ID=48526605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281359A Active JP5622293B2 (en) 2012-12-25 2012-12-25 Nested modulator

Country Status (1)

Country Link
JP (1) JP5622293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238150A (en) * 2013-06-07 2014-12-24 鸿富锦精密工业(深圳)有限公司 Electro-optical modulator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083657B2 (en) * 2003-03-28 2008-04-30 住友大阪セメント株式会社 Bias control method and apparatus for optical modulator
JP4703158B2 (en) * 2004-10-05 2011-06-15 住友大阪セメント株式会社 Light control element
JP4587762B2 (en) * 2004-09-30 2010-11-24 住友大阪セメント株式会社 Light modulation element module

Also Published As

Publication number Publication date
JP2013080251A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP2008116865A (en) Nested modulator
US9568751B2 (en) Optical control device
JP4899730B2 (en) Light modulator
JP4187771B2 (en) Light control element
US9250455B2 (en) Optical modulator
JP5007629B2 (en) Optical waveguide device
EP2116889B1 (en) Optical phase modulator
JP3957217B2 (en) Light modulator
US20080031564A1 (en) Optical modulator
JP5742382B2 (en) Traveling wave type light modulator
JP5077480B2 (en) Optical waveguide device
JP2010008751A (en) Optical waveguide device and its manufacturing method
JP2001051244A (en) Optical modulator using photonic band gap structure and optical modulation method
JP5229378B2 (en) Optical waveguide device
JP4703158B2 (en) Light control element
JP5622293B2 (en) Nested modulator
JP3695708B2 (en) Light modulator
JP2002062516A (en) Electro-optic ssb optical modulator and optical frequency shifter having cyclic domain inversion structure
JP2006098885A (en) Optical modulation element module
JPH04149408A (en) Optical modulation element
JP2004004589A (en) Mach-zehnder waveguide type electrooptic light intensity modulator
JP4544479B2 (en) Optical waveguide modulator
JP2001201725A (en) Optical modulation method and optical modulator
US20140153858A1 (en) Electro-optic modulator
JP5666522B2 (en) Optical waveguide device and method for suppressing temperature crosstalk of optical waveguide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5622293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250