JPH0477238B2 - - Google Patents

Info

Publication number
JPH0477238B2
JPH0477238B2 JP62129449A JP12944987A JPH0477238B2 JP H0477238 B2 JPH0477238 B2 JP H0477238B2 JP 62129449 A JP62129449 A JP 62129449A JP 12944987 A JP12944987 A JP 12944987A JP H0477238 B2 JPH0477238 B2 JP H0477238B2
Authority
JP
Japan
Prior art keywords
tube
internally grooved
tubes
return bend
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62129449A
Other languages
Japanese (ja)
Other versions
JPS63294496A (en
Inventor
Yoshihiro Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12944987A priority Critical patent/JPS63294496A/en
Publication of JPS63294496A publication Critical patent/JPS63294496A/en
Publication of JPH0477238B2 publication Critical patent/JPH0477238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主熱交換管として内面溝付管を用いた
空調機器用熱交換器およびその製造方法に関し、
特に、内面溝付管のリターンベンド管を挿入する
部分に相対する部分の内面溝を塑性加工手段によ
つて潰し、ロー材料の消費量を抑えながら確実な
ロー付接合が行えるようにした内面溝付管を用い
た空調機器用熱交換器およびその製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger for air conditioning equipment using an internally grooved tube as the main heat exchange tube, and a method for manufacturing the same.
In particular, the inner groove in the part of the inner grooved pipe opposite to the part into which the return bend pipe is inserted is crushed by plastic working means, making it possible to perform reliable brazing joints while suppressing the consumption of brazing material. The present invention relates to a heat exchanger for air conditioners using attached tubes and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の空調機器用熱交換器として、第6図a,
bに示すものがある。一般には平滑管、あるいは
内面溝付管から成る主熱交換管13の片端あるい
は両端をベルマウス状に拡管し、この部分にリタ
ーンベンド管14を内挿した後ロー材15を加熱
溶融させて両者を接続して管内の冷媒ガスをシー
ルする。主熱交換管13のフレア部16はロー材
15が効果的に管内に入り込むようにロー材15
を保持、案内する役目を果たし、主熱交換管13
とリターンベンド管14の平行ギヤツプ部17は
両者が強固に接続されるように、また、リターン
ベンド管14の装入作業性等を考慮し通常0.1mm
〜0.15mm程度のギヤツプと5〜10mm程度の長さを
有している。ベルマウスエンド部18はロー材1
5がロー付部以外に流れ出るのを止めている。空
調機器用熱交換器の熱交換管としては、前述した
ように、平滑管、または、内面溝付管を使用する
ことができるが、内面溝付管は微細ならせん状溝
が冷媒の蒸発、凝縮、熱伝達を著しく促進し、か
つ、熱交換器製作上の諸加工が平滑管とほとんど
同様に用いられる点からその適用が急速に拡大さ
れている。尚、19は主熱交換管13を橋絡して
いるフイン部材である。
As a conventional heat exchanger for air conditioning equipment, Fig. 6a,
There is one shown in b. Generally, one or both ends of the main heat exchange tube 13, which is a smooth tube or a tube with internal grooves, is expanded into a bell mouth shape, and the return bend tube 14 is inserted into this portion, and then the brazing material 15 is heated and melted. to seal the refrigerant gas inside the pipe. The flared portion 16 of the main heat exchange tube 13 is designed so that the brazing material 15 can effectively enter the tube.
The main heat exchange tube 13
and the parallel gap portion 17 of the return bend pipe 14 are usually 0.1 mm in order to ensure a strong connection between the two, and in consideration of the workability of charging the return bend pipe 14.
It has a gap of about 0.15 mm and a length of about 5 to 10 mm. The bell mouth end part 18 is made of brazing material 1
5 is stopped from flowing out to areas other than the brazed parts. As mentioned above, smooth tubes or tubes with internal grooves can be used as heat exchange tubes in heat exchangers for air conditioning equipment, but internally grooved tubes have fine spiral grooves that prevent the evaporation of the refrigerant. Its application is rapidly expanding because it significantly promotes condensation and heat transfer, and can be processed in almost the same way as smooth tubes in the manufacture of heat exchangers. Note that 19 is a fin member bridging the main heat exchange tubes 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の内面溝付管を用いた空調機器用
熱交換器およびその製造方法によれば、内面溝付
管から成る主熱交換管13をベルマウス状に拡管
する場合、平滑管の拡管と同様に治具を主熱交換
管13内に強制的に圧入して拡げる拡管方法を用
いているため、平滑管のベルマウス状拡管では問
題とならない内面溝付管固有の以下3点の不都合
がある。
However, according to the conventional heat exchanger for air conditioning equipment using internally grooved tubes and its manufacturing method, when expanding the main heat exchange tube 13 made of an internally grooved tube into a bell mouth shape, it is different from expanding a smooth tube. Similarly, since we use a tube expansion method in which a jig is forcibly inserted into the main heat exchange tube 13 to expand it, the following three disadvantages inherent to internally grooved tubes are avoided, which are not problems when expanding a smooth tube into a bellmouth shape. be.

(1) ベルマウス状拡管にともなう内面溝付管の内
面溝深さの減少量は0.01mm〜0.03mm程度であ
り、伝熱性能向上に有効な0.1mm〜0.2mm程度の
初期溝深さを持つ内面溝付管においては、例え
ば、第7図a,bのベルマウス状拡管前後の図
に示されるように、溝深さおよび溝部断面積と
もベルマウス状拡管による減少は殆ど期待でき
ないため、内面溝付管の溝部体積に相当する分
だけ平滑管に比して確実にギヤツプが増し、高
価なロー材の消費量が増す。また、ロー材を確
実に増やさなければロー付不良による冷媒リー
クの原因となり、一般に多く用いられている外
径953mmφ、底肉厚0.30mm、溝深さ0.20、溝数
60の内面溝付管での試算例では溝部体積による
ロー材の消費量増加は平滑管に比較して約60%
増にも達する。
(1) The amount of decrease in the depth of the internal groove of an internally grooved tube due to bellmouth expansion is approximately 0.01 mm to 0.03 mm, and the initial groove depth of approximately 0.1 mm to 0.2 mm is effective for improving heat transfer performance. For internally grooved tubes, for example, as shown in the diagrams before and after the bellmouth-shaped tube expansion in Figures 7a and b, it is unlikely that the groove depth and groove cross-sectional area will be reduced by the bellmouth-shaped tube expansion. Compared to a smooth tube, the gap will definitely increase by an amount corresponding to the groove volume of the internally grooved tube, and the consumption of expensive brazing material will increase. In addition, if the amount of brazing material is not increased reliably, it may cause refrigerant leakage due to poor brazing.
According to a trial calculation example for a pipe with internal grooves of 60, the increase in brazing material consumption due to the groove volume is about 60% compared to a smooth pipe.
It even reaches an increase.

(2) ベルマウスエンド部にも溝が残つているた
め、この溝を通つて非ベルマウス部へもロー材
が流出し易く、ロー材不足によるリーク不良を
招く恐れがある。
(2) Since a groove remains at the bell mouth end, brazing material is likely to flow out through this groove to the non-bell mouth portion, which may lead to leak failure due to lack of brazing material.

(3) 内面溝付管は同外径の平滑管に比して内部に
溝を有しているため、溝深さの2倍だけ最小内
径が小さくなつている。一方、リターンベンド
管は管内冷媒の圧力損失を増やさないようにす
るため主熱交換管よりもあまり小さくできず、
通常内面溝付管を用いた空調機器用熱交換器に
おいても平滑管使用時と同じリターンベンド管
を用いている。従つてリターンベンド管の装入
性の点からベルマウス部の最小内径を平滑管と
同じにとり、また、強度上の配慮からベルマウ
スエンド部の底肉厚も平滑管と同じにするとす
れば、ベルマウス部の外径は溝深さの2倍分だ
け平滑管に比して余計に拡管される事になる。
同様にフレア部についても拡管倍率が増えるこ
とになる。例えば、平滑管の場合のフレア径を
12mmφと仮定すると、溝深さ0.2mmの内面溝付
管の場合はフレア径が12.4mmφとなり、拡管倍
率でいえば1.26倍が1.30倍に上昇することにな
る。本来、内面溝が切欠き効果となつて拡管時
の割れ易さが平滑管に比して相対的に大きい内
面溝付管にとつては更に不利な条件であり、フ
レア部の割れ等に伴うロー材の管外流出もまた
ロー材不足を引き起こす原因となる。
(3) Internally grooved tubes have internal grooves compared to smooth tubes with the same outer diameter, so the minimum inner diameter is smaller by twice the groove depth. On the other hand, the return bend pipe cannot be made much smaller than the main heat exchange pipe in order to avoid increasing the pressure loss of the refrigerant inside the pipe.
Heat exchangers for air conditioners that use tubes with inner grooves usually use the same return bend tubes as when smooth tubes are used. Therefore, from the viewpoint of insertability of the return bend pipe, the minimum internal diameter of the bell mouth part is set to be the same as that of the smooth pipe, and from the consideration of strength, the bottom wall thickness of the bell mouth end part is also set to be the same as that of the smooth pipe. The outer diameter of the bell mouth portion is expanded by twice the groove depth compared to a smooth tube.
Similarly, the tube expansion magnification for the flared portion also increases. For example, the flare diameter for a smooth tube is
Assuming 12mmφ, in the case of an internally grooved pipe with a groove depth of 0.2mm, the flare diameter will be 12.4mmφ, which means that the tube expansion magnification will increase from 1.26 times to 1.30 times. Originally, this is an even more disadvantageous condition for inner-grooved tubes, which have a notch effect and are more susceptible to cracking during expansion than smooth tubes, and cracks at flared portions, etc. Outflow of brazing material outside the pipe also causes a shortage of brazing material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、内
面溝付管を用いた空調機器用熱交換器およびその
製造方法における内面溝付管固有の問題点である
ところのロー材消費量の増大を抑え、ベルマウス
エンド部におけるロー材流出をなくし、かつ、ベ
ルマウス状拡管における割れをなくすため、リタ
ーンベンド管が装入されてロー付される部分の内
面溝を内面溝形成加工工程以後、かつ、リターン
ベンド管装入以前の工程において強制的に塑性変
形工程により潰すことによつて該部分を実用的に
平滑管同様とした内面溝付管を用いた空調機器用
熱交換器およびその製造方法を提供するものであ
る。
The present invention has been made in view of the above, and solves the problem of the increase in brazing material consumption, which is a problem inherent to internally grooved tubes in heat exchangers for air conditioners using internally grooved tubes and in the method for manufacturing the same. In order to prevent brazing material from flowing out at the bellmouth end and to prevent cracks in the bellmouth-shaped tube expansion, the inner groove of the part where the return bend tube is inserted and brazed is made after the inner groove forming process and , a heat exchanger for air conditioning equipment using an internally grooved tube that is made to practically resemble a smooth tube by forcibly crushing it through a plastic deformation process in the process before charging the return bend tube, and a method for manufacturing the same. It provides:

即ち、本発明の内面溝付管を用いた空調機器用
熱交換器はリターンベンド管が装入されてロー付
される部分の内面溝を潰して平滑化してあり、そ
の肉厚は元の底肉厚より大になつている。
That is, in the heat exchanger for air conditioning equipment using the internally grooved pipe of the present invention, the internal groove in the part where the return bend pipe is inserted and brazed is crushed and smoothed, and the wall thickness is equal to the original bottom. It is larger than the thickness.

また、本発明の内面溝付管を用いた空調機器用
熱交換器の製造方法は以下の塑性変形工程を備え
ている。
Further, the method for manufacturing a heat exchanger for air conditioning equipment using the internally grooved tube of the present invention includes the following plastic deformation step.

即ち、内面溝付管の外周に管外拘束型を配置
し、内周に加工部材を挿入してそのリターンベン
ド管が装入されてロー付される部分の内面溝を強
制的に潰して平滑化する。これにより該部分は平
滑管と同様に平滑化された内面を有することにな
る。塑性変形工程は内面溝形成加工工程以後、か
つ、リターンベンド管装入工程以前に設ける。塑
性変形工程を内面溝形成加工工程以後とするのは
一般に内面溝形成は連続的に行うのが製造効率上
不可欠なためであり、内面溝を潰して平滑化する
ための方法として塑性変形加工法を用いるのは、
例えば、切削加工法では作業能率の向上に限界が
あり、切削屑や潤滑油の除去が二次的コストアツ
プを招き易いためである。一方、塑性変形加工法
によれば、潰した後の肉厚は元の底肉厚より増加
するため強度的にも向上するためである。
In other words, an external restraint type is placed around the outer circumference of a pipe with internal grooves, a processing member is inserted into the inner circumference, and the return bend pipe is inserted and the internal groove of the part to be brazed is forcibly flattened and smoothed. become This results in the part having a smooth inner surface similar to a smooth tube. The plastic deformation process is provided after the inner groove forming process and before the return bend pipe charging process. The plastic deformation process is performed after the internal groove forming process because it is generally essential for manufacturing efficiency to form internal grooves continuously, and the plastic deformation process is used as a method to flatten and smooth the internal grooves. To use
For example, there is a limit to the improvement of work efficiency in the cutting method, and removal of cutting waste and lubricating oil tends to lead to secondary cost increases. On the other hand, according to the plastic deformation processing method, the wall thickness after crushing is greater than the original bottom wall thickness, so the strength is also improved.

以下、本発明の内面溝付管を用いた空調機器用
熱交換器およびその製造方法について詳細を説明
する。
Hereinafter, a heat exchanger for air conditioning equipment using the internally grooved tube of the present invention and a method for manufacturing the same will be explained in detail.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示し、管外径
を変化させないで内面溝のみを潰す塑性変形工程
を示し、内面溝付管1に挿入し内面溝を潰す所定
の外径Dnを有したマンドレル2と、内面溝付管
1にかかる強い管軸方向応力を支える半割の所定
の内径D0の円形溝をもつた抑え型3から成る。
マンドレル2の外径Dnは、第2図a,bに示す
ように、外径D0、最小内径Di、内面溝付管1の
山部1aを潰して溝部1bを埋めた状態での内面
溝付管1の内径と一致させている。
FIG. 1 shows a first embodiment of the present invention, and shows a plastic deformation process in which only the inner groove is crushed without changing the outer diameter of the tube. It consists of a mandrel 2 having a diameter of 1.5 mm and a holding die 3 having a circular groove having a predetermined inner diameter D 0 in half to support the strong stress in the tube axis direction applied to the inner grooved tube 1.
As shown in FIGS. 2a and 2b, the outer diameter D n of the mandrel 2 is the outer diameter D 0 , the minimum inner diameter D i , and the outer diameter D n of the inner grooved tube 1 when the peak portion 1 a is crushed and the groove portion 1 b is filled. The inner diameter is made to match the inner diameter of the inner grooved tube 1.

以上の構成において、最終使用長さに切断され
た直管の内面溝付管1を抑え型3に配置し固定し
た後、前述の外径Dnを有するマンドレル2を押
し込む。この時内面溝付管1は抑え型3により固
定され、山部1aが潰される。この結果内部は
Dnとなり、管外径は変化しない。このようにし
て所定の部分を平滑化した内面溝付管1はこの後
従来通りのベルマウス状拡管方法で処理される。
実施例では、最終使用長さに切断された直管の時
点で内面を潰す塑性変形工程を採用したが、コイ
ル状素材を連続的に切断しながら曲げる機械では
曲げ直後のまだ材料が曲げ工具で拘束されている
間に行つてもよい。
In the above configuration, after the straight internally grooved tube 1 cut to the length for final use is placed and fixed in the holding die 3, the mandrel 2 having the aforementioned outer diameter D n is pushed into the tube. At this time, the internally grooved tube 1 is fixed by the holding die 3, and the peak portion 1a is crushed. As a result, the inside is
D n , and the tube outside diameter does not change. The internally grooved tube 1 whose predetermined portions have been smoothed in this manner is then processed by a conventional bellmouth-shaped tube expansion method.
In this example, a plastic deformation process was adopted in which the inner surface of the straight pipe is crushed when it is cut to the final length, but in a machine that bends a coiled material while continuously cutting it, the material may still be exposed to the bending tool immediately after bending. You may do so while being restrained.

第3図a,bは本発明の第2の実施例を示し、
第1の実施例のマンドレル2の挿入に換えてロー
ラ拡管法を用いたものである。テーパ付きマンド
レル4を回転させることによりマンドレル4の外
周にマンドレル4の軸芯とある角度をもつて配置
されたやはりテーパ付きの複数のローラ5が自転
しながらマンドレル4のまわりを公転して内面溝
付管1の内面溝を潰し平滑化するものである。ロ
ーラ拡管法は管軸力が加わらず大きな管半径方向
応力を発生させられる利点があるが、拡管速度が
遅いという欠点もある。
Figures 3a and 3b show a second embodiment of the invention,
In this embodiment, instead of inserting the mandrel 2 in the first embodiment, a roller expansion method is used. By rotating the tapered mandrel 4, a plurality of tapered rollers 5 arranged around the outer periphery of the mandrel 4 at a certain angle with the axis of the mandrel 4 revolve around the mandrel 4 while rotating on their own axis, thereby forming an inner groove. This is to crush and smooth the inner groove of the attached tube 1. Although the roller tube expansion method has the advantage of generating large tube radial stress without applying tube axial force, it also has the disadvantage of slow tube expansion speed.

第4図は本発明の第3の実施例を示し、内面を
潰し平滑化する塑性変形工程をベルマウス状拡管
工程と同時に行うようにしたものである。所定の
U字形に成型された内面溝付管1の直状部分のほ
ぼ全長を拡管(一次拡管)するロツド8の先端に
取付けられた拡管ヘツド9と、内面溝付管1のヘ
アピン曲げ部を保持するレシーバー10と、テー
パー付マンドレル11a、ローラ11b、および
ローラ11cを備え内面溝付管1の内面の平滑化
およびベルマウス状拡管を同時に行うローラ拡管
工具11と、ローラ拡管工具11による拡管の際
に内面溝付管1を拘束する拘束型12から成る。
ローラ拡管工具11のローラ11bはテーパー付
マンドレル11aの回転にともないそれ自体回転
しながらテーパー付マンドレル11aのまわりを
公転して内面の平滑化および平行拡管を行う。ま
た、ローラ11cも同様に自転しながらテーパ付
マンドレル11aのまわりを公転するがローラ1
1bと異なつた所定の角度で内面溝付管1と接し
ベルマウス部のフレア拡管を行う。ロツド8とテ
ーパー付マンドレル11aをスプライン結合させ
ておけば、ロツド8の回転をテーパー付マンドレ
ル11aに伝えることができ、かつ、ロツド8、
拡管ヘツド9とテーパー付マンドレル11aは垂
直方向に自由に運動する。一方、テーパー付マン
ドレル11aは別の駆動源から回転させるように
しても良い。
FIG. 4 shows a third embodiment of the present invention, in which the plastic deformation step of crushing and smoothing the inner surface is performed simultaneously with the bellmouth-shaped tube expansion step. A tube expansion head 9 attached to the tip of a rod 8 that expands almost the entire length of the straight portion of the internally grooved tube 1 formed into a predetermined U-shape (primary tube expansion) and a hairpin bent portion of the internally grooved tube 1 A receiver 10 for holding, a roller tube expansion tool 11 that includes a tapered mandrel 11a, a roller 11b, and a roller 11c and simultaneously smooths the inner surface of the internally grooved tube 1 and expands it into a bell mouth shape; It consists of a restraint die 12 that restrains the inner grooved tube 1 during the process.
The roller 11b of the roller tube expansion tool 11 revolves around the tapered mandrel 11a while rotating itself as the tapered mandrel 11a rotates, thereby smoothing the inner surface and performing parallel tube expansion. Similarly, the roller 11c revolves around the tapered mandrel 11a while rotating, but the roller 11c also revolves around the tapered mandrel 11a.
It contacts the internally grooved tube 1 at a predetermined angle different from that of 1b to perform flare expansion of the bell mouth portion. If the rod 8 and the tapered mandrel 11a are spline-coupled, the rotation of the rod 8 can be transmitted to the tapered mandrel 11a, and the rod 8,
The tube expansion head 9 and the tapered mandrel 11a are free to move in the vertical direction. On the other hand, the tapered mandrel 11a may be rotated from another drive source.

以上の構成において、拡管ヘツド9を内面溝付
管1へ挿入し、ロツド8を下げることにより一次
拡管を行い鉄プレート6およびアルミフイン7と
密着させる。このとき、ローラ拡管工具11は自
重により所定の位置まで下がつている。その後ロ
ーラ拡管工具11のテーパー付マンドレル11a
を回転させて挿入する。テーパー付マンドレル1
1aの回転にともないローラ11b,11cは自
転しながらテーパー付マンドレル11aのまわり
を公転し、ローラー11bは内面溝付管1の内面
を潰しながら所定の径に拡管し、ローラー11c
は所定の角度をもつて先端部をフレア拡管する。
In the above configuration, the tube expansion head 9 is inserted into the internally grooved tube 1 and the rod 8 is lowered to perform primary expansion and bring it into close contact with the iron plate 6 and aluminum fin 7. At this time, the roller tube expansion tool 11 is lowered to a predetermined position due to its own weight. After that, the tapered mandrel 11a of the roller tube expansion tool 11
Rotate and insert. Tapered mandrel 1
As the tube 1a rotates, the rollers 11b and 11c revolve around the tapered mandrel 11a while rotating, and the roller 11b crushes the inner surface of the internally grooved tube 1 to expand it to a predetermined diameter, and the roller 11c
flares the tip at a predetermined angle.

第5図a〜dはローラー拡管工具11によつて
内面溝付管1の内面溝が潰されて平滑化する状況
を示しており、第5図bより第5図cにかけて加
工が進み、第5図dにおいて内面溝が殆ど完全に
潰されて平滑化しているのがわかる。これにより
ロー付接合において平滑管と同様に扱うことがで
きる。本実施例では内面溝を潰す塑性変形とベル
マウス状拡管を同時に行うため、特別の塑性変形
工程を新設する必要がなく経済的である。ローラ
ー拡管工具11をテーパー付マンドレル11aと
類似形状のマンドレルに換えて、これを押し込み
ベルマウス状拡管する方法も考えられるが、拘束
型12によつて拘束しマンドレルの押し込みのみ
によつて内面溝を潰そうとすると大きな軸力が下
方のヘアピン曲げ部にかかり、この部分はレシー
バー10にてヘアピン曲げ部の外側しか拘束でき
ないため内側の拘束してない部分が座屈してしま
う。従つて、内面溝を潰す塑性変形とベルマウス
状拡管を同時に行う場合はローラー拡管法が不可
欠である。
Figures 5a to 5d show how the inner groove of the inner grooved tube 1 is crushed and smoothed by the roller tube expansion tool 11, and the machining progresses from Figure 5b to Figure 5c. In Fig. 5d, it can be seen that the inner groove has been almost completely flattened and smoothed. This allows it to be handled in the same way as a smooth tube in brazing joints. In this embodiment, since the plastic deformation for crushing the inner groove and the bellmouth-shaped tube expansion are performed at the same time, there is no need to newly install a special plastic deformation process, which is economical. It is also possible to replace the roller tube expansion tool 11 with a mandrel having a similar shape to the tapered mandrel 11a and push it in to expand the tube into a bell mouth shape. When an attempt is made to crush the hairpin, a large axial force is applied to the lower hairpin bending portion, and since this portion can only be restrained by the receiver 10 on the outside of the hairpin bending portion, the unrestrained inner portion will buckle. Therefore, when performing plastic deformation to crush the inner groove and bellmouth-like tube expansion at the same time, the roller tube expansion method is essential.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の内面溝付管を用い
た空調機器用熱交換器およびその製造方法によれ
ば、内面溝付管のリターンベンド管が装入されて
ロー付される部分の内面溝を、内面溝形成加工以
後、かつ、リターンベンド管装入以前の工程にお
いて、強制的に塑性変形により潰すことによりこ
の部分を実用的に平滑管同様としたため、内面溝
に基づくロー材消費量の増大を抑えることがで
き、さらに、ベルマウス状拡管時の内面溝に起因
する割れを避けることができる。
As explained above, according to the heat exchanger for air conditioning equipment using the internally grooved tube of the present invention and the manufacturing method thereof, the internal groove in the part of the internally grooved tube into which the return bend pipe is inserted and brazed. In the process after forming the inner groove and before inserting the return bend pipe, this part was forcibly crushed by plastic deformation to make this part practically similar to a smooth tube. It is possible to suppress the increase in the tube size, and furthermore, it is possible to avoid cracking caused by the inner groove when expanding the tube into a bell mouth shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す説明図、
第2図a,bは内面溝付管の拡管前後の説明図。
第3図a,bは本発明の第2の実施例を示す説明
図。第4図は本発明の第3の実施例を示す説明
図。第5図a〜dは第3の実施例の拡管による内
面溝の変化を示す説明図。第6図a,bは従来の
空調機器用熱交換器の説明図。第7図a,bは従
来の空調機器用熱交換器のベルマウス部における
内面溝の状態を示す説明図。 符号の説明 1…内面溝付管、2…マンドレ
ル、3…抑え型、4…テーパ付マンドレル、5…
ローラ、6…鉄プレート、7…アルミフイン、8
…ロツド、9…拡管ヘツド、10…レシーバー、
11…ローラ拡管工具、12…拘束型。
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention,
FIGS. 2a and 2b are explanatory diagrams of an internally grooved tube before and after expansion.
FIGS. 3a and 3b are explanatory diagrams showing a second embodiment of the present invention. FIG. 4 is an explanatory diagram showing a third embodiment of the present invention. FIGS. 5a to 5d are explanatory diagrams showing changes in the inner groove due to tube expansion in the third embodiment. FIGS. 6a and 6b are explanatory diagrams of a conventional heat exchanger for air conditioning equipment. FIGS. 7a and 7b are explanatory diagrams showing the state of inner grooves in the bell mouth portion of a conventional heat exchanger for air conditioning equipment. Explanation of symbols 1... Internally grooved tube, 2... Mandrel, 3... Pressed type, 4... Tapered mandrel, 5...
Roller, 6... Iron plate, 7... Aluminum fin, 8
... Rod, 9... Tube expansion head, 10... Receiver,
11...Roller tube expansion tool, 12...Restriction type.

Claims (1)

【特許請求の範囲】 1 内面溝付管を複数本並列に配置し、前記内面
溝付管の片端あるいは両端に内挿したU字形に曲
げたリターンベンド管をロー付接合して冷媒回路
を構成する空調機器用熱交換器において、 前記内面溝付管の前記リターンベンド管を挿入
する部分に相対する部分の内面溝を潰し、その底
肉厚より大なる肉厚になるように平滑化したこと
を特徴とする内面溝付管を用いた空調機器用熱交
換器。 2 内面溝付管を複数本並列に配置し、前記内面
溝付管の片端あるいは両端に内挿したU字形に曲
げたリターンベンド管をロー付接合して冷媒回路
を構成する空調機器用熱交換器の製造方法におい
て、 前記内面溝付管の前記リターンベンド管を挿入
する部分の外周に所定の内径を有した管外拘束型
を配置し、前記部分に相対する部分の内周に加工
部材を挿入し、前記加工部材と前記管外拘束型の
協働作用に基く塑性変形によつて前記内面溝付管
の内面を平滑化することを特徴とする内面溝付管
を用いた空調機器用熱交換器の製造方法。
[Claims] 1. A refrigerant circuit is constructed by arranging a plurality of internally grooved tubes in parallel, and brazing and joining a U-shaped return bend tube inserted into one or both ends of the internally grooved tubes. In the heat exchanger for air conditioning equipment, the inner groove of the inner grooved tube at the portion opposite to the portion where the return bend tube is inserted is flattened and smoothed to have a wall thickness greater than the bottom wall thickness. A heat exchanger for air conditioning equipment that uses internally grooved tubes. 2. A heat exchanger for air conditioning equipment in which a plurality of internally grooved tubes are arranged in parallel, and a U-shaped return bend tube inserted into one or both ends of the internally grooved tube is joined by brazing to form a refrigerant circuit. In the method for manufacturing a vessel, an extra-tube restraint mold having a predetermined inner diameter is placed on the outer periphery of a portion of the internally grooved tube into which the return bend tube is inserted, and a processed member is placed on the inner periphery of the portion facing the portion. A heating device for air conditioning equipment using an internally grooved tube, characterized in that the inner surface of the internally grooved tube is smoothed by plastic deformation based on the cooperative action of the processed member and the externally restrained type. Method of manufacturing an exchanger.
JP12944987A 1987-05-26 1987-05-26 Heat exchanger for air conditioner using internally grooved tube and manufacture thereof Granted JPS63294496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12944987A JPS63294496A (en) 1987-05-26 1987-05-26 Heat exchanger for air conditioner using internally grooved tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12944987A JPS63294496A (en) 1987-05-26 1987-05-26 Heat exchanger for air conditioner using internally grooved tube and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63294496A JPS63294496A (en) 1988-12-01
JPH0477238B2 true JPH0477238B2 (en) 1992-12-07

Family

ID=15009753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12944987A Granted JPS63294496A (en) 1987-05-26 1987-05-26 Heat exchanger for air conditioner using internally grooved tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63294496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108336A1 (en) * 2007-03-05 2008-09-12 Kobelco & Materials Copper Tube, Ltd. Fin-and-tube heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916535A (en) * 1982-07-20 1984-01-27 Konishiroku Photo Ind Co Ltd Method and device for vapor deposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877289U (en) * 1981-11-12 1983-05-25 古河電気工業株式会社 Internally grooved heat exchanger tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916535A (en) * 1982-07-20 1984-01-27 Konishiroku Photo Ind Co Ltd Method and device for vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108336A1 (en) * 2007-03-05 2008-09-12 Kobelco & Materials Copper Tube, Ltd. Fin-and-tube heat exchanger

Also Published As

Publication number Publication date
JPS63294496A (en) 1988-12-01

Similar Documents

Publication Publication Date Title
US3467180A (en) Method of making a composite heat-exchanger tube
EP0696718A1 (en) Heat transfer tube
JP7243104B2 (en) Heat exchanger and manufacturing method thereof
JPS6114029A (en) Method of rounding end section of tube with egg-shaped section
JP2010214404A (en) Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2013066911A (en) Connection body of copper tube and stainless steel pipe and manufacturing method thereof
KR101506797B1 (en) Flanging method for pipe
JPH0477238B2 (en)
JP6958238B2 (en) How to manufacture heat exchangers and heat exchangers
JPH0615354A (en) Manufacture of heat exchange tube
JP2018183787A (en) Method of manufacturing steel pipe
JPH07127985A (en) Heat exchanger and its manufacturing method
JPH11351791A (en) Aluminum inner face grooved tube
KR101114533B1 (en) a heat exchanging pipe manufacturing apparatus for HRSG and a heat exchanging pipe
JPS6040624A (en) Pipe expanding and groove cutting device of pipe body
JP2004093057A (en) Heat exchanger and its manufacturing method
JPH06154893A (en) Method and device for burring copper tube
JPH08309467A (en) Manufacture of plate-fin tube heat exchanger
JP2623203B2 (en) Copper tube connection structure
KR200228935Y1 (en) Heat exchanger
JPS59113940A (en) Manufacture of heat exchanger plate
SU1119756A1 (en) Method of securing tubes in tube plates of heat-transfer apparatus
JP2002257485A (en) Manufacturing method of heat exchanger
JPS58125325A (en) Fabrication and structure of heat exchanger
JP3756936B2 (en) Internal grooved welded heat transfer tube and its manufacturing method