JPH0477222B2 - - Google Patents

Info

Publication number
JPH0477222B2
JPH0477222B2 JP61028982A JP2898286A JPH0477222B2 JP H0477222 B2 JPH0477222 B2 JP H0477222B2 JP 61028982 A JP61028982 A JP 61028982A JP 2898286 A JP2898286 A JP 2898286A JP H0477222 B2 JPH0477222 B2 JP H0477222B2
Authority
JP
Japan
Prior art keywords
heat
metal hydride
container
hydrogen
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61028982A
Other languages
Japanese (ja)
Other versions
JPS62190392A (en
Inventor
Shin Fujitani
Ikuro Yonezu
Naojiro Pponda
Sanehiro Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61028982A priority Critical patent/JPS62190392A/en
Publication of JPS62190392A publication Critical patent/JPS62190392A/en
Publication of JPH0477222B2 publication Critical patent/JPH0477222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は金属水素化物を利用した熱輸送装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a heat transport device using metal hydrides.

(ロ) 従来の技術 従来、太陽熱集熱器や地熱等のローカルエネル
ギーの熱輸送方法は、水、油等の熱媒を循環させ
る方法であつたため熱輸送効率が良くなかつた。
このような点に鑑み出願人は先に金属水素化物を
利用して熱発生側から熱利用側に効率良く熱輸送
するシステムを提案した(特願昭60−206292号参
照)。
(b) Conventional technology Conventionally, heat transport methods for local energy such as solar heat collectors and geothermal heat have not had good heat transport efficiency because they have involved circulating heat media such as water and oil.
In view of these points, the applicant has previously proposed a system for efficiently transporting heat from the heat generation side to the heat utilization side using metal hydrides (see Japanese Patent Application No. 206292/1982).

これは熱発生側と熱利用側にそれぞれ2つの金
属水素化物容器を設置し、それぞれを2本の水素
配管で連結し、熱発生側で生じる熱を一方の金属
水素化物容器に与えて水素を発生させ、これを一
方の水素配管を介して熱利用側に送り、一方の金
属水素化物容器を介して熱を取り出し利用すると
同時に、廃熱を利用して熱利用側の他方の金属水
素化物容器から他方の水素配管を介して熱発生側
の他方の冷却した金属水素化物容器に水素を戻す
操作を交互に切り替えて連続して行なうようにし
たものである。
This involves installing two metal hydride containers on the heat generation side and heat utilization side, and connecting each with two hydrogen pipes.The heat generated on the heat generation side is applied to one metal hydride container to generate hydrogen. The generated heat is sent to the heat utilization side via one hydrogen pipe, and the heat is extracted and utilized via one metal hydride container, and at the same time, the waste heat is used to transfer the heat to the other metal hydride container on the heat utilization side. The operation of returning hydrogen from the reactor to the other cooled metal hydride container on the heat generation side via the other hydrogen pipe is alternately and continuously carried out.

この熱輸送装置によれば、輸送中の熱損失を少
なくして熱輸送を効率良く行なうことができるよ
うになるものの、熱発生側で生じる熱量あるいは
熱利用側で使用する熱量が大きく変動して熱発生
側金属水素化物容器内の水素圧力が減少した場合
に、熱利用側での熱使用量に見合う水素ガスを熱
発生側から供給することが困難になる問題点があ
つた。
Although this heat transport device can reduce heat loss during transport and transport heat efficiently, the amount of heat generated on the heat generation side or the amount of heat used on the heat utilization side fluctuates greatly. There is a problem in that when the hydrogen pressure in the metal hydride container on the heat generation side decreases, it becomes difficult to supply hydrogen gas from the heat generation side to match the amount of heat used on the heat utilization side.

(ハ) 発明が解決しようとする問題点 本発明は出願人が先に提案した熱輸送装置を更
に改善して熱利用側に常にその熱使用量に見合う
水素を供給し得る安定で熱利用効果の高い熱輸送
システムを提供することを目的とする。
(C) Problems to be Solved by the Invention The present invention further improves the heat transport device previously proposed by the applicant to provide a stable and efficient heat utilization system that can always supply hydrogen in proportion to the amount of heat used on the heat utilization side. The purpose is to provide a high heat transport system.

(ニ) 問題点を解決するための手段 本発明は、熱発生個所に配置された、熱源から
熱媒を流すための第1の熱交換器3a,3bと冷
却水源から冷却水を流すための第2の熱交換器4
a,4bとが金属水素化物5を密封した耐圧容器
内部を気密に貫通配置されてなる2つの金属水素
化物容器1a,1bと、これらの2つの金属水素
化物容器1a,1bのうち水素輸送側の容器に設
けられた前記第1の熱交換器3a,3bを選択し
て前記熱源から熱媒を流すように切り替える第1
の切替弁6と、前記2つの金属水素化物容器1
a,1bのうち水素貯蔵側の容器に設けられた前
記第2の熱交換器4a,4bを選択して前記冷却
水を流すように切り替える第2の切替弁8と、熱
利用個所側に配置された、熱負荷へ熱媒を流すた
めの第3の熱交換器10a,10bと低質熱源か
ら熱媒を流すための第4の熱交換器11a,11
bとが金属水素化物12を密封した耐圧容器内部
を気密に貫通配置されてなる2つの金属水素化物
容器2a,2bと、これらの2つの金属水素化物
容器2a,2bのうち水素貯蔵側の容器に設けら
れた前記第3の熱交換器10a,10bを選択し
て前記熱負荷へ熱媒を流すように切替える第3の
切替弁13と、前記2つの金属水素化物容器2
a,2bのうち水素輸送側の容器に設けられた前
記第4の熱交換器11a,11bを選択して前記
低質熱源から熱媒を流すように切替える第4の切
替弁15と、前記熱発生個所側に設けられた水素
輸送側の容器と前記熱利用個所側に設けられた水
素貯蔵側の容器および前記熱発生個所側に設けら
れた水素貯蔵側の容器と前記熱利用個所側に設け
られた水素輸送側の容器をそれぞれ連絡する2本
の水素配管17a,17bと、冷水を流して冷却
するための第5の熱交換器25a,25bと金属
水素化物26とが密封した耐圧容器内部を気密に
貫通配置され、それぞれ前記2本の水素配管17
a,17bに接続される2つの蓄熱用金属水素化
物容器24a,24bと、これらの2つの蓄熱用
金属水素化物容器24a,24bのうちの前記熱
発生個所側の金属水素化物容器1a,1bの水素
輸送側に接続する蓄熱用金属水素化物容器24
a,24bの前記第5の熱交換器25a,25b
を選択して前記冷水を流すように切替える第5の
切替弁27と、前記熱発生個所側の高温媒体から
の熱媒の温度レベルまたは前記熱発生個所側の金
属水素化物容器内水素圧力に応じて前記熱発生個
所側から前記熱利用個所側に輸送する水素が余剰
するとき前記蓄熱用金属水素化物容器24a,2
4bに水素を貯えるように切替える一方、不足す
るとき前記蓄熱用金属水素化物容器24a,21
bから取り出すように切替える第6の切替弁1
8,19,20,21,22,23とを設けるよ
うにしたものである。
(d) Means for Solving the Problems The present invention provides first heat exchangers 3a and 3b disposed at heat generation locations for flowing a heat medium from a heat source and for flowing cooling water from a cooling water source. Second heat exchanger 4
two metal hydride containers 1a, 1b in which the metal hydride containers 1a, 4b are arranged to airtightly penetrate the inside of the pressure container in which the metal hydride 5 is sealed, and the hydrogen transport side of these two metal hydride containers 1a, 1b. The first heat exchanger 3a, 3b provided in the container is selected and switched to flow the heat medium from the heat source.
a switching valve 6, and the two metal hydride containers 1.
A second switching valve 8 that selects the second heat exchanger 4a, 4b provided in the container on the hydrogen storage side among a, 1b and switches the cooling water to flow, and a second switching valve 8 disposed on the heat utilization side. third heat exchangers 10a, 10b for flowing the heat medium to the heat load, and fourth heat exchangers 11a, 11 for flowing the heat medium from the low-quality heat source.
two metal hydride containers 2a, 2b which are arranged to airtightly penetrate the inside of the pressure container in which the metal hydride 12 is sealed; and a container on the hydrogen storage side of these two metal hydride containers 2a, 2b a third switching valve 13 that selects the third heat exchanger 10a, 10b provided in the third heat exchanger 10a, 10b and switches the heat medium to flow to the heat load; and the two metal hydride containers 2.
A fourth switching valve 15 that selects the fourth heat exchanger 11a, 11b provided in the container on the hydrogen transport side from among a, 2b and switches the heat medium to flow from the low-quality heat source; A hydrogen transport side container provided at the heat utilization point side, a hydrogen storage side container provided at the heat utilization point side, a hydrogen storage side container provided at the heat generation point side, and a hydrogen storage side container provided at the heat utilization point side. Two hydrogen pipes 17a and 17b connecting the hydrogen transport side containers, fifth heat exchangers 25a and 25b for cooling by flowing cold water, and a metal hydride 26 connect the inside of the sealed pressure-resistant container. The two hydrogen pipes 17 are arranged airtightly through each other.
a, 17b, and of these two metal hydride containers 24a, 24b, the metal hydride containers 1a, 1b on the heat generation side side Heat storage metal hydride container 24 connected to the hydrogen transport side
the fifth heat exchangers 25a, 25b of a, 24b;
and a fifth switching valve 27 that selects and switches the cold water to flow, depending on the temperature level of the heating medium from the high temperature medium on the side of the heat generation location or the hydrogen pressure in the metal hydride container on the side of the heat generation location. When there is surplus hydrogen to be transported from the heat generation area to the heat utilization area, the heat storage metal hydride containers 24a, 2
4b to store hydrogen, and when there is a shortage, the heat storage metal hydride containers 24a, 21
6th switching valve 1 that switches to take out from b
8, 19, 20, 21, 22, and 23.

(チ) 作用 このように、熱発生側金属水素化物容器と熱利
用側金属水素化物容器と、蓄熱用金属水素化物容
器とをそれぞれ開閉弁を介して水素配管で接続
し、熱利用過程における熱発生側の熱供給量ある
いは熱利用側の熱使用量が大きく変動したときの
余剰熱量を水素に変換して蓄熱用金属水素化物容
器に貯える一方、不足熱量に見合う水素をその蓄
熱用金属水素化物から取り出し熱利用側に供給す
ることにより、熱利用側に水素を安定供給し、熱
負荷を安定に駆動することができるようになる。
(H) Effect In this way, the metal hydride container on the heat generation side, the metal hydride container on the heat utilization side, and the metal hydride container for heat storage are connected by hydrogen piping via respective on-off valves, and the When the amount of heat supplied on the generation side or the amount of heat used on the heat utilization side fluctuates significantly, surplus heat is converted into hydrogen and stored in the metal hydride container for heat storage, while hydrogen corresponding to the insufficient amount of heat is converted into the metal hydride for heat storage. By extracting hydrogen from hydrogen and supplying it to the heat utilization side, hydrogen can be stably supplied to the heat utilization side and the heat load can be stably driven.

(ヘ) 実施例 以下、本発明の実施例を図面を参照して説明す
る。
(f) Examples Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る熱輸送装置の
概念構成図を示したものである。図において、熱
発生側には、2つの金属水素化物容器1a,1b
を備えた熱輸送ユニツト1が設置される一方、熱
利用側には同じく2つの金属水素化物容器2a,
2bを備えた熱再生ユニツト2が設置されてい
る。
FIG. 1 shows a conceptual configuration diagram of a heat transport device according to an embodiment of the present invention. In the figure, there are two metal hydride containers 1a and 1b on the heat generation side.
A heat transport unit 1 equipped with a
A heat regeneration unit 2 with 2b is installed.

熱発生側の2つの金属水素化物容器1a,1b
には、それぞれ熱交換器3a,3b;4a,4b
と共に金属水素化物5が収納される。熱交換器3
a,3bには、三方切替弁6を介して太陽熱ある
いは地熱等の高温熱源より熱媒7が選択的に供給
されるように配管されている。また、熱交換器4
a,4bには三方切替弁8を介して冷却水9が選
択的に供給されるように配管されている。
Two metal hydride containers 1a, 1b on the heat generation side
are heat exchangers 3a, 3b; 4a, 4b, respectively.
A metal hydride 5 is also housed therein. heat exchanger 3
A and 3b are piped so that a heat medium 7 is selectively supplied via a three-way switching valve 6 from a high-temperature heat source such as solar heat or geothermal heat. In addition, heat exchanger 4
A and 4b are piped so that cooling water 9 is selectively supplied via a three-way switching valve 8.

一方、熱利用側の2つの金属水素化物容器2
a,2bには、それぞれ熱交換器10a,10
b;11a,11bと共に、金属水素化物12が
収納される。熱交換器10a,10bには三方切
替弁13を介して熱負荷より熱媒14が選択的に
供給されるように配管されている。また、熱交換
器11a,11bには三方切替弁15を介して廃
熱源から熱媒16が選択的に供給されるように配
管されている。
On the other hand, two metal hydride containers 2 on the heat utilization side
Heat exchangers 10a and 10 are installed in a and 2b, respectively.
b; Metal hydride 12 is stored together with 11a and 11b. The heat exchangers 10a and 10b are piped so that a heat medium 14 is selectively supplied to the heat exchangers 10a and 10b via a three-way switching valve 13 depending on the heat load. Further, the heat exchangers 11a and 11b are piped so that a heat medium 16 is selectively supplied from a waste heat source via a three-way switching valve 15.

熱発生側の金属水素化物容器1a,1bと熱利
用側の金属水素化物容器2a,2bとの間は、そ
れぞれ2本の水素配管17a,17bで接続され
る。その2本の水素配管17a,17bには、そ
れぞれ開閉弁18,19;20,21が設けられ
ると共に、それぞれ開閉弁22,23を介して蓄
熱用金属水素化物容器24a,24bが水素配管
で接続されている。
The metal hydride containers 1a, 1b on the heat generation side and the metal hydride containers 2a, 2b on the heat utilization side are connected by two hydrogen pipes 17a, 17b, respectively. The two hydrogen pipes 17a, 17b are provided with on-off valves 18, 19; 20, 21, respectively, and are connected to heat storage metal hydride containers 24a, 24b via the on-off valves 22, 23, respectively. has been done.

その蓄熱用金属水素化物容器24a,24bに
は、それぞれ熱交換器25a,25bと共に金属
水素化物26が収納され、熱交換器25a,25
bには三方切替弁27を介して冷水源から冷水2
8が選択的に供給されるように配管されている。
The heat storage metal hydride containers 24a and 24b house a metal hydride 26 together with heat exchangers 25a and 25b, respectively, and the heat exchangers 25a and 25
Cold water 2 is supplied to b from the cold water source via the three-way switching valve 27.
8 is selectively supplied.

なお、蓄熱用金属水素化物容器24a,24b
の設置場所は、図示の熱発生側と熱利用側の丁度
中間に限らず、熱発生側に近いところでもよい
し、熱利用側に近い所でもよい。
Note that the heat storage metal hydride containers 24a and 24b
The installation location is not limited to the exact midway between the heat generation side and the heat utilization side as shown in the figure, but may be a location close to the heat generation side or a location close to the heat utilization side.

以上の構成で、各金属水素化物容器内には、第
2図のvan′t Hoffプロツトで示す平衝特性の金
属水素化物を予め収納しておく。即ち、熱発生側
の金属水素化物容器1a,1bには第2図のl1
示す平衝特性の金属水素化物例えばLa−Nd−Ni
系の金属水素化物5を収納する。熱利用側の金属
水素化物容器2a,2bにはl2で示す平衝特性の
金属水素化物例えばLa−Ni−Al系の金属水素化
物12を収納する。蓄熱用金属水素化物容器24
a,24bにはl3で示す平衝特性の金属水素化物
例えばLa−Nd−Ni系の金属水素化物26を収納
する。
With the above configuration, a metal hydride having equilibrium characteristics shown in the van't Hoff plot in FIG. 2 is stored in advance in each metal hydride container. That is, the metal hydride containers 1a and 1b on the heat generation side are filled with a metal hydride having equilibrium characteristics as shown by l1 in FIG. 2, such as La-Nd-Ni.
The metal hydride 5 of the system is stored. The metal hydride containers 2a and 2b on the heat utilization side contain a metal hydride 12 having equilibrium characteristics indicated by l2 , such as a La-Ni-Al metal hydride 12. Heat storage metal hydride container 24
A and 24b house a metal hydride 26 having equilibrium characteristics indicated by l 3 , for example, a La-Nd-Ni metal hydride 26 .

一方、ソーラコレクタや工場廃熱源等の高温熱
源から熱輸送ユニツト1に供給される熱媒7の平
均温度レベルを90℃以上とする。また、熱利用側
で低質の廃熱源より熱再生ユニツト2に供給する
熱媒16の温度レベルを50℃程度、冷却水9およ
び冷水28の温度レベルを20℃程度とする。
On the other hand, the average temperature level of the heat medium 7 supplied to the heat transport unit 1 from a high-temperature heat source such as a solar collector or a factory waste heat source is set to 90° C. or higher. Further, on the heat utilization side, the temperature level of the heat medium 16 supplied from a low-quality waste heat source to the heat regeneration unit 2 is set at about 50°C, and the temperature level of the cooling water 9 and the cold water 28 is set at about 20°C.

さて、今、金属水素化物容器1a,2aが熱負
荷に熱を供給する熱利用過程、金属水素化物容器
1b,2bが水素を熱発生側に戻す再生過程にあ
るものとすると、三方切替弁6の切替操作によ
り、平均として90℃程度の高温熱媒7が熱交換器
3aに、三方切替弁8および27の切替操作によ
り、20℃程度の冷却水9および冷水28がそれぞ
れ熱交換器4aおよび25aに、また、三方切替
弁15の切替操作により、50℃程度の低質の廃熱
源より熱媒16が熱交換器11bに、更に、三方
切替弁13の切替操作により熱負荷より戻される
熱媒14が熱交換器10aに供給される。
Now, assuming that the metal hydride containers 1a and 2a are in the heat utilization process of supplying heat to the heat load, and the metal hydride containers 1b and 2b are in the regeneration process of returning hydrogen to the heat generation side, the three-way switching valve 6 By switching the three-way switching valves 8 and 27, the high-temperature heat medium 7 with an average temperature of about 90°C is transferred to the heat exchanger 3a, and by switching the three-way switching valves 8 and 27, the cooling water 9 and cold water 28, which are about 20°C, are transferred to the heat exchanger 4a and the heat exchanger 3a, respectively. 25a, and by switching the three-way switching valve 15, a heat medium 16 from a low-quality waste heat source of about 50° C. is returned to the heat exchanger 11b, and further, by switching the three-way switching valve 13, the heat medium 16 is returned from the heat load. 14 is supplied to the heat exchanger 10a.

このとき、金属水素化物容器1b,2b間では
開閉弁20,21は開、開閉弁23は閉に切替操
作される。これにより、第2図のC点よりD点に
示す如く、金属水素化物容器2bより金属水素化
物容器1bに水素配管17bを介して水素が移動
し、再生過程が行なわれる。
At this time, the on-off valves 20 and 21 are opened and the on-off valve 23 is closed between the metal hydride containers 1b and 2b. As a result, as shown from point C to point D in FIG. 2, hydrogen moves from metal hydride container 2b to metal hydride container 1b via hydrogen pipe 17b, and a regeneration process is performed.

一方、金属水素化物容器1a,2a間では、熱
利用側の熱負荷の変動あるいは熱発生側の高温熱
媒7の温度変動などによる金属水素化物容器1a
内の水素圧力の変動に対しても常に熱負荷が必要
とする温度レベルのあるいは熱量の熱媒を金属水
素化物容器2a内より取り出せるように開閉弁1
8,19および22が切替操作される。
On the other hand, between the metal hydride containers 1a and 2a, the metal hydride container 1a
The on-off valve 1 is designed so that the heat medium at the temperature level or calorific value required for the heat load can always be taken out from the metal hydride container 2a even when the hydrogen pressure inside the metal hydride container 2a fluctuates.
8, 19 and 22 are switched.

以下、高温熱媒7の温度が変動する場合を例に
とり、これを具体的に説明する。
Hereinafter, a case in which the temperature of the high-temperature heating medium 7 fluctuates will be taken as an example and this will be specifically explained.

第3図は、熱利用過程における高温熱媒7の温
度の典型的な経時変化を示したものである。高温
熱媒7の温度が90℃程度の場合(第3図中)、
開閉弁18,19を開、開閉弁22を閉として、
第2図中のA点よりB点に示す如く、金属水素化
物容器1aより金属水素化物容器2aに水素配管
17aを介して水素が移動する。高温熱媒7の温
度が低下して例えば80℃以下となつた場合(第3
図中)、金属水素化物容器1a内の水素圧力は
第2図中G点に示す如く、金属水素化物容器2a
内の水素圧力(第2図中のB点)よりも低くなる
ため、そのときの熱媒7の温度を検知して開閉弁
18が閉、開閉弁19,22が開に切り替わるこ
とにより、第2図中F点よりB点に示す如く、金
属水素化物容器24aより金属水素化物容器2a
に水素が移動する。高温熱媒温度が上昇して例え
ば100℃以上となつた場合(第3図中)、そのと
きの熱媒7の温度を検知して開閉弁18,19お
よび22のいずれもが開に切り替わることによ
り、第2図中E点よりB点およびE点よりF点に
示す如く、金属水素化物容器1aより金属水素化
物容器2aおよび金属水素化物容器24aに水素
が移動する。
FIG. 3 shows a typical change over time in the temperature of the high-temperature heating medium 7 during the heat utilization process. When the temperature of the high-temperature heating medium 7 is about 90°C (in Fig. 3),
Opening the on-off valves 18 and 19 and closing the on-off valve 22,
As shown from point A to point B in FIG. 2, hydrogen moves from metal hydride container 1a to metal hydride container 2a via hydrogen pipe 17a. When the temperature of the high-temperature heating medium 7 decreases to, for example, 80°C or less (third
), the hydrogen pressure in the metal hydride container 1a is as shown at point G in FIG.
The temperature of the heating medium 7 at that time is detected and the on-off valve 18 is closed, and the on-off valves 19 and 22 are switched to open. As shown from point F to point B in Figure 2, the metal hydride container 2a is moved from the metal hydride container 24a to the metal hydride container 2a.
Hydrogen moves to. When the high-temperature heating medium temperature rises to, for example, 100°C or more (in Fig. 3), the temperature of the heating medium 7 at that time is detected and all of the on-off valves 18, 19, and 22 are switched to open. As a result, hydrogen moves from the metal hydride container 1a to the metal hydride container 2a and the metal hydride container 24a, as shown from point E to point B and from point E to point F in FIG.

このようにして、熱発生側の高温熱媒7の温度
が変動する場合でも、温度上昇により金属水素化
物容器1aの水素圧力が通常より上昇した場合は
金属水素化物容器24aに圧力上昇分の水素を吸
収させる一方、温度低下により金属水素化物容器
1aの水素圧力が下降した場合はその下降分の水
素を金属水素化物容器24aより放出して補うこ
とにより、常に金属水素化物容器2aに対して第
2図中B点で示される熱負荷の必要とする温度レ
ベルに対応する圧力より高い圧力を保持した水素
が供給され、常に、その水素圧力に対応する安定
した温度レベルの熱媒を熱交換器10aより外部
の熱負荷に供給することが可能となる。
In this way, even if the temperature of the high-temperature heating medium 7 on the heat generation side fluctuates, if the hydrogen pressure in the metal hydride container 1a increases more than usual due to a rise in temperature, the metal hydride container 24a is charged with hydrogen corresponding to the pressure increase. On the other hand, when the hydrogen pressure in the metal hydride container 1a decreases due to a decrease in temperature, the hydrogen corresponding to the decrease is released from the metal hydride container 24a to compensate, so that the metal hydride container 2a is constantly Hydrogen is supplied at a pressure higher than the pressure corresponding to the temperature level required by the heat load shown at point B in Figure 2, and the heat exchanger is always supplied with a heat medium at a stable temperature level corresponding to the hydrogen pressure. It becomes possible to supply external heat load from 10a.

なお、金属水素化物容器1aから金属水素化物
容器2aへの水素移動が終了した場合は、例えば
熱利用側熱媒14の温度低下を検出して各三方切
替弁6,8,13,15,27を切り替え、か
つ、各開閉弁18〜23を熱媒7の温度に応じて
切り替えることにより、上述同様継続した安定し
た温度レベルの熱媒14を熱負荷に供給すること
ができる。
Note that when the hydrogen transfer from the metal hydride container 1a to the metal hydride container 2a is completed, for example, a decrease in the temperature of the heat utilization side heating medium 14 is detected and the three-way switching valves 6, 8, 13, 15, 27 are activated. By switching the on-off valves 18 to 23 according to the temperature of the heat medium 7, it is possible to supply the heat medium 14 at a continuous and stable temperature level to the heat load as described above.

ところで、以上は熱媒7の温度を検出して各開
閉弁18〜23を切替える例について示したが、
各金属水素化物容器1a,1bに圧力センサを取
り付け容器内部の圧力を外部で検知し、この圧力
変動に応じて各開閉弁18〜23の切替制御を行
なうことにより、金属水素化物容器24aに熱発
生側から熱利用側に輸送する水素の余剰分を貯
え、不足分を放出して金属水素化物容器2aに供
給する水素の圧力を一定に保つことができる。こ
れによつて、例えば、熱負荷量が増大して、金属
水素化物容器1aだけでは十分な水素を金属水素
化物容器2aに移動できない場合は金属水素化物
容器24aからも金属水素化物容器2aに水素を
移動させて不足分を補うことができ、金属水素化
物容器2aに対して常に熱負荷量に見合つた水素
を供給することが可能となる。
By the way, although the example above has been shown in which the temperature of the heating medium 7 is detected and each of the on-off valves 18 to 23 is switched,
By attaching a pressure sensor to each metal hydride container 1a, 1b and detecting the pressure inside the container externally, and controlling the switching of each on-off valve 18 to 23 according to this pressure fluctuation, the metal hydride container 24a is heated. The excess hydrogen to be transported from the generation side to the heat utilization side can be stored and the insufficient hydrogen can be released to keep the pressure of hydrogen supplied to the metal hydride container 2a constant. As a result, for example, if the amount of heat load increases and sufficient hydrogen cannot be transferred to the metal hydride container 2a from the metal hydride container 1a alone, hydrogen can be transferred from the metal hydride container 24a to the metal hydride container 2a as well. can be moved to compensate for the shortage, making it possible to always supply hydrogen commensurate with the amount of heat load to the metal hydride container 2a.

なお、上記実施例では、熱発生側金属水素化物
容器1a,1bおよび熱利用側金属水素化物容器
2a,2bにそれぞれ2つの熱交換器を設けた例
について示したが、各金属水素化物容器に収納す
る熱交換器は1つのみとし、各熱交換器に切替弁
を介して熱媒あるいは冷却水などを切替え供給す
るようにしてもよい。
In addition, in the above example, an example was shown in which two heat exchangers were provided in the heat generation side metal hydride containers 1a, 1b and the heat utilization side metal hydride containers 2a, 2b, but each metal hydride container was provided with two heat exchangers. Only one heat exchanger may be housed, and the heat medium or cooling water may be selectively supplied to each heat exchanger via a switching valve.

(ト) 発明の効果 以上のように本発明によれば、熱利用側金属水
素化物容器と熱発生側金属水素化物容器との間に
開閉弁を介して設置した水素配管に、更に蓄熱用
金属水素化物容器を開閉弁を介して水素配管を行
ない、これら3種の金属水素化物容器の間で、各
開閉弁を操作することにより水素流路を切り替え
られるようにしたので、熱利用過程において熱発
生側の温度レベルあるいは供給量が熱利用側の負
荷に対して過剰なときは、熱発生側金属水素化物
容器より、蓄熱用金属水素化物容器へも水素を移
動させて過剰な熱を蓄熱し、逆に熱発生側の温度
レベルあるいは供給量が熱利用側の負荷に対して
不足なときは、蓄熱用金属水素化物容器からも熱
利用側金属水素化物容器に水素を移動させて、不
足分を補うことができる。このため、高温熱媒を
供給する熱源が熱量あるいは温度レベルの不安定
なソーラコレクタあるいは工場廃液などであつて
も、常に一定レベルの温度および熱量で熱利用側
に熱輸送することができ、更に、変動の大きい給
湯などの熱負荷に対しても対応できるようにな
り、安定した効率の良い熱輸送装置を実現するこ
とができる。
(G) Effects of the Invention As described above, according to the present invention, a heat storage metal is added to the hydrogen pipe installed via an on-off valve between the metal hydride container on the heat utilization side and the metal hydride container on the heat generation side. Hydrogen piping is connected through the hydride container's on-off valve, and the hydrogen flow path can be switched between these three types of metal hydride containers by operating each on-off valve. When the temperature level or supply amount on the heat generation side is excessive compared to the load on the heat utilization side, hydrogen is also transferred from the heat generation side metal hydride container to the heat storage metal hydride container to store excess heat. Conversely, when the temperature level or supply amount on the heat generation side is insufficient for the load on the heat utilization side, hydrogen is transferred from the heat storage metal hydride container to the heat utilization side metal hydride container to compensate for the shortage. can be supplemented. Therefore, even if the heat source that supplies the high-temperature heat medium is a solar collector or factory waste liquid that has unstable heat quantity or temperature level, heat can always be transported to the heat utilization side at a constant level of temperature and heat quantity. , it is now possible to cope with heat loads such as hot water supply that have large fluctuations, and it is possible to realize a stable and efficient heat transport device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る熱輸送装置の
概念構成図、第2図は第1図の熱輸送装置に用い
る金属水素化物容器の平衝特性図、第3図は熱利
用過程において、熱発生側金属水素化物容器内の
熱交換器に供給される高温熱媒の温度変化の一例
を示す時間経過図である。 1…熱輸送ユニツト、1a,1b…熱発生側金
属水素化物容器、2…熱再生ユニツト、2a,2
b…熱利用側金属水素化物容器、3a,3b,4
a,4b,10a,10b,11a,11b,2
5a,25b…熱交換器、5,12,26…金属
水素化物、6,8,13,15,27…三方切替
弁、7,14,16…熱媒、9…冷却水、17
a,17b…水素配管、18〜23…開閉弁、2
4a,24b…蓄熱用金属水素化物容器、28…
冷水。
Fig. 1 is a conceptual configuration diagram of a heat transport device according to an embodiment of the present invention, Fig. 2 is a balance characteristic diagram of a metal hydride container used in the heat transport device of Fig. 1, and Fig. 3 is a heat utilization process. FIG. 3 is a time course diagram showing an example of a temperature change of a high-temperature heating medium supplied to a heat exchanger in a heat-generating metal hydride container in FIG. 1...Heat transport unit, 1a, 1b...Heat generation side metal hydride container, 2...Heat regeneration unit, 2a, 2
b...Heat utilization side metal hydride container, 3a, 3b, 4
a, 4b, 10a, 10b, 11a, 11b, 2
5a, 25b... Heat exchanger, 5, 12, 26... Metal hydride, 6, 8, 13, 15, 27... Three-way switching valve, 7, 14, 16... Heat medium, 9... Cooling water, 17
a, 17b...Hydrogen piping, 18-23...Opening/closing valve, 2
4a, 24b...Metal hydride container for heat storage, 28...
Cold water.

Claims (1)

【特許請求の範囲】 1 熱発生個所側に配置された、熱源から熱媒を
流すための第1の熱交換器と冷却水源から冷却水
を流すための第2の熱交換器とが金属水素化物を
密封した耐圧容器内部を気密に貫通配置されてな
る2つの金属水素化物容器と、これらの2つの金
属水素化物容器のうち水素輸送側の容器に設けら
れた前記第1の熱交換器を選択して前記熱源から
熱媒を流すように切り替える第1の切替弁と、前
記2つの金属水素化物容器のうち水素貯蔵側の容
器に設けられた前記第2の熱交換器を選択して前
記冷却水を流すように切り替える第2の切替弁
と、 熱利用個所側に配置された、熱負荷へ熱媒を流
すための第3の熱交換器と低質熱源から熱媒を流
すための第4の熱交換器とが金属水素化物を密封
した耐圧容器内部を気密に貫通配置されてなる2
つの金属水素化物容器と、これらの2つの金属水
素化物容器のうち水素貯蔵側の容器に設けられた
前記第3の熱交換器を選択して前記熱負荷へ熱媒
を流すように切替える第3の切替弁と、前記2つ
の金属水素化物容器のうち水素輸送側の容器に設
けられた前記第4の熱交換器を選択して前記低質
熱源から熱媒を流すように切替える第4の切替弁
と、 前記熱発生個所側に設けられた水素輸送側の容
器と前記熱利用個所側に設けられた水素貯蔵側の
容器および前記熱発生個所側に設けられた水素貯
蔵側の容器と前記熱利用個所側に設けられた水素
輸送側の容器をそれぞれ連絡する2本の水素配管
と、 冷水を流して冷却するための第5の熱交換器と
金属水素化物とが密封した耐圧容器内部を気密に
貫通配置され、それぞれ前記2本の水素配管に接
続される2つの蓄熱用金属水素化物容器と、これ
らの2つの蓄熱用金属水素化物容器のうちの前記
熱発生個所側の金属水素化物容器の水素輸送側に
接続する蓄熱用金属水素化物容器の前記第5の熱
交換器を選択して前記冷水を流すように切替える
第5の切替弁と、前記熱発生個所側の高温媒体か
らの熱媒の温度レベルまたは前記熱発生個所側の
金属水素化物容器内水素圧力に応じて前記熱発生
個所側から前記熱利用個所側に輸送する水素が余
剰するとき前記蓄熱用金属水素化物容器に水素を
貯えるように切替える一方、不足するとき前記蓄
熱用金属水素化物容器から取り出すように切替え
る第6の切替弁とを備えたことを特徴とする金属
水素化物を利用した熱輸送装置。
[Claims] 1. A first heat exchanger for flowing a heat medium from a heat source and a second heat exchanger for flowing cooling water from a cooling water source, which are disposed on the side of a heat generation location, are made of metal hydrogen. two metal hydride containers arranged airtightly penetrating the inside of the pressure-resistant container in which the chemical compound is sealed; and the first heat exchanger provided in the container on the hydrogen transport side of these two metal hydride containers. the first switching valve that selectively switches the heat medium to flow from the heat source; and the second heat exchanger provided in the hydrogen storage side of the two metal hydride containers; A second switching valve for switching the flow of cooling water, a third heat exchanger for flowing the heat medium to the heat load, and a fourth heat exchanger for flowing the heat medium from the low-quality heat source, which are arranged on the heat utilization side. A heat exchanger is disposed airtightly penetrating the inside of the pressure-resistant container in which the metal hydride is sealed.
a third metal hydride container, and a third heat exchanger provided in a container on the hydrogen storage side of these two metal hydride containers is selected and switched to flow a heat medium to the heat load. and a fourth switching valve that selects the fourth heat exchanger provided in the hydrogen transport side of the two metal hydride containers and switches the heat medium to flow from the low-quality heat source. A container on the hydrogen transport side provided on the side of the heat generation location, a container on the hydrogen storage side provided on the side of the heat utilization location, a container on the hydrogen storage side provided on the side of the heat generation location, and the hydrogen storage container provided on the side of the heat utilization location. Two hydrogen pipes connecting the hydrogen transport containers installed at each location, a fifth heat exchanger for cooling by flowing cold water, and a metal hydride make the inside of the sealed pressure container airtight. two heat storage metal hydride containers that are arranged through each other and connected to the two hydrogen pipes, and hydrogen in the metal hydride container on the heat generation side of these two heat storage metal hydride containers. a fifth switching valve that selects the fifth heat exchanger of the heat storage metal hydride container connected to the transport side and switches the cold water to flow therethrough; Hydrogen is stored in the heat storage metal hydride container when there is surplus hydrogen to be transported from the heat generation location to the heat utilization location depending on the temperature level or the hydrogen pressure in the metal hydride container on the heat generation location side. and a sixth switching valve that switches to take out the heat storage metal hydride container when the heat storage metal hydride container runs out.
JP61028982A 1986-02-14 1986-02-14 Heat transporting system utilizing metallic hydride Granted JPS62190392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028982A JPS62190392A (en) 1986-02-14 1986-02-14 Heat transporting system utilizing metallic hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028982A JPS62190392A (en) 1986-02-14 1986-02-14 Heat transporting system utilizing metallic hydride

Publications (2)

Publication Number Publication Date
JPS62190392A JPS62190392A (en) 1987-08-20
JPH0477222B2 true JPH0477222B2 (en) 1992-12-07

Family

ID=12263621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028982A Granted JPS62190392A (en) 1986-02-14 1986-02-14 Heat transporting system utilizing metallic hydride

Country Status (1)

Country Link
JP (1) JPS62190392A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135167B2 (en) * 2013-02-13 2017-05-31 株式会社豊田中央研究所 Regenerator structure, chemical heat storage system

Also Published As

Publication number Publication date
JPS62190392A (en) 1987-08-20

Similar Documents

Publication Publication Date Title
US4044819A (en) Hydride heat pump
JP2652456B2 (en) Operating method of heat utilization system using hydrogen storage alloy
US4413670A (en) Process for the energy-saving recovery of useful or available heat from the environment or from waste heat
US5409676A (en) Heat transfer system utilizing hydrogen absorbing metals
JPH0477222B2 (en)
US4589479A (en) Hot water supply unit
FR2687462A1 (en) DEVICE FOR THE PRODUCTION OF COLD AND / OR HEAT BY SOLID-GAS REACTION.
JPS59150253A (en) Apparatus for storing and utilizing solar heat
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
FR3004246A1 (en) THERMOCHEMICAL STORAGE SYSTEM HAVING IMPROVED STORAGE EFFICIENCY
JPS638391B2 (en)
JPS6298196A (en) Heat transfer system utilizing metal hydride
WO2011105989A2 (en) Reversible hydride thermal energy storage cell optimize for solar applications
JPH0355749B2 (en)
JPS59219648A (en) Hot water supply system
JPH07113590A (en) Heat accumulation device for chemical heat accumulating material
JP2002270219A (en) Mutual interchanging method of heat energy storage capacity and electric energy storage capacity
JPS62196597A (en) System utilizing heat
JPH0472141B2 (en)
JPS6329182B2 (en)
CN112815555A (en) Photo-thermal power generation system
JPS6223239B2 (en)
JPH0477221B2 (en)
JPS5913514Y2 (en) heat storage tank
JP2000297938A (en) Heating system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees