JPH0476991B2 - - Google Patents

Info

Publication number
JPH0476991B2
JPH0476991B2 JP62209074A JP20907487A JPH0476991B2 JP H0476991 B2 JPH0476991 B2 JP H0476991B2 JP 62209074 A JP62209074 A JP 62209074A JP 20907487 A JP20907487 A JP 20907487A JP H0476991 B2 JPH0476991 B2 JP H0476991B2
Authority
JP
Japan
Prior art keywords
acid
biphenyltetracarboxylic dianhydride
inert gas
biphenyltetracarboxylic
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62209074A
Other languages
Japanese (ja)
Other versions
JPS6450876A (en
Inventor
Katsuzo Harada
Takeshi Hirayu
Masayuki Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP20907487A priority Critical patent/JPS6450876A/en
Publication of JPS6450876A publication Critical patent/JPS6450876A/en
Publication of JPH0476991B2 publication Critical patent/JPH0476991B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の分野] 本発明は、ビフエニルテトラカルボン酸類を加
熱無水化し、高純度のビフエニルテトラカルボン
酸二無水物を製造する方法の改良に関する。 [発明の背景] 耐熱性樹脂として優れた特性を有する芳香族ポ
リイミドは、ビフエニルテトラカルボン酸二無水
物を原料とすることにより工業的に有利に製造で
きることは、既に良く知られている。 ビフエニルテトラカルボン酸二無水物は、o−
フタル酸ジメチルなどのo−フタル酸ジエステル
をパラジウム系触媒を用いて二量化し、精製、晶
析、加水分解してビフエニルテトラカルボン酸と
したのち、該ビフエニルテトラカルボン酸を高温
に加熱して、無水化することにより得られる。 上記のビフエニルテトラカルボン酸を高温にま
で加熱し無水化することについては、例えば、窒
素雰囲気下に常圧〜40mmHgの減圧下で100〜500
℃に加熱して行なう方法が、特公昭57−15098号
公報に記載されている。 しかしながら、本発明者の研究によると、芳香
族ジアミン類と上記のような従来の方法で得られ
たビフエニルテトラカルボン酸二無水物とを共重
合させて芳香族ポリイミドを合成した場合に、重
合反応液の粘度が充分に高くならず、高分子量の
芳香族ポリイミドが得られないという問題がある
ことが判明した。 [発明の目的] 本発明は、高分子量の芳香族ポリイミドを製造
するためのモノマー原料のひとつとして有用な、
高純度のビフエニルテトラカルボン酸二無水物を
工業的に有利に製造することのできる方法を提供
することを目的とする。 [発明の要旨] 本発明者は、芳香族ジアミン類と従来の方法で
得られたビフエニルテトラカルボン酸二無水物と
を共重合させて芳香族ポリイミドを合成しても重
合反応液の粘度が充分に高くならないことの原因
について検討を加えた。その結果、ビフエニルテ
トラカルボン酸二無水物に不純物として混在して
いるビフエニルトリカルボン酸(以下、単にトリ
カルボン酸ともいう)の存在量が増加すると、重
合反応液の粘度の上昇が妨げられる、すなわち高
分子量の芳香族ポリイミドの生成が妨げられるこ
とが判明した。そして、無水化工程を含む加熱操
作を特定の加熱条件のもとに実施することにより
トリカルボン酸の混在量が大幅に低減した高純度
ビフエニルテトラカルボン酸二無水物が得られ、
このような高純度ビフエニルテトラカルボン酸二
無水物を芳香族ジアミンと共重合した場合に、高
分子量の芳香族ポリアミドが得られることを見い
出した。この発明については、既に昭和62年6月
25日に特願昭62−159246号として出願されてい
る。 本発明者は、ビフエニルトリカルボン酸の混在
量の低いビフエニルテトラカルボン酸二無水物を
得る方法について更に研究を重ねた結果、ビフエ
ニルテトラカルボン酸を加熱処理して無水化する
工程の進行と同時に、窒素ガスなどの不活性気体
を反応混合物に流通下に接触させ、この流通する
不活性気体に、副生するトリカルボン酸を随伴さ
せて反応混合物から除去することにより、トリカ
ルボン酸の混在量が顕著に低減した高純度のビフ
エニルテトラカルボン酸二無水物が得られること
を新たに見出した。 従つて、本発明は、ビフエニルテトラカルボン
酸を常圧もしくは減圧下、250℃以上の無水化温
度で加熱処理することにより無水化して、ビフエ
ニルテトラカルボン酸二無水物を生成させるに際
して、該無水化操作は、原料のビフエニルテトラ
カルボン酸1m3当たり、2〜20Nm3/時間の流通
量で流通する不活性気体に、250〜300℃の温度で
反応混合物を8〜40時間接触させて、副生するビ
フエニルトリカルボン酸を反応混合物より除去し
ながら実施することを特徴とする高純度ビフエニ
ルテトラカルボン酸二無水物の製造法にある。 [発明の詳細な記述] 本発明において、高純度ビフエニルテトラカル
ボン酸二無水物は、次のようにして製造すること
ができる。 高純度ビフエニルテトラカルボン酸二無水物の
原料となるビフエニルテトラカルボン酸は、o−
フタル酸ジメチルなどのo−フタル酸ジ低級アル
キルエステルを二量化したのち、これを加水分解
することにより得ることができる。 o−フタル酸ジ低級アルキルの二量化によつて
得られるビフエニルテトラカルボン酸は、通常、
3,3′,4,4′−体、2,2′,3,3′−体、およ
び2,3,3′,4′−体の三種の異性体の混合物で
あり、上述のビフエニルテトラカルボン酸結晶は
これら三種のうちのいずれか一種を他の二種から
分離した結晶状態のものであることが望ましい。
本発明は、ビフエニルテトラカルボン酸を3,
3′,4,4′−体である場合に、特に有利に適用す
ることができる。 前述の精製されたビフエニルテトラカルボン酸
は、精製ののちさらに、予備的に加熱処理して、
結晶に含まれる付着水および結晶水を除去したも
のであつてもよい。 本発明の無水化操作を実施する場合には、不活
性気体導入管、排気管、そして撹拌装置を備えた
反応槽が一般に利用される。 ビフエニルテトラカルボン酸の無水化は、必要
であれば撹拌しながら、 (1) 酸素などの活性気体の存在しない不活性気体
(好ましくは窒素ガス)を反応混合物に接触さ
せながら、 (2) 常圧もしくは減圧下、好ましくは常圧〜40mm
Hgの減圧下、さらに、 (3) 250〜300℃、好ましくは255〜280℃の無水化
温度で、 (4) 8〜40時間、好ましくは10〜30時間、 加熱処理をすることによつて行なう。 本発明では、加熱処理は、ビフエニルテトラカ
ルボン酸の無水化を実質的に完全に行ない、か
つ、副性するビフエニルトリカルボン酸類を昇華
除去するために充分な時間をかけて行なうことが
好ましく、前述の時間の範囲にて行なうことが好
ましい。 本発明では、ビフエニルテトラカルボン酸を前
述のように加熱処理することによつて、ビフエニ
ルテトラカルボン酸の隣接する一対のカルボキシ
ル基から各一つの水分子が脱水されてカルボキシ
ル基の無水環を形成する縮合が行なわれる。その
結果、ビフエニルテトラカルボン酸二無水物が生
成されるとともに、副生したビフエニルトリカル
ボン酸(例えば、3,3′,4−ビフエニルトリカ
ルボン酸、3,4,4′−ビフエニルトリカルボン
酸、または、それらの酸無水物など)が、不活性
気体に随伴して、ビフエニルテトラカルボン酸二
無水物から除去される。なお、原料のビフエニル
テトラカルボン酸中にトリカルボン酸が不純物と
して存在する場合もあり、この場合には、そのト
リカルボン酸の少なくとも一部は、同様にして不
活性気体に随伴して反応混合物から除去される。 本発明における、流通する不活性気体に反応混
合物を接触させる操作は、たとえば、反応槽中の
上部に不活性気体を導入して、反応混合物の上表
面、および反応混合物の蒸気に、流通下にある不
活性気体を接触させる方法などを利用することが
できる。 反応混合物に接触してトリカルボン酸などが随
伴している不活性気体は、排気管などの排出系よ
り排出されるが、その場合排出系を加熱下におく
ことが望ましい。 排出系を加熱しない場合には、いつたん昇華し
て不活性気体に随伴したトリカルボン酸が排出系
で冷却され、凝固して反応槽内に逆流することが
あるため、上記のような排出系の加熱は好ましい
実施態様である。排気管などの排出系の加熱温度
は、ビフエニルトリカルボン酸類が凝固しない温
度範囲であればよいが、200〜350℃の範囲にて行
なうことが好ましい。排出系の加熱方法は、特に
限定されるものではなく、例えば、反応槽から排
気口に至る、排気管のほぼ全長をジヤケツトで覆
い、その内部に熱媒体を流通させて行なうことが
できる。 不活性気体の流通量は、前述の無水化加熱処理
を行なう間に、ビフエニルテトラカルボン酸1m3
(見掛け容量)あたり、2〜20Nm3/時の範囲と
なる量であることが必要である。前記の範囲の量
で不活性気体を反応槽内に流通することによつ
て、ビフエニルトリカルボン酸の昇華が促進さ
れ、これによりトリカルボン酸の除去がさらに容
易となる。該不活性気体は、前述の反応槽内の雰
囲気を著しく冷却することのない程度に、好まし
くは200〜350℃の温度範囲に加熱して、反応槽に
導入することが望ましい。不活性気体を加熱する
ことなしに反応槽内に導入すると、昇華して気体
状態にあるビフエニルトリカルボン酸の一部が凝
固し、生成物に混在するビフエニルトリカルボン
酸の量が増大することがある。導入する不活性気
体の加熱は、例えば、排気管の加熱と同様にして
導入管をジヤケツトで覆い、その中に熱媒体を流
通させて行なうことができる。 前述の反応槽、排気管などの加熱は、例えば、
アルキルベンゼン、アルキルナフタレン、アルキ
ルジフエニル、ジフエニルエーテル、水素化トリ
フエニル、ジベンジルトルエンなどの芳香族系化
合物の液体または蒸気、あるいはパラフイン系鉱
油、アルキルアロマ系鉱油などの鉱油の液体から
なる耐熱性熱媒体を使用して行なうことが好まし
い。 なお、熱源としては、本発明における各加熱処
理における温度のコントロールが本発明の製造方
法の要件の範囲内で可能であれば、電気抵抗ヒー
ター、赤外線ヒーターなどの電気エネルギーであ
つてもよい。 上述のようにして得られるビフエニルテトラカ
ルボン酸二無水物は、通常は、ビフエニルトリカ
ルボン酸類の含有量が0.1重量%未満となり、さ
らに加熱処理の条件を選択することにより、0.08
重量%未満、更に0.05重量%未満になる。このよ
うな高純度のビフエニルテトラカルボン酸二無水
物と芳香族ジアミン類を、公知の方法により共重
合させると、重合反応液の粘度が上がり、高分子
量の芳香族ポリイミドが生成する。 重合反応液の粘度は、通常、対数粘度で示され
る。対数粘度は、次式; 対数粘度=自然対数(溶液粘度/溶媒粘度)/溶液濃
度 によつて表わされる値であり、ポリイミドの分子
量と高い相関がある。 ビフエニルテトラカルボン酸二無水物とと芳香
族ジアミン類の共重合の場合には、得られる芳香
族ポリイミドは対数粘度(測定温度:30℃、濃
度:0.5g/100ml溶媒(N−メチル−2−ピロリ
ドン))が、通常2.5〜7.0、さらに3.0〜5.0である
ことが好ましい。 [発明の効果] 本発明の高純度ビフエニルテトラカルボン酸二
無水物は、不純物のビフエニルトリカルボン酸の
混在量が極めて低く、該無水物と芳香族ジアミン
類とを共重合させることにより、高分子量の芳香
族ポリイミドを得ることができる。 次に本発明の実施例および比較例を示す。 実施例 1 不活性気体導入管および排気管が付設され、デ
イスク型撹拌装置を内蔵し、耐熱性熱媒体を流通
するためのジヤケツトにより、前記不活性気体導
入管、排気管および反応槽外壁がほぼ覆われてい
る反応槽に、精製された3,3′,4,4′−ビフエ
ニルテトラカルボン酸の結晶を280Kg(見掛け容
量:約0.4m3)を導入する。 次に反応槽を加熱し、原料を常圧で撹拌し、不
活性気体導入管および排気管を、300℃に加熱し、
窒素ガスを4Nm2/時にて反応混合物の上表面に
流通させながら、反応槽の内容物(3,3′,4,
4′−ビフエニルテトラカルボン酸)を280℃の無
水化温度に20時間維持し、これにより3,3′,
4,4′−ビフエニルテトラカルボン酸を無水化し
て3,3′,4,4′−ビフエニルテトラカルボン酸
二無水物が247Kg生成した。 次に、撹拌機及び窒素流通管を取付けた300ml
容三ツ口フラスコに、前述のようにして得られた
3,3′,4,4′−ビフエニルテトラカルボン酸二
無水物11.76Kg、ジアミノジフエニルエーテル
8.00g、及び、N−メチル−2−ピロリドン
177.84gを仕込み、窒素雰囲気下、30℃で5.5時
間撹拌して芳香族ポリイミドを合成したときの重
合反応液の粘度を測定し、前記の式から対数粘度
を算出した。 無水化の結果及び重合反応液の対数粘度を第1
表に示す。 比較例 1 反応槽中の気体を一旦窒素ガスに置換したのち
には、窒素ガスの流通を実施しなかつた以外は、
実施例1と同じ反応装置と反応条件で無水化操作
を行ない、3,3′,4,4′−ビフエニルテトラカ
ルボン酸二無水物を247Kg得た。 次に、この3,3′,4,4′−ビフエニルテトラ
カルボン酸二無水物を用いて、実施例1と同様に
して芳香族ポリイミドの合成を行ない、重合反応
液の対数粘度を算出した。 無水化の結果及び重合反応液の対数粘度を第1
表に示す。
[Field of the Invention] The present invention relates to an improvement in a method for producing high purity biphenyltetracarboxylic dianhydride by heating and anhydrifying biphenyltetracarboxylic acids. [Background of the Invention] It is already well known that aromatic polyimides having excellent properties as heat-resistant resins can be industrially advantageously produced by using biphenyltetracarboxylic dianhydride as a raw material. Biphenyltetracarboxylic dianhydride is o-
O-phthalic acid diester such as dimethyl phthalate is dimerized using a palladium-based catalyst, purified, crystallized, and hydrolyzed to produce biphenyltetracarboxylic acid, and then the biphenyltetracarboxylic acid is heated to a high temperature. It can be obtained by making it anhydrous. To anhydride the above-mentioned biphenyltetracarboxylic acid by heating it to a high temperature, for example, under a nitrogen atmosphere and a reduced pressure of 100 to 500 mmHg,
A method of heating to 0.degree. C. is described in Japanese Patent Publication No. 57-15098. However, according to the research of the present inventor, when aromatic polyimide is synthesized by copolymerizing aromatic diamines and biphenyltetracarboxylic dianhydride obtained by the conventional method as described above, polymerization It has been found that there is a problem in that the viscosity of the reaction solution is not sufficiently high and a high molecular weight aromatic polyimide cannot be obtained. [Object of the Invention] The present invention provides monomer raw materials useful as one of the monomer raw materials for producing high molecular weight aromatic polyimide.
It is an object of the present invention to provide a method that can industrially advantageously produce high-purity biphenyltetracarboxylic dianhydride. [Summary of the Invention] The present inventor has discovered that even if aromatic polyimide is synthesized by copolymerizing aromatic diamines and biphenyltetracarboxylic dianhydride obtained by a conventional method, the viscosity of the polymerization reaction solution remains low. We investigated the reasons why the temperature did not rise to a sufficiently high level. As a result, when the amount of biphenyltricarboxylic acid (hereinafter simply referred to as tricarboxylic acid) that is mixed as an impurity in biphenyltetracarboxylic dianhydride increases, the increase in the viscosity of the polymerization reaction solution is inhibited. It was found that the formation of high molecular weight aromatic polyimides was hindered. Then, by carrying out the heating operation including the anhydration step under specific heating conditions, high purity biphenyltetracarboxylic dianhydride with a significantly reduced amount of tricarboxylic acid mixed in is obtained,
It has been found that a high molecular weight aromatic polyamide can be obtained when such high purity biphenyltetracarboxylic dianhydride is copolymerized with an aromatic diamine. This invention was already announced in June 1986.
It was filed on the 25th as Japanese Patent Application No. 159246/1983. As a result of further research into a method for obtaining biphenyltetracarboxylic dianhydride with a low amount of biphenyltricarboxylic acid, the inventors have discovered that the progress of the process of heat-treating biphenyltetracarboxylic acid to anhydride. At the same time, an inert gas such as nitrogen gas is brought into contact with the reaction mixture while flowing, and by-product tricarboxylic acid is removed from the reaction mixture by accompanying the flowing inert gas, thereby reducing the amount of tricarboxylic acid mixed in. It has been newly discovered that highly purified biphenyltetracarboxylic dianhydride with significantly reduced purity can be obtained. Therefore, the present invention provides a method for producing biphenyltetracarboxylic dianhydride by anhydrating biphenyltetracarboxylic acid by heat-treating it at an anhydration temperature of 250°C or higher under normal pressure or reduced pressure. The anhydration operation is carried out by contacting the reaction mixture at a temperature of 250 to 300°C for 8 to 40 hours with an inert gas flowing at a flow rate of 2 to 20 Nm 3 / hour per 1 m 3 of biphenyltetracarboxylic acid as a raw material. , a method for producing high-purity biphenyltetracarboxylic dianhydride, characterized in that the process is carried out while removing by-produced biphenyltricarboxylic acid from the reaction mixture. [Detailed Description of the Invention] In the present invention, high purity biphenyltetracarboxylic dianhydride can be produced as follows. Biphenyltetracarboxylic acid, which is a raw material for high-purity biphenyltetracarboxylic dianhydride, is o-
It can be obtained by dimerizing an o-phthalic acid di-lower alkyl ester such as dimethyl phthalate and then hydrolyzing this. Biphenyltetracarboxylic acid obtained by dimerization of di-lower alkyl o-phthalate is usually
It is a mixture of three types of isomers: 3,3',4,4'-isomer, 2,2',3,3'-isomer, and 2,3,3',4'-isomer, and the above-mentioned biphenyl The tetracarboxylic acid crystal is preferably in a crystalline state in which one of these three types is separated from the other two types.
The present invention provides biphenyltetracarboxylic acid with 3,
It can be particularly advantageously applied when it is a 3', 4, 4'-configuration. After the above-mentioned purified biphenyltetracarboxylic acid is purified, it is further preliminarily heat-treated to obtain
It may be one in which adhering water and crystal water contained in the crystals have been removed. When carrying out the dehydration operation of the present invention, a reaction tank equipped with an inert gas introduction pipe, an exhaust pipe, and a stirring device is generally used. The anhydrification of biphenyltetracarboxylic acid is carried out by (1) contacting the reaction mixture with an inert gas (preferably nitrogen gas) in the absence of active gases such as oxygen, with stirring if necessary, and (2) with constant stirring. Under pressure or reduced pressure, preferably normal pressure ~ 40mm
Under reduced pressure of Hg, (3) at an anhydration temperature of 250 to 300°C, preferably 255 to 280°C, and (4) by heat treatment for 8 to 40 hours, preferably 10 to 30 hours. Let's do it. In the present invention, the heat treatment is preferably carried out over a sufficient period of time to substantially completely anhydride biphenyltetracarboxylic acid and to sublimate and remove secondary biphenyltricarboxylic acids, It is preferable to carry out the treatment within the above-mentioned time range. In the present invention, by heat-treating biphenyltetracarboxylic acid as described above, one water molecule is dehydrated from each adjacent pair of carboxyl groups of biphenyltetracarboxylic acid, and the anhydride ring of the carboxyl group is dehydrated. A condensation to form is carried out. As a result, biphenyltetracarboxylic dianhydride is produced, and biphenyltricarboxylic acid (e.g., 3,3',4-biphenyltricarboxylic acid, 3,4,4'-biphenyltricarboxylic acid) is produced as a by-product. , or acid anhydrides thereof) are removed from the biphenyltetracarboxylic dianhydride accompanied by an inert gas. Note that tricarboxylic acid may exist as an impurity in biphenyltetracarboxylic acid as a raw material, and in this case, at least a portion of the tricarboxylic acid is removed from the reaction mixture accompanied by an inert gas. be done. In the present invention, the operation of bringing the reaction mixture into contact with a flowing inert gas can be carried out, for example, by introducing an inert gas into the upper part of the reaction tank and touching the upper surface of the reaction mixture and the vapor of the reaction mixture with the flowing inert gas. A method such as contacting with a certain inert gas can be used. The inert gas that comes into contact with the reaction mixture and is accompanied by tricarboxylic acid is discharged from an exhaust system such as an exhaust pipe, but in this case it is desirable to heat the exhaust system. If the exhaust system is not heated, the tricarboxylic acid that sublimes and accompanies the inert gas may cool in the exhaust system, solidify, and flow back into the reaction tank. Heating is a preferred embodiment. The heating temperature of the exhaust system such as the exhaust pipe may be within a temperature range at which the biphenyltricarboxylic acids do not solidify, but it is preferably within the range of 200 to 350°C. The heating method for the exhaust system is not particularly limited, and can be carried out, for example, by covering almost the entire length of the exhaust pipe from the reaction tank to the exhaust port with a jacket and flowing a heat medium through the jacket. The flow rate of the inert gas was 1 m 3 of biphenyltetracarboxylic acid during the above-mentioned anhydration heat treatment.
The amount needs to be in the range of 2 to 20 Nm 3 /hour (apparent capacity). By flowing an inert gas into the reaction tank in an amount within the above range, the sublimation of the biphenyltricarboxylic acid is promoted, thereby making it easier to remove the tricarboxylic acid. It is desirable that the inert gas be heated to a temperature range of 200 to 350° C. without significantly cooling the atmosphere inside the reaction tank, and then introduced into the reaction tank. If an inert gas is introduced into the reaction tank without heating, some of the biphenyltricarboxylic acid that is in the gaseous state will sublimate and solidify, increasing the amount of biphenyltricarboxylic acid mixed in the product. be. The inert gas to be introduced can be heated, for example, by covering the introduction pipe with a jacket and flowing a heat medium through it in the same way as heating the exhaust pipe. For example, the heating of the reaction tank, exhaust pipe, etc.
Heat-resistant heat-resistant liquids or vapors of aromatic compounds such as alkylbenzenes, alkylnaphthalenes, alkyl diphenyls, diphenyl ethers, hydrogenated triphenyls, and dibenzyltoluenes, or mineral oil liquids such as paraffinic mineral oils and alkyl aromatic mineral oils. Preferably, this is carried out using a medium. The heat source may be electrical energy such as an electric resistance heater or an infrared heater, as long as the temperature in each heat treatment of the present invention can be controlled within the requirements of the manufacturing method of the present invention. The biphenyltetracarboxylic dianhydride obtained as described above usually has a biphenyltricarboxylic acid content of less than 0.1% by weight, and by selecting the heat treatment conditions, the content of biphenyltricarboxylic acids can be reduced to 0.08% by weight.
Less than 0.05% by weight, even less than 0.05% by weight. When such highly purified biphenyltetracarboxylic dianhydride and aromatic diamine are copolymerized by a known method, the viscosity of the polymerization reaction solution increases and a high molecular weight aromatic polyimide is produced. The viscosity of the polymerization reaction solution is usually expressed as logarithmic viscosity. Logarithmic viscosity is a value expressed by the following formula: Logarithmic viscosity=natural logarithm (solution viscosity/solvent viscosity)/solution concentration, and has a high correlation with the molecular weight of polyimide. In the case of copolymerization of biphenyltetracarboxylic dianhydride and aromatic diamines, the resulting aromatic polyimide has a logarithmic viscosity (measurement temperature: 30°C, concentration: 0.5 g/100 ml solvent (N-methyl-2 -pyrrolidone)) is usually 2.5 to 7.0, more preferably 3.0 to 5.0. [Effect of the invention] The high-purity biphenyltetracarboxylic dianhydride of the present invention has an extremely low amount of impurity biphenyltricarboxylic acid, and has a high purity by copolymerizing the anhydride and aromatic diamines. Aromatic polyimides of molecular weight can be obtained. Next, Examples and Comparative Examples of the present invention will be shown. Example 1 An inert gas inlet pipe and an exhaust pipe are attached, a disc-type stirring device is built in, and a jacket for circulating a heat-resistant heat medium is provided so that the inert gas inlet pipe, exhaust pipe, and outer wall of the reaction tank are almost completely covered. 280 kg (apparent volume: about 0.4 m 3 ) of purified crystals of 3,3',4,4'-biphenyltetracarboxylic acid are introduced into the covered reactor. Next, the reaction tank is heated, the raw materials are stirred at normal pressure, and the inert gas introduction pipe and exhaust pipe are heated to 300°C.
The contents of the reaction vessel ( 3 , 3', 4,
4′-biphenyltetracarboxylic acid) was maintained at an anhydration temperature of 280°C for 20 hours, thereby producing 3,3′,
4,4'-biphenyltetracarboxylic acid was anhydrified to produce 247 kg of 3,3',4,4'-biphenyltetracarboxylic dianhydride. Next, 300ml with a stirrer and nitrogen flow pipe attached.
In a three-neck flask were placed 11.76 kg of 3,3',4,4'-biphenyltetracarboxylic dianhydride obtained as described above and diaminodiphenyl ether.
8.00g and N-methyl-2-pyrrolidone
177.84 g was charged and stirred for 5.5 hours at 30° C. under a nitrogen atmosphere to synthesize aromatic polyimide. The viscosity of the polymerization reaction solution was measured, and the logarithmic viscosity was calculated from the above formula. The result of anhydration and the logarithmic viscosity of the polymerization reaction solution are
Shown in the table. Comparative Example 1 Except that after the gas in the reaction tank was once replaced with nitrogen gas, the flow of nitrogen gas was not carried out.
Anhydration was carried out using the same reactor and reaction conditions as in Example 1 to obtain 247 kg of 3,3',4,4'-biphenyltetracarboxylic dianhydride. Next, using this 3,3',4,4'-biphenyltetracarboxylic dianhydride, aromatic polyimide was synthesized in the same manner as in Example 1, and the logarithmic viscosity of the polymerization reaction solution was calculated. . The result of anhydration and the logarithmic viscosity of the polymerization reaction solution are
Shown in the table.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ビフエニルテトラカルボン酸を常圧もしくは
減圧下で加熱処理することにより無水化して、ビ
フエニルテトラカルボン酸二無水物を生成させる
に際して、 該無水化操作は、原料のビフエニルテトラカル
ボン酸1m3当たり、2〜20Nm3/時間の流通量で
流通する不活性気体に、250〜300℃の温度で反応
混合物を8〜40時間接触させて、副生するビフエ
ニルトリカルボン酸を反応混合物より除去しなが
ら実施することを特徴とする高純度ビフエニルテ
トラカルボン酸二無水物の製造法。 2 反応混合物に接触した不活性気体を、加熱下
にある排出系を利用して反応系から排出させる特
許請求の範囲第1項記載の高純度ビフエニルテト
ラカルボン酸二無水物の製造法。 3 反応混合物に接触した不活性気体を、200〜
350℃の加熱下にある排出系を利用して反応系か
ら排出させる特許請求の範囲第1項記載の高純度
ビフエニルテトラカルボン酸二無水物の製造法。
[Scope of Claims] 1. When biphenyltetracarboxylic acid is anhydrified by heat treatment under normal pressure or reduced pressure to produce biphenyltetracarboxylic dianhydride, the anhydration operation is performed by The reaction mixture is brought into contact with an inert gas flowing at a flow rate of 2 to 20 Nm 3 /hour per 1 m 3 of enyltetracarboxylic acid at a temperature of 250 to 300°C for 8 to 40 hours to produce biphenyltricarboxylic acid as a by-product. 1. A method for producing high-purity biphenyltetracarboxylic dianhydride, which is carried out while removing from a reaction mixture. 2. The method for producing high-purity biphenyltetracarboxylic dianhydride according to claim 1, wherein the inert gas that has come into contact with the reaction mixture is discharged from the reaction system using a heated discharge system. 3 The inert gas in contact with the reaction mixture is
The method for producing high-purity biphenyltetracarboxylic dianhydride according to claim 1, which comprises discharging from the reaction system using a discharging system heated at 350°C.
JP20907487A 1987-08-21 1987-08-21 Production of high-purity biphenyltetracarboxylic acid dianhydride Granted JPS6450876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20907487A JPS6450876A (en) 1987-08-21 1987-08-21 Production of high-purity biphenyltetracarboxylic acid dianhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20907487A JPS6450876A (en) 1987-08-21 1987-08-21 Production of high-purity biphenyltetracarboxylic acid dianhydride

Publications (2)

Publication Number Publication Date
JPS6450876A JPS6450876A (en) 1989-02-27
JPH0476991B2 true JPH0476991B2 (en) 1992-12-07

Family

ID=16566825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20907487A Granted JPS6450876A (en) 1987-08-21 1987-08-21 Production of high-purity biphenyltetracarboxylic acid dianhydride

Country Status (1)

Country Link
JP (1) JPS6450876A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503079B2 (en) * 1989-08-14 1996-06-05 三菱化学株式会社 Method for producing biphenyltetracarboxylic dianhydride
JP6789617B2 (en) 2015-06-25 2020-11-25 キヤノン株式会社 Method for producing carboxylic acid anhydride, method for producing carboxylic acid imide, and method for producing electrophotographic photosensitive member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715098A (en) * 1980-06-29 1982-01-26 Ikegai Corp Device for driving paddle ship
JPS6081154A (en) * 1983-10-13 1985-05-09 Ube Ind Ltd Recovering process
JPS61249977A (en) * 1985-04-30 1986-11-07 Mitsubishi Chem Ind Ltd Production of biphenyltetracarboxylic acid dianhydride of high purity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715098A (en) * 1980-06-29 1982-01-26 Ikegai Corp Device for driving paddle ship
JPS6081154A (en) * 1983-10-13 1985-05-09 Ube Ind Ltd Recovering process
JPS61249977A (en) * 1985-04-30 1986-11-07 Mitsubishi Chem Ind Ltd Production of biphenyltetracarboxylic acid dianhydride of high purity

Also Published As

Publication number Publication date
JPS6450876A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
WO1993004033A1 (en) Fluorine-containing diamines, polyamides, and polyimides
JPS63215725A (en) Manufacture of polyimide
US4958002A (en) High purity crystals of biphenyltetracarboxylic dianhydride and process for their preparation
US4914166A (en) Non-fouling liquid nitrogen cooled polymerization process
JPH0476991B2 (en)
JPS6259280A (en) Production of pyromellitic anhydride
JP4977989B2 (en) Process for producing 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride
CA1339574C (en) Process for the preparation of high-purity 5,5'-[2,2,2,- trifluoro-1- (trifluoromethyl)-ethylidene]bis-1,3-isobenzofurandione
JP3087993B2 (en) Method for producing aromatic polyamic acid
JPS61249977A (en) Production of biphenyltetracarboxylic acid dianhydride of high purity
US2438369A (en) Production of dicarboxylic acids or anhydrides thereof
JP4913962B2 (en) Process for producing phenylethynylphthalic anhydride derivative
JP2520958B2 (en) Polyimide coating compositions based on meta-dialkyl dihydrogen pyromellitic acid and aromatic diamines
WO1980000149A1 (en) Process for preparing 3,4,3',4'-benzophenonetetra-carboxylic dianhydride
JPH01104063A (en) High-purity biphenyltetracarboxylic acid dianhydride-containing product and production thereof
JP3377092B2 (en) Biphenyltetracarboxylic acid heat anhydride product
JP4048689B2 (en) Method for producing 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
JP2005516999A (en) Lactic acid oligomerization method
JPH08134057A (en) Production of high-purity biphenyltetracarboxylic acid dianhydride
JP3433482B2 (en) Method for producing bismaleimide
JPH0377865A (en) Production of aromatic cyclic polyimide
US3632830A (en) Process for the purification of crude bis-(beta-hydroxyethyl) terephthalate
JPS63303937A (en) Manufacture of propynol
US4684738A (en) Process for producing benzophenone tetracarboxylic dianhydride
JP2003335768A (en) High-purity biphenyltetracarboxylic acid dianhydride and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 15