JPH0377865A - Production of aromatic cyclic polyimide - Google Patents

Production of aromatic cyclic polyimide

Info

Publication number
JPH0377865A
JPH0377865A JP1214390A JP21439089A JPH0377865A JP H0377865 A JPH0377865 A JP H0377865A JP 1214390 A JP1214390 A JP 1214390A JP 21439089 A JP21439089 A JP 21439089A JP H0377865 A JPH0377865 A JP H0377865A
Authority
JP
Japan
Prior art keywords
reaction
polyimide
acid
solvent
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1214390A
Other languages
Japanese (ja)
Other versions
JPH0774199B2 (en
Inventor
Toshihiro Mizutani
水谷 利洋
Tsuratake Fujitani
貫剛 藤谷
Mikiro Nakazawa
中澤 幹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP1214390A priority Critical patent/JPH0774199B2/en
Publication of JPH0377865A publication Critical patent/JPH0377865A/en
Publication of JPH0774199B2 publication Critical patent/JPH0774199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrrole Compounds (AREA)

Abstract

PURPOSE:To obtain the title high purity compound useful as an adhesive in high yield and to suppress by-products by continuously or intermittently adding a specific aromatic polyamide to a reaction system comprising an alpha,beta-unsaturated dicarboxylic acid anhydride and a mixed solvent in the presence of an acid catalyst under reflux and dehydration under heating. CONSTITUTION:100 pts.wt. aromatic polyamide containing two or more primary amino group in the molecule is continuously or intermittently added to a reaction system comprising an alpha,beta-unsaturated dicarboxylic acid anhydride (the ratio to primary amino group of the aromatic polyamide is preferably 1-20 times mol) and 100-2,000 pts.wt. mixed solvent (comprising 60-99wt.% nonpolar solvent having azeotrope with water and 40-1wt.% aprotic polar solvent) in the presence of an acid catalyst under reflux and dehydration under heating to give an aromatic polyimide. The polyimide is crystallized and separated by cooling the reaction mixture prepared by the method to increase profits such as elimination of large amount of waste water treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、芳香族環状ポリイミド類の製造方法に関する
。芳香族環状ポリイミド類は、接層剤、WJ層材料、封
止材料、摺動材料及び電気部品、航空機や車両などの構
造材料用原料として有用である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing aromatic cyclic polyimides. Aromatic cyclic polyimides are useful as raw materials for adhesives, WJ layer materials, sealing materials, sliding materials, and structural materials for electrical parts, aircraft, vehicles, and the like.

(従来の技術) 2@以上の第1級アミノ基を有する芳香族ポリアミン類
とα、β−不飽和ジカルボン酸無水物から相当する環状
ポリイミド類を製造する方法は、ポリアミド酸を経由し
、その脱水イミド化により製造する方法が一般的である
(Prior art) A method for producing corresponding cyclic polyimides from aromatic polyamines having 2 or more primary amino groups and α,β-unsaturated dicarboxylic acid anhydrides is to produce the corresponding cyclic polyimides via polyamic acid. A common method is to produce by dehydration imidization.

この方法において、当該中間体であるポリアミド酸はポ
リアミンとα、β−不飽和ジカルボン酸無水物を温和な
条件下で混合、するだ0で容易に製造されるが、その後
の脱水イミド化が容易でないため、低収率であっ7′こ
り、純度が低いl、:めに樹脂原料として不充分である
などのrFX1題点がある。
In this method, the intermediate polyamic acid is easily produced by mixing a polyamine and an α,β-unsaturated dicarboxylic acid anhydride under mild conditions, but the subsequent dehydration and imidization is easy. Therefore, there are problems with rFX1, such as low yield and low purity, making it insufficient as a raw material for resin.

かかる問題点を解決するために種々の方法が提案されて
いるが、未だ充分満足できる方法は無い。
Although various methods have been proposed to solve these problems, there is still no method that is fully satisfactory.

例えば、芳香族ジアミンと無水71/イン酸から得たビ
スアミド酸に無水酢酸などの脱水剤と酢酸ナトリウムや
3級アミンなどの脱水触媒を加え、比較的低温でイミド
化する方法〈例えば、特公昭46−29140.特公昭
49−40231 、特公昭52−2913.特開昭5
5−13202.特開昭59−2i2470、特開昭6
l−24564)が開示されている。しかし、この方法
では高値な脱水剤を多量に消費するため、工業的には不
利である。
For example, a method in which a dehydrating agent such as acetic anhydride and a dehydrating catalyst such as sodium acetate or a tertiary amine are added to bisamidic acid obtained from an aromatic diamine and anhydrous 71/ynic acid to imidize it at a relatively low temperature (for example, 46-29140. Special Publication No. 49-40231, Special Publication No. 52-2913. Japanese Patent Application Publication No. 5
5-13202. JP-A-59-2i2470, JP-A-Sho 6
1-24564) is disclosed. However, this method is industrially disadvantageous because it consumes a large amount of expensive dehydrating agent.

このため脱水剤を用いない方法も種々提案されている。For this reason, various methods without using a dehydrating agent have been proposed.

例えば、水と共沸する炭化水素やハロゲン化炭化水素溶
媒又はN、N−ジメチルホルムアミド(以下、DMFと
略す)やN−メチルピロリドン(以下、NMPと略す)
などの非プロトン性極性溶媒、さらにはそれらの混合溶
媒系で、酸触媒存在下や無触媒下、加熱脱水する方法な
どく例、If、特rM昭53−68770.tel!昭
57−159764、特開昭60−260623.特開
昭62−123169、特開昭63−20i 166)
が開示されている。
For example, hydrocarbons and halogenated hydrocarbon solvents that are azeotropic with water, N,N-dimethylformamide (hereinafter abbreviated as DMF) and N-methylpyrrolidone (hereinafter abbreviated as NMP)
For example, if, special rM, 1987-68770. tel! 1982-159764, JP 60-260623. JP-A-62-123169, JP-A-63-20i 166)
is disclosed.

しかし、いずれの方法においても原料アミド酸及び目的
ポリイミドの両者に対して高い溶解度を有する溶媒を用
いる為、目的ポリイミドを反応溶液から取り出すにあた
り、反応終了後、大量の水やメタノール中に投入する方
法が採用されている。
However, both methods use a solvent that has high solubility for both the raw material amic acid and the target polyimide, so in order to remove the target polyimide from the reaction solution, after the reaction is complete, the target polyimide is poured into a large amount of water or methanol. has been adopted.

このため、触媒や溶媒の回収再使用ができず、多量の廃
水を発生ずることになる等の問題点が生じ、工業的に満
足しうる製造方法とはいえなかっ1.:。
For this reason, problems such as the inability to recover and reuse the catalyst and solvent and the generation of a large amount of waste water arise, making this production method unsatisfactory industrially.1. :.

一方、反応溶媒に炭化水素などの非極性溶媒を用いれば
、生成ポリイミドの溶解度が低く、目的物は固体として
生成しI濾過などの容易な操作で反応溶液から分離させ
ることができる。しかし、これらの溶媒に対する原料ア
ミド酸の溶解度もまた低く、極めて遅い反応速度しか得
られない。そのため、やむを得ず高温で反応させたり大
量の触媒の存在下で反応させるとポリマー状の副生物が
生成したりして、反応の継続ができない状態になってし
まい、このままではポリイミドのll造方法とは全く成
立しないものであった。
On the other hand, if a nonpolar solvent such as a hydrocarbon is used as the reaction solvent, the solubility of the polyimide produced is low, and the target product is produced as a solid, which can be separated from the reaction solution by an easy operation such as I-filtration. However, the solubility of the starting amic acid in these solvents is also low, and only extremely slow reaction rates can be obtained. Therefore, if the reaction is unavoidably carried out at high temperatures or in the presence of a large amount of catalyst, polymeric by-products will be produced, making it impossible to continue the reaction. It was completely unworkable.

さらに、以上の問題点に加えてこれらの製造方法はすべ
て反応中間体であるポリアミド酸を別途の反応器で合成
するか、同一の反応器を用いて一度アミド酸を製造する
一段目の反応を行い、引き続いて二段目のイミド化反応
を行っている。この二段法は反応操作を煩雑にしたり、
スラリーを扱う複雑な装置を必要としたりする問題点が
あり、より容易で簡便な装置により当該ポリイミドを製
造する一段法が望まれている。
Furthermore, in addition to the above-mentioned problems, all of these production methods either synthesize polyamic acid as a reaction intermediate in a separate reactor, or perform the first step of producing amic acid using the same reactor. This is followed by a second imidization reaction. This two-step method may complicate the reaction operation,
There is a problem that a complicated device for handling the slurry is required, and a one-step method for producing the polyimide using an easier and more convenient device is desired.

一方、アミド酸を調製しない一段法として、無水マレイ
ン酸の融解液中に、芳香族ポリアミンを徐々に添加する
方法(特開昭61.−225215 。
On the other hand, as a one-step method in which no amic acid is prepared, an aromatic polyamine is gradually added to a molten solution of maleic anhydride (JP-A-61-225215).

同62−77363>が開示されている。しかし、これ
らの方法は無水マレイン酸を減圧上高温に加熱して反応
し、さらに減圧度を上昇させて、過剰の無水マレイン酸
を除去したり、熱水で抽出しなりするものであり、昇華
する無水マI/イン酸の為の特殊な装置を必要としたり
、マレイン酸が大量に溶解した洗浄廃水の処理を必要と
したりする問題点があり、実際的な製造方法どはいえな
いものであった。
62-77363> is disclosed. However, these methods involve heating maleic anhydride under reduced pressure to a high temperature to react, and then increasing the degree of reduced pressure to remove excess maleic anhydride or extracting it with hot water, resulting in sublimation. There are problems such as the need for special equipment for the anhydrous maleic acid/inic acid, and the need to treat washing wastewater in which a large amount of maleic acid is dissolved, so there is no practical manufacturing method. there were.

(問題を解決するための手段) 本発明者らは生成ポリイミドの分離が容易で、かつ高反
応性で近択率の良く、操作や設備の簡便な一段反応プロ
セスを鋭意検討した結果、所定比率の非プロトン性極性
溶媒と非極性溶媒との混合溶媒を用い、酸触媒とび、β
−不飽和ジカルボン酸無水物の所定量存在下、加熱還流
脱水している反応系中に、芳香族ポリアミンを連続的又
は間欠的に添加することが反応速度を著しく増加させ、
ポリマー状の副生物を抑制するのに極めて効果的であり
、かつ目的とするポリイミドの晶析性を損なうことなく
、収率及び純度を向」二させることができることを見い
だし本発明に到達した。
(Means for Solving the Problem) The present inventors have intensively studied a one-step reaction process that is easy to separate the produced polyimide, has high reactivity and good selectivity, and is simple in operation and equipment. Using a mixed solvent of an aprotic polar solvent and a nonpolar solvent, the
- Continuously or intermittently adding an aromatic polyamine to a reaction system undergoing heating and reflux dehydration in the presence of a predetermined amount of an unsaturated dicarboxylic anhydride significantly increases the reaction rate;
The present invention was achieved by discovering that it is extremely effective in suppressing polymeric by-products and can improve the yield and purity of the target polyimide without impairing its crystallization properties.

すなわち、α、β−不飽和ジカルボン酸無水物と分子内
に2測具」二の第一級アミノ基を有する芳香族ポリアミ
ン類を加熱脱水して環状ポリイミドを製造するに際し、
芳香族ポリアミン100重量部を、α、β−不飽和ジカ
ルボン酸無水物(当該芳香族ポリアミンの第一級アミノ
基に対する比率は]、〜20倍モルの範囲)及び混合溶
媒100〜2000重1部(水と共沸性を有する非極性
溶媒60〜99重I%と非プロトン性極性溶媒4〇−1
重I%からなる)と酸触媒が存在j2、かつ加熱還流脱
水している反応系中に、連続的又は間欠的に添加するこ
とを特徴とする脱水イミド化法、そして、その反応方法
によって得た反応混合物よりポリイミドを晶析分離する
ことを特徴とする芳香族ポリイミドの製造方法である。
That is, when producing a cyclic polyimide by heating and dehydrating an α,β-unsaturated dicarboxylic acid anhydride and an aromatic polyamine having two primary amino groups in the molecule,
100 parts by weight of aromatic polyamine, 1 part by weight of α,β-unsaturated dicarboxylic acid anhydride (the ratio of the aromatic polyamine to primary amino groups is in the range of ~20 times the mole) and 100 to 2000 parts by weight of a mixed solvent (60-99% by weight of a non-polar solvent that has azeotropy with water and 40-1% of an aprotic polar solvent)
A dehydration imidization method characterized by continuously or intermittently adding an acid catalyst and an acid catalyst to the reaction system undergoing heating reflux dehydration, and This is a method for producing an aromatic polyimide, which is characterized by crystallizing and separating polyimide from a reaction mixture.

従来、本発明で製造される環状ポリイミドの様なマイゲ
ル付加によって重合物を生成する化合物の合成時にその
硬化剤ともいえる芳香族ポリアミンを直接反応系に導入
すれば、存在するイミドへの付加反応が優先し、ポリマ
ー状の重合物の副生が避けられないとされていた。その
一方、α、β−不飽和ジカルボン酸及びその無水物の過
剰の存在は、熱異性化によるフマル酸の生成や、該異性
化酸どのポリアミンとの分子間脱水による重合物の生成
の原因とされてきf::。
Conventionally, when an aromatic polyamine, which can be considered as a curing agent, is directly introduced into the reaction system during the synthesis of a compound that produces a polymer by migel addition, such as the cyclic polyimide produced in the present invention, the addition reaction to the existing imide can be prevented. Priority was given to the fact that by-products of polymeric products were unavoidable. On the other hand, the presence of an excess of α,β-unsaturated dicarboxylic acids and their anhydrides may cause the formation of fumaric acid through thermal isomerization or the formation of polymers through intermolecular dehydration with polyamines such as the isomerized acid. It has been f::.

しかし、本発明者らはこれらのraysを解決するため
に研究した結果、所定組成の溶媒中、酸触媒とα、β−
不飽和ジカルボン酸無水物存在下で加熱脱水しつつ芳香
族ポリアミンを逐次添加していくことで一段反応かつ比
較的低温でイミド化反応を可能にし、ポリマー状副生物
の生成とジカルボン酸の異性化を抑制した合成法の発明
に至った。
However, as a result of research to solve these rays, the present inventors found that acid catalysts and α,β-
By sequentially adding an aromatic polyamine while heating and dehydrating in the presence of an unsaturated dicarboxylic acid anhydride, it is possible to perform an imidization reaction in one step and at a relatively low temperature, resulting in the production of polymeric by-products and the isomerization of dicarboxylic acids. This led to the invention of a synthetic method that suppresses this.

ここに提げた一段反応での高反応率、高選択率の反応方
法が本発明の第一の特徴である。第二の特徴は上記の特
性を活かj7たまま、反応終了後、冷却によりD的ポリ
イミドを結晶化し容易に分離できる溶媒系に求められる
、これにより大東の廃水の処理などの工業」;の不利益
が排除されるばかりでなく、晶析母液を再度反応に供す
ることができるf::め、溶液中に溶存している過剰量
のα、β−不飽和ジカルボン酸無水物の効率的使用が可
能となり本発明の利益を増大さぜる。
The first feature of the present invention is the reaction method with high reaction rate and high selectivity in the one-step reaction proposed here. The second feature is that while taking advantage of the above properties, after the reaction is complete, the D-type polyimide is crystallized by cooling and is required for a solvent system that can be easily separated. Not only is the benefit eliminated, but the crystallization mother liquor can be subjected to the reaction again, making efficient use of the excess amount of α,β-unsaturated dicarboxylic acid anhydride dissolved in the solution. This makes it possible to increase the benefits of the present invention.

本発明に用いる芳香族ポリアミン類とは、分子内に第1
級アミノ基を2測具上衣する芳香族アミンである。一般
式(A)、(B)、(C)及び(D)で示されるポリア
ミンが例示できる。
The aromatic polyamines used in the present invention are
It is an aromatic amine that has two primary amino groups. Examples include polyamines represented by general formulas (A), (B), (C) and (D).

(式中Xは水素原子、ハロゲン原子、炭素数1〜8のア
ルキル基、アルコキシ基、しドロキシル基、nは1−・
3の整数、n゛はOへ〜10の整数5Yは−0−、S 
−、−S O2−1−S O−又は−CO−で各々同一
であっても異なってもよい)。
(In the formula, X is a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a hydroxyl group;
An integer of 3, n゛ goes to O ~ an integer of 10 5Y goes to -0-, S
-, -S O2-1-S O- or -CO- may be the same or different, respectively).

さらに具体的には、=i式(A)で示されるポリアミン
として m−フェニレンジアミン、 p−フェニレンジアミン、 2.4−ジアミノトルエン、 2.6−ジアミノトルエン、 2−クロル−p−フェニレンジアミン、一般式(B)で
示されるポリアミンとして2.2−ビス(4−アミノフ
ェニル)プロパン、4゜4゛−ジアミノジフェニルメタ
ン、4.4゛−ジアミノジフェニルエーテル、4.4′
−ジアミノジフェニルスルフィド、4.4゛−ジアミノ
ジフェニルスルホン、4.4′−ジアミノジフェニルメ
チルエチルメタン、4.4°−ジアミノトルエニルジ(
トリフロロメチル)メタン 3,3゛−ジアミノジフェニルエーテル、3.3゛−ジ
アミノジフェニルスルフィド、3.3”−ジアミノジフ
ェニルスルホンアニリンとホルムアルデヒドの縮合物、
アニリンとアセトアルデヒドの縮合物、トルイジンとホ
ルムアルデヒドの縮合物、などが例示される、 一般式(C)で示されるポリアミンは、4.4’−(p
−)ユニしンジイソプ口ビリデン)ジアニリン、 3.4’−(i3−フェニレンジイソアロビリデン)ジ
アニリン、 3.3’ −(p−フェニレンジイソプロピリデン)ジ
アニリン、 1.4′−ビス(p−アミノフェノキシ)ベンゼン1.
3′−ビス(ρ−アミノフェノキシ)ベンゼン1.4′
−ビス(p−アミノフェノキシチオエーテル)ベンゼン
、 1.3゛−ビス(p−アミノフェノキシチオエーテル)
ベンゼン、 1.4゛−ビス(p−アミノフェニル)ベンゼン、1.
3′−ビス(p−アミノフェニル)ベンゼン、並びに上
記各ジアミンのメタ一体が例示される。
More specifically, as the polyamine represented by formula (A), m-phenylenediamine, p-phenylenediamine, 2.4-diaminotoluene, 2.6-diaminotoluene, 2-chloro-p-phenylenediamine, Polyamines represented by the general formula (B) include 2,2-bis(4-aminophenyl)propane, 4゛4゛-diaminodiphenylmethane, 4.4゛-diaminodiphenyl ether, 4.4'
-diaminodiphenylsulfide, 4.4'-diaminodiphenylsulfone, 4.4'-diaminodiphenylmethylethylmethane, 4.4'-diaminotoluenyl di(
trifluoromethyl)methane 3,3'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,3''-diaminodiphenylsulfone condensate of aniline and formaldehyde,
The polyamine represented by the general formula (C) is exemplified by a condensate of aniline and acetaldehyde, a condensate of toluidine and formaldehyde, etc.
-) Unishin diisopropylidene) dianiline, 3.4'-(i3-phenylene diisopropylidene) dianiline, 3.3'-(p-phenylene diisopropylidene) dianiline, 1.4'-bis(p -aminophenoxy)benzene1.
3'-bis(ρ-aminophenoxy)benzene 1.4'
-bis(p-aminophenoxythioether)benzene, 1.3゛-bis(p-aminophenoxythioether)
Benzene, 1.4'-bis(p-aminophenyl)benzene, 1.
Examples include 3'-bis(p-aminophenyl)benzene and meta-units of each of the above diamines.

一般式(D)で示されるポリアミンとしては、2.2−
ビス[4−(p−アミノフェニルチオエーテル)フェニ
ル]プロパン、 2.2−ビス[3−(p−アミノフェノキシチオエーテ
ル)フェニル]プロパン、 4.4′−ビス(p−アミノフェノキシ)ジフェニルス
ルホン、 3.3゛−ビス(p−アミノフェノキシ)ジフェニルス
ルホン、 4.4′−ビス(p−アミノフェニルチオエーテル)ジ
フェニルスルホン、 3.3゛−t’ス(p−アミノフェニルチオエーテル)
ジフェニルスルホン、 4.4゛−ビス(p−アミノフェノキシ)ジフェニルエ
ーテル、 3.3′−ビス(p−アミノフェノキシ)ジフェニルエ
ーテル、 4.4′−ビス(p−アミノフェノキシ)ジフェニルス
ルフィド、 3.3′−ビス(p−アミノフェノキシ)ジフェニルス
ルフィド、 4.4°−ビス(p−アミノフェニルチオエーテル)ジ
フェニルスルフィド、 3.3′−ビス(p−アミノフェニルチオエーテル)ジ
フェニルスルフィド、 4.4′−ビス(p−アミノフェニルチオエーテル)ジ
フェニルエーテル、 3.3′−ビス(p−アミノフェニルチオエーテル)ジ
フェニルエーテル、 4.4゛−ビス(p−アミノフェノキシ)ベンゾフェノ
ン、 3.3゛−ビス(p−アミノフェノキシ)ベンゾフェノ
ン、 4.4′−ビス(p−アミノフェニルチオエーテル)ベ
ンゾフェノン、 3.3′−ビス(p−アミノフェニルチオエーテル)ベ
ンゾフェノン、 4.4′−ビス(p−アミノフェニルチオエーテル)ジ
フェニル、 3.3゛−ビス(p−7′ミノフエニルチオエーテル)
ジフェニル、 並びに上記各ジアミンのメク一体が例示される。
As the polyamine represented by the general formula (D), 2.2-
Bis[4-(p-aminophenylthioether)phenyl]propane, 2.2-bis[3-(p-aminophenoxythioether)phenyl]propane, 4.4'-bis(p-aminophenoxy)diphenylsulfone, 3 .3'-bis(p-aminophenoxy)diphenylsulfone, 4.4'-bis(p-aminophenylthioether)diphenylsulfone, 3.3'-t's(p-aminophenylthioether)
Diphenylsulfone, 4.4'-bis(p-aminophenoxy) diphenyl ether, 3.3'-bis(p-aminophenoxy) diphenyl ether, 4.4'-bis(p-aminophenoxy) diphenyl sulfide, 3.3' -bis(p-aminophenylthioether) diphenyl sulfide, 4.4°-bis(p-aminophenylthioether) diphenyl sulfide, 3.3'-bis(p-aminophenylthioether) diphenyl sulfide, 4.4'-bis( p-aminophenylthioether) diphenyl ether, 3.3′-bis(p-aminophenylthioether) diphenyl ether, 4.4′-bis(p-aminophenoxy)benzophenone, 3.3′-bis(p-aminophenoxy)benzophenone , 4.4'-bis(p-aminophenylthioether)benzophenone, 3.3'-bis(p-aminophenylthioether)benzophenone, 4.4'-bis(p-aminophenylthioether)diphenyl, 3.3゛-bis(p-7'minophenylthioether)
Diphenyl and monomers of each of the above diamines are exemplified.

一般式(A)から(D)で示されるこれらのポリアミン
は、単独又は2種以上を組み合わせて用いることができ
、また、本発明の所定の効果が得られる限りにおいて、
前記に例示された以外に、他の芳香族ポリアミンを併用
してもよい。
These polyamines represented by general formulas (A) to (D) can be used alone or in combination of two or more, and as long as the desired effects of the present invention can be obtained,
In addition to those exemplified above, other aromatic polyamines may be used in combination.

芳香族ポリアミンを添加する形態は固体のままでも融解
液でも前記の溶媒の溶液でも良い。逐次添加の速度は反
応系に存在しているジカルボン酸無水物、酸触媒、溶媒
組成の種類や量によって異なるが、反応溶液中に存在す
る中間体マレアミド酸濃度で0.1mol/’1以下に
なるように、添加速度を調節するのが良い。これ以上で
は異性化酸に起因する副生成物やマイゲル付加反応によ
る重合反応が起こり易くなる。目安どして反応溶液が均
一か微弱な濁りを生じる程度の速度で添加するのがよく
、通常1〜10時間で添加を終了する。
The aromatic polyamine may be added in the form of a solid, a melt, or a solution in the above-mentioned solvent. The rate of sequential addition varies depending on the type and amount of the dicarboxylic acid anhydride, acid catalyst, and solvent composition present in the reaction system, but the concentration of the intermediate maleamic acid present in the reaction solution is 0.1 mol/'1 or less. It is best to adjust the addition rate so that the If it exceeds this range, by-products due to isomerized acid and polymerization reactions due to Migel addition reactions tend to occur. As a guide, it is best to add at a rate that causes the reaction solution to become homogeneous or slightly cloudy, and the addition is usually completed in 1 to 10 hours.

次にα、β−不飽和ジカルボン酸無水物として具体的に
は、マレイン酸、3−メチルマレイン酸、3−エチルマ
レイン酸、3,4−ジメチルマレイン酸、3.4−ジエ
チルマレイン酸、3−フェニルマレイン酸、3−クロル
マレイン酸、3.4=ジクロルマレイン酸、テトラヒド
ロフタル酸、メチルテトラヒドロフタル酸、5−ノルボ
ルネン−2,3−ジカルボン酸及びそれらの酸無水物、
さらにはマレイン化アロオシメン、マレイン化ミル七ン
などが例示される。これらの酸に対応する有水酸を予め
仕込み、加熱脱水して得る無水物も当然使用できる。
Next, specific examples of α,β-unsaturated dicarboxylic acid anhydrides include maleic acid, 3-methylmaleic acid, 3-ethylmaleic acid, 3,4-dimethylmaleic acid, 3.4-diethylmaleic acid, - phenylmaleic acid, 3-chloromaleic acid, 3.4=dichloromaleic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, 5-norbornene-2,3-dicarboxylic acid and acid anhydrides thereof,
Further examples include maleated alloocimene and maleated mil7ane. Naturally, it is also possible to use anhydrides obtained by preparing in advance a hydroacid corresponding to these acids and dehydrating them by heating.

本発明では、触媒のブレンステッド酸はリン酸、亜リン
酸、次亜リン酸、メタリン酸、ビロリン酸、トリポリリ
ン酸、硫酸などの無機酸やメタンスルホン酸、p−トル
エンスルホン酸、ベンゼンスルホン酸、ナフタレンスル
ホン酸などの有機酸が使用できる。又、これらの酸触媒
に少量の五酸化リンなどの脱水剤を併用させることらで
きる、上記ブレンステッド酸触媒のうち、特に有機スル
ホン酸が副反応が少なく色相が良好な点で好ましい。
In the present invention, the Brønsted acids used as catalysts include inorganic acids such as phosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, birophosphoric acid, tripolyphosphoric acid, and sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, and benzenesulfonic acid. , naphthalenesulfonic acid, and other organic acids can be used. Further, among the above-mentioned Bronsted acid catalysts, in which a small amount of a dehydrating agent such as phosphorus pentoxide can be used in combination with these acid catalysts, organic sulfonic acids are particularly preferred because they cause fewer side reactions and have a good hue.

、:れらの触媒は、原料の芳香族ポリアミンに対し1〜
50重量%使用する9 反応に用いる溶媒の量は、原料の芳愛族ポリアミンLO
O重量部に対し、100 へ−2000重1部程度用い
る。好ましくは、200−600重東部であるいこれよ
り多いと、生成したポリイミドの溶解量が多くなり損失
が大きくなる。また逆にこれより少ないと、生成したポ
リイミドが多量に析出し、反応を完結させる上で、不都
合が生じる。
,: These catalysts have a ratio of 1 to
The amount of solvent used in the reaction is 50% by weight.
About 1 part by weight of 100 to 2000 is used per part by weight of O. Preferably, the amount is 200 to 600, or more than this, the amount of dissolved polyimide produced increases, resulting in a large loss. Conversely, if the amount is less than this, a large amount of produced polyimide will precipitate, causing problems in completing the reaction.

本発明における非プロトン性極性溶媒とは、例えばDM
F、N、N−ジメチルアセトアミド、N。
The aprotic polar solvent in the present invention is, for example, DM
F,N,N-dimethylacetamide, N.

N−ジエチルホルムアミド、NMP、ジメチルスルホキ
シド(以下、DMSOと略す)、ヘキザメチルホスホロ
アミド、γ−ブチロラクタム、テトラメチル尿素、1.
3−ジメチル−2−イミダゾリジノン、ジグライム、ジ
オキサンなどが例示される。
N-diethylformamide, NMP, dimethyl sulfoxide (hereinafter abbreviated as DMSO), hexamethylphosphoramide, γ-butyrolactam, tetramethylurea, 1.
Examples include 3-dimethyl-2-imidazolidinone, diglyme, and dioxane.

一方、非極性溶媒とは、好ましくは60 ” 200℃
程度の沸点範囲を有し、生成水を共沸留去できる溶媒で
あり、具体的にはトルエン、キシレン、エチルベンゼン
、ヘキサン、オクタン、デカン、シクロヘキサン、メチ
ルシクロヘキサン、エチルシクロヘキサン、軽油、軽油
の水素化物などの炭化水素、クロルベンゼン、ジクロル
エタン、トリクロルエタン、パークロルエチレンなどの
ハロゲン化炭化水素などが例示され、単独又はそれらの
任意の2種以上の混合物で使用できる。
On the other hand, a non-polar solvent is preferably 60" 200℃
It is a solvent that has a boiling point range of about 100 mL and can azeotropically distill off produced water, specifically toluene, xylene, ethylbenzene, hexane, octane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, gas oil, and hydrides of gas oil. and halogenated hydrocarbons such as chlorobenzene, dichloroethane, trichloroethane, perchlorethylene, etc., and can be used alone or in a mixture of two or more of them.

前記非プロトン性極性溶媒と水共沸性非極性溶媒の混合
比率は、非極性溶媒60〜99重量%、非プロトン性極
性溶媒40〜1重量%の範囲である。非プロトン性極性
溶媒の割合が少なすぎると、反応速度が大IIに低下す
ると共に粘着性の強いポリマーが多量に副生じ、反応続
行が困難となるなどの陣豐が生じる。逆に多すぎると、
目的とする環状ポリイミドの溶解性が高くなり、イミド
の分離回収が困難となると同時に、反応の選択性(3低
下する。
The mixing ratio of the aprotic polar solvent and the water azeotropic nonpolar solvent is in the range of 60 to 99% by weight of the nonpolar solvent and 40 to 1% by weight of the aprotic polar solvent. If the proportion of the aprotic polar solvent is too small, the reaction rate will drop to a large extent, and a large amount of highly sticky polymer will be produced as a by-product, making it difficult to continue the reaction. On the other hand, if there are too many
The solubility of the target cyclic polyimide increases, making it difficult to separate and recover the imide, and at the same time, the selectivity of the reaction (3) decreases.

前記の溶媒に溶解せしめるα5β−不飽和ジカルボン酸
無水物の使用量は反応系に添加しようとする全芳香族ポ
リアミンの第一アミノ基に対し、1〜20倍モルを用い
る。仕込モル比が1より小さいと、過剰の芳香族ポリア
ミンが生成するポリイミドにマイゲル付加反応してポリ
イミド純度を大幅に低下させる。モル比が1に近づくほ
どその傾向が大となる為、好ましいモル比は162〜2
゜0倍モルである0モル比が過大であることは反応上は
差し支えないが、経済的見地からは望ましくない。α、
β−不飽和ジカルボン@無水物の仕込は反応開始時に全
量溶媒に溶解させるのが簡便であるが、芳香族ポリアミ
ンと比率が逆転しない様、配慮しながら同時に添加して
も構わない。
The amount of α5β-unsaturated dicarboxylic acid anhydride to be dissolved in the above solvent is 1 to 20 times the mole of the primary amino group of the wholly aromatic polyamine to be added to the reaction system. If the charging molar ratio is less than 1, excess aromatic polyamine will cause a migel addition reaction to the polyimide produced, significantly reducing the purity of the polyimide. The tendency becomes stronger as the molar ratio approaches 1, so the preferred molar ratio is 162 to 2.
An excessive 0 molar ratio, which is 0 times the molar ratio, may not cause any problem in terms of the reaction, but it is undesirable from an economic standpoint. α,
It is convenient to charge the β-unsaturated dicarbonate@anhydride by dissolving the entire amount in the solvent at the start of the reaction, but it may be added at the same time while taking care not to reverse the ratio with the aromatic polyamine.

さらに、反応物の着色を防ぎ、高品質の環状ポリイミド
を得るために、安定剤の存在下に反応を行うこともでき
る。安定剤としては、ハイドロキノン、メトキシベンゾ
キノン、フェノチアジン、t−ブチルカテコール、ジメ
チルカルバミン酸などが適当で、その添加量は一般的に
は、反応系中の濃度で0.001〜1重I%が好ましい
Furthermore, the reaction can also be carried out in the presence of a stabilizer in order to prevent coloring of the reactants and obtain a high quality cyclic polyimide. As the stabilizer, hydroquinone, methoxybenzoquinone, phenothiazine, t-butylcatechol, dimethylcarbamic acid, etc. are suitable, and the amount added is generally preferably 0.001 to 1% by weight in the reaction system. .

当該反応は加熱還流条件下で行われ、具体的には60〜
200℃であるやより好ましくは100℃〜130℃で
ある。
The reaction is carried out under heating and reflux conditions, specifically 60 to
The temperature is 200°C, more preferably 100°C to 130°C.

本発明方法は、−船釣には以下のように行われる。即ち
、酸触媒、α、β−不飽和ジカルボン酸無水物をデカン
タ−付き反応器にて所定組成の溶媒に溶解させて仕込み
、1〜10時間加熱還流脱水しつつ、芳香族ポリアミン
を逐次添加する。ポリアミンの供給は粉末のままあるい
は鉱解液で、もしくは前記の溶媒に溶解させ、連続的又
は間欠的に供給する7反応終了後、撹拌を停止しW1丁
する。反応液が分層する場合は、ポリイミドが析出しな
い任意の温度で、ポリイミドを含む層と触媒を含む層を
分離する。ポリイミドの結晶は、ポリイミドを含む溶液
を冷却するか、または溶媒の一部を留出させてから冷却
して、析出させることができる。分離した触媒層はその
まま繰り返し使用できる、反応液が分層しない場合は、
そのまま反応溶液を冷却するか、または溶媒の一部を留
出させてから冷却して、ポリイミドの結晶を析出させる
ことができる。
The method of the invention is carried out as follows: - Boat fishing. That is, an acid catalyst and an α,β-unsaturated dicarboxylic acid anhydride are dissolved and charged in a solvent of a predetermined composition in a reactor equipped with a decanter, and the aromatic polyamine is sequentially added while dehydrating under heating under reflux for 1 to 10 hours. . The polyamine is supplied as a powder, in the form of mineral solution, or dissolved in the above-mentioned solvent, and supplied continuously or intermittently. 7. After the reaction is completed, stirring is stopped and the mixture is turned on. When the reaction solution separates into layers, the polyimide-containing layer and the catalyst-containing layer are separated at an arbitrary temperature at which polyimide does not precipitate. Polyimide crystals can be precipitated by cooling a polyimide-containing solution, or by distilling off a portion of the solvent and then cooling. The separated catalyst layer can be used repeatedly as is.If the reaction solution does not separate into layers,
Polyimide crystals can be precipitated by cooling the reaction solution as it is, or by distilling off a portion of the solvent and then cooling it.

析出したポリイミドは一過又は遠心分離などでr液と分
けて得ることができる。場合によっては、炭化水素系溶
媒や水、炭酸ナトリウム水溶液及び又はメタノールなど
の適当な溶剤で洗浄することにより、ポリイミドに付着
1.ている酸触媒やα。
The precipitated polyimide can be obtained separately from the r solution by passing through or centrifuging. In some cases, the polyimide can be removed by washing with a suitable solvent such as a hydrocarbon solvent, water, aqueous sodium carbonate, and/or methanol. Acid catalyst and α.

β−不飽和ジカルボン酸無水物を除去する。二とができ
る。
The β-unsaturated dicarboxylic anhydride is removed. I can do two things.

r液はそのまま又は該ジカルボン酸無水物を添加して繰
り返し使用できる。
The r solution can be used repeatedly as it is or by adding the dicarboxylic anhydride.

以下、実施例及び比較例をあげ、本発明の詳細な説明す
る。
Hereinafter, the present invention will be explained in detail by giving Examples and Comparative Examples.

(実施例) 実施的1 水分離器付冷却管、滴下ロート、温度計及び撹拌器を備
えた四つ日フラスコにrt1ルエンスルホンllll4
g、トルエン100g、DMFiOg、無水マレイン酸
33.8g (0゜34モル)を仕込み、攪拌しつつ連
流温度に加熱し生成水を除きながら4.4′−ジアミノ
ジフェニルメタン19.8g(0,1モル)をトルエン
80gに溶解した溶液を4時間遅次添加した。この閏の
マレアミド酸濃度0.05moi/l以下であった。さ
らに1時間還流脱水を続は反応した。反応終了後、30
℃まで冷却した。析出した結晶をr別して2%の炭酸ナ
トリウム水溶液で洗浄後、乾燥し、淡黄色の粉末のN、
N’−4,4°−ジフェニルメタンビスマレイミド29
.8gを得た。高速液体クロマトグラフィ(以下、HP
LCと略記する)で純度を測定した。その結果を表1に
示す。
(Example) Practical 1 In a four-day flask equipped with a condenser with a water separator, a dropping funnel, a thermometer, and a stirrer, rt1 luenesulfone lllll4
g, toluene 100g, DMFiOg, and maleic anhydride 33.8g (0°34 mol) were charged, heated to continuous flow temperature with stirring, and while removing the produced water, 4.4'-diaminodiphenylmethane 19.8g (0.1 A solution of mol) dissolved in 80 g of toluene was added slowly for 4 hours. The maleamic acid concentration in this funnel was 0.05 moi/l or less. The reaction was further continued by refluxing and dehydrating for 1 hour. After the reaction is completed, 30
Cooled to ℃. The precipitated crystals were separated and washed with a 2% aqueous sodium carbonate solution, dried, and a pale yellow powder of N,
N'-4,4°-diphenylmethane bismaleimide 29
.. 8g was obtained. High performance liquid chromatography (hereinafter referred to as HP
Purity was measured by LC (abbreviated as LC). The results are shown in Table 1.

実施例2 無水マレイン酸の仕込量を60g (0,61モル)に
代えた以外は、実施例1と同様に行い、黄色粉末のN、
N”−4,4°−ジフェニルメタンビスマレイミドを得
た。その結果を表1に示すや実施例3 溶媒にD M Fの代わりに、NMPを同量用いた以外
は、実施側】、と同様の操作で反応12、黄色粉末のN
、N’−4,4°−ジフェニルメタンビスマレイミドを
得た。その結果を表1に示す。
Example 2 The same procedure as Example 1 was carried out except that the amount of maleic anhydride charged was changed to 60 g (0.61 mol), and yellow powder N,
N''-4,4°-diphenylmethane bismaleimide was obtained. The results are shown in Table 1. Same as Example 3 except that the same amount of NMP was used instead of DMF as the solvent. Reaction 12, yellow powder N
, N'-4,4°-diphenylmethane bismaleimide was obtained. The results are shown in Table 1.

実施例4 無水マレイン酸の仕込量を33□8g(0,34モル)
のままで、トルエン300g、DMF30gを用いた以
外は実堵例1と同機に行い、黄色粉末のN、N’−4,
4’−ジフェニルメタンビスマレイミドを得た。その結
果を表1に示す。
Example 4 The amount of maleic anhydride charged was 33□8g (0.34 mol)
The experiment was carried out in the same machine as Example 1 except that 300 g of toluene and 30 g of DMF were used, and yellow powder N, N'-4,
4'-diphenylmethane bismaleimide was obtained. The results are shown in Table 1.

実施例5 酸触媒として85%リン酸6gを使用した以外は実施例
1と同様に反応した。反応後570℃まで靜1させなが
ら冷却して、二層に分離させた。
Example 5 A reaction was carried out in the same manner as in Example 1 except that 6 g of 85% phosphoric acid was used as the acid catalyst. After the reaction, the reaction mixture was cooled to 570° C. while being kept still and separated into two layers.

下層の触媒層を分離し、上層をさらに30℃まで冷却し
て結晶を析出させた。結晶をP別し、炭酸ナトリウム水
溶液で洗浄した後、乾燥してN、N−4,4’−ジフェ
ニルメタンビスマレイミドの黄色の粉末を得た。その結
果表1を示す、実施例6 実施例1と同様の反応器に、実施例1において回収され
たビスマレイミドを含むFfi210gく液組成は、1
−ルエン85.2t%、DMF4゜8 w t、%、p
−)−ルエンスルホン酸Q、gwt%、無水マレイン酸
6.8wt%、該マl/イミド2゜4 w t%)及び
無水マレイン酸21.4g(0゜22モル)を仕込み、
撹拌しつつ還流温度に加熱し生成水を除きながら、これ
に4.4”−ジアミノジフェニルメタン19.8g (
0,1モル)の融解液を4時間にわたって連続的に供給
17た。この間のマI/アミド酸濃度0.05mol/
l以下であった。さらに1時間還流脱水を続は反応した
The lower catalyst layer was separated, and the upper layer was further cooled to 30° C. to precipitate crystals. The crystals were separated from P, washed with an aqueous sodium carbonate solution, and then dried to obtain a yellow powder of N,N-4,4'-diphenylmethane bismaleimide. The results are shown in Table 1. Example 6 210 g of Ffi containing bismaleimide recovered in Example 1 was put into a reactor similar to Example 1, and the liquid composition was 1
-Luene 85.2t%, DMF 4゜8wt,%,p
-)-Luenesulfonic acid Q, gwt%, maleic anhydride 6.8wt%, the mal/imide 2°4 wt%) and maleic anhydride 21.4g (0°22 mol) were charged,
While stirring and heating to reflux temperature to remove the produced water, 19.8 g of 4.4"-diaminodiphenylmethane (
0.1 mol) of the melt was continuously fed 17 over a period of 4 hours. During this time, MaI/amic acid concentration 0.05 mol/
It was less than l. The reaction was further continued by refluxing and dehydrating for 1 hour.

反応終了後、30℃まで冷却17、析出した結晶を炉別
して2%の炭酸ナトリウム水溶液で洗浄後、乾燥し、淡
黄色の粉末のN、N”4.4’−ジフェニルメタンビス
マレイミドを得た。その結果を表1に示すや 実施例7 溶媒のDMFの代わりに、ジメチルスルホキシドを同量
用いた以外は、実施的1と同様の操作で反応し、黄色粉
末のN、N′−4,4゛−ジフェニルメタンビスマレイ
ミドを得た2その結果を表1に示す。
After the reaction was completed, the mixture was cooled to 30°C (17), and the precipitated crystals were separated in a furnace, washed with a 2% aqueous sodium carbonate solution, and dried to obtain a pale yellow powder of N,N''4.4'-diphenylmethane bismaleimide. The results are shown in Table 1. Example 7 The reaction was carried out in the same manner as in Example 1 except that the same amount of dimethyl sulfoxide was used instead of DMF as a solvent.゛-Diphenylmethane bismaleimide was obtained 2 The results are shown in Table 1.

実施的8〜14 各種α、β−不飽和ジカルボン酸無水物及び芳香族ポリ
アミンを用い、酸触媒及び添加するα、β−不飽和ジカ
ルボン酸無水物を表2のように変え、α、β−不飽和ジ
カルボン酸無水物と芳香族ポリアミンのモル比及び操作
は、実施的1と同様に行い、芳香族環状ポリイミドを得
た。なお触媒に硫酸やリン酸を用いた場合は、反応後触
媒層を分液し晶析した。それらの結果を表2に示す。
Examples 8 to 14 Using various α, β-unsaturated dicarboxylic acid anhydrides and aromatic polyamines, changing the acid catalyst and the α, β-unsaturated dicarboxylic acid anhydride to be added as shown in Table 2, α, β- The molar ratio of the unsaturated dicarboxylic acid anhydride to the aromatic polyamine and the operation were the same as in Example 1 to obtain an aromatic cyclic polyimide. In addition, when sulfuric acid or phosphoric acid was used as a catalyst, the catalyst layer was separated and crystallized after the reaction. The results are shown in Table 2.

比較例1 酸触媒を使用しなかった以外は実施例1と同様の反応を
行ったところ、溶液はスラリー状態となり、8時間の反
応後も生成水の留出は僅かであり、HP L C分析に
よるとN、N”4.4’−ジフェニルメタンビスマl/
イミドの生成率は10%以下であった。
Comparative Example 1 The same reaction as in Example 1 was carried out except that no acid catalyst was used. The solution became a slurry, and even after 8 hours of reaction, only a small amount of the produced water distilled out, and HPLC analysis showed that According to N, N"4.4'-diphenylmethane bisma l/
The imide production rate was 10% or less.

以外は同様の操作で反応1.、 Qところ、HPi−4
C分析ニヨるとN、N”4.4”−ジフェニルメタンビ
スマレイミドの生成率は46%であった。その他、付加
反応や異性化酸に起因する多くのピークを認めた。
Reaction 1. was carried out in the same manner as above. , Q Tokoro, HPi-4
According to C analysis, the production rate of N,N"4.4"-diphenylmethane bismaleimide was 46%. In addition, many peaks caused by addition reactions and isomerized acids were observed.

比較例2 実施例1において4,4゛−ジアミノジフェニルメタン
のトルエン溶液の仕込を30℃にて全1行い、その後昇
温して5時間還流脱水したところ、反応溶液に不溶の油
状副生物12gを生じた。溶解分のHP L C分析に
よるとN、N’−4,4’ジフエニルメタンビスマレイ
ミドの生成率は38%であった。その他、異性化酸に起
因する多くのピークを認めた。
Comparative Example 2 In Example 1, a toluene solution of 4,4'-diaminodiphenylmethane was charged at 30°C, and then the temperature was raised and dehydration was carried out under reflux for 5 hours. occured. According to HPLC analysis of the dissolved content, the production rate of N,N'-4,4'diphenylmethane bismaleimide was 38%. In addition, many peaks due to isomerized acids were observed.

比較例3 実施例1において4.4′−ジアミノジフェニルメタン
のトルエン溶液の仕込を反応溶液中のアミド酸濃度で0
.2mol/1となる速度で行った比較例4 反応溶媒にトルエン400g、DMF40g、を用いた
以外は実施例】と同様の操作を行った8反応後、反応溶
液を冷却したが、目的のN、N’4.4′−ジフェニル
メタンビスマレイミドの結晶は得られなかった。該溶液
を14 P L C分析した結果、N、N’−4,4’
−ジフェニルメタンビスマl/イミドの生成率は90%
であった。
Comparative Example 3 In Example 1, the toluene solution of 4,4'-diaminodiphenylmethane was charged at a concentration of amic acid in the reaction solution of 0.
.. Comparative Example 4 carried out at a rate of 2 mol/1 The same operation as in Example 8 was carried out except that 400 g of toluene and 40 g of DMF were used as reaction solvents.After the reaction, the reaction solution was cooled, but the target N, No crystals of N'4.4'-diphenylmethane bismaleimide were obtained. As a result of 14 PLC analysis of the solution, N,N'-4,4'
-The production rate of diphenylmethane bisma l/imide is 90%
Met.

比較例5 反応溶媒にトルエン15g、DMF5gを用いた以外は
実施例1と同様の操作を行い、淡黄色粉末のN、N’−
4,4’−ジフェニルメタンビスマl/イミドを得た。
Comparative Example 5 The same operation as in Example 1 was performed except that 15 g of toluene and 5 g of DMF were used as the reaction solvent, and a pale yellow powder of N, N'-
4,4'-diphenylmethane bismuth/imide was obtained.

HP t、 C分析によるとN、N’4.4′〜ジフエ
ニルメタンビスマl/イミドの生成率は26%で、その
他、多くの副生成物のピークを認めた。
According to HP t,C analysis, the production rate of N, N'4.4'-diphenylmethane bisma l/imide was 26%, and many other by-product peaks were observed.

比較渕6 反応溶媒にトルエン40g、DMF40gを用いた以外
は実施例1と同様の操作を行った。反応後、反応溶液を
冷却したがN、N’−4,4’−ジフェニルメタンビス
マレイミドの結晶は得られなかった。該溶液をHPLC
分析した結果、N、N−4,4°−ジフェニルメタンビ
スマレイミドの生成率は76%であった。
Comparison Fuchi 6 The same operation as in Example 1 was performed except that 40 g of toluene and 40 g of DMF were used as reaction solvents. After the reaction, the reaction solution was cooled, but no crystals of N,N'-4,4'-diphenylmethane bismaleimide were obtained. The solution was subjected to HPLC
As a result of analysis, the production rate of N,N-4,4°-diphenylmethane bismaleimide was 76%.

(発明の効果) 本発明方法によれば、簡便な一段法で高純度な環状ポリ
イミドが高収率で得られ、しかも溶媒や触媒が繰り返し
使用できるため、紅済的にら有利である。
(Effects of the Invention) According to the method of the present invention, a highly pure cyclic polyimide can be obtained in high yield by a simple one-step method, and the solvent and catalyst can be used repeatedly, which is advantageous over Hongji.

Claims (2)

【特許請求の範囲】[Claims] (1)a、β−不飽和ジカルボン酸無水物と分子内に2
個以上の第一級アミノ基を有する芳香族ポリアミン類を
加熱脱水して環状ポリイミドを製造するに際し、芳香族
ポリアミン100重量部を、α、β−不飽和ジカルボン
酸無水物(当該芳香族ポリアミンの第一級アミノ基に対
する比率は1〜20倍モル)及び混合溶媒100〜20
00重量部(水と共沸性を有する非極性溶媒60〜99
重量%と非プロトン性極性溶媒40〜1重量%からなる
)と酸触媒が存在し、かつ加熱還流脱水している反応系
中に、連続的又は間欠的に添加することを特徴とする芳
香族ポリイミドの製造方法。
(1) a, β-unsaturated dicarboxylic acid anhydride and 2 in the molecule
When producing a cyclic polyimide by heating and dehydrating aromatic polyamines having 1 or more primary amino groups, 100 parts by weight of the aromatic polyamine is mixed with α,β-unsaturated dicarboxylic acid anhydride (of the aromatic polyamine). The ratio to the primary amino group is 1 to 20 times by mole) and the mixed solvent is 100 to 20 times
00 parts by weight (60 to 99 parts by weight of a nonpolar solvent that has azeotropy with water)
An aromatic compound characterized by being added continuously or intermittently to a reaction system in which an aprotic polar solvent (by weight % and 40 to 1 weight %) and an acid catalyst are present and being dehydrated under heating under reflux. Method for manufacturing polyimide.
(2)請求項第一項の反応方法によつて得た反応混合物
よりポリイミドを晶析分離することを特徴とする芳香族
ポリイミドの製造方法。
(2) A method for producing aromatic polyimide, which comprises crystallizing and separating polyimide from the reaction mixture obtained by the reaction method according to claim 1.
JP1214390A 1989-08-21 1989-08-21 Method for producing aromatic cyclic polyimide Expired - Lifetime JPH0774199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214390A JPH0774199B2 (en) 1989-08-21 1989-08-21 Method for producing aromatic cyclic polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214390A JPH0774199B2 (en) 1989-08-21 1989-08-21 Method for producing aromatic cyclic polyimide

Publications (2)

Publication Number Publication Date
JPH0377865A true JPH0377865A (en) 1991-04-03
JPH0774199B2 JPH0774199B2 (en) 1995-08-09

Family

ID=16654997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214390A Expired - Lifetime JPH0774199B2 (en) 1989-08-21 1989-08-21 Method for producing aromatic cyclic polyimide

Country Status (1)

Country Link
JP (1) JPH0774199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604319A1 (en) * 1992-12-25 1994-06-29 Pi Material Research Laboratory Polyimide solution compositions and process for preparing same
US5502143A (en) * 1992-12-25 1996-03-26 Pi Material Research Laboratory Process for preparing polyimide resins
WO1997047597A1 (en) * 1996-06-14 1997-12-18 Hos-Technik Process for preparation of twice-unsaturated bis-imides with a high level of colour stability and a low level of polymers
EP0976730A1 (en) * 1998-07-28 2000-02-02 RHEIN-CHEMIE RHEINAU GmbH Process for the production of aromatic maleimides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604319A1 (en) * 1992-12-25 1994-06-29 Pi Material Research Laboratory Polyimide solution compositions and process for preparing same
US5502143A (en) * 1992-12-25 1996-03-26 Pi Material Research Laboratory Process for preparing polyimide resins
WO1997047597A1 (en) * 1996-06-14 1997-12-18 Hos-Technik Process for preparation of twice-unsaturated bis-imides with a high level of colour stability and a low level of polymers
EP0976730A1 (en) * 1998-07-28 2000-02-02 RHEIN-CHEMIE RHEINAU GmbH Process for the production of aromatic maleimides

Also Published As

Publication number Publication date
JPH0774199B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
CN103168023B (en) Linking agent
JPS5950692B2 (en) Polyamide-imide and its manufacturing method
KR100625504B1 (en) Novel polyimide compositions and novel acid dianhydrides to be used therein
JPH0377865A (en) Production of aromatic cyclic polyimide
US5290908A (en) Acetylenic end-capped polyimides
EP0387106B1 (en) Novel diamine compounds, production of the same and polyamideimide resins produced therefrom
US4528373A (en) Vinylacetylene-terminated polyimide derivatives
Mochizuki et al. Preparation and properties of polyisoimide as a polyimide-precursor
TW202248191A (en) Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material
JPH0314835A (en) Preparation of aromatic cyclic polyimide
JPH02103231A (en) Production of aromatic cyclic polyimide
US4435323A (en) Vinylacetylene-terminated polymide derivatives
KR0134886B1 (en) Process for the preparation of the methil imide
JPH0755928B2 (en) Imide ring-containing diamines and method for producing the same
JP3433482B2 (en) Method for producing bismaleimide
JP7093008B2 (en) Method for Producing Fluorine-Containing Aromatic Diamine
KR102605275B1 (en) Amide heptamer and method for preparing thereof
JPS63196560A (en) Production of n-substituted-alpha,beta-unsaturated dicarboxylic acid cyclic imide
JPS60210630A (en) Production of polyamic acid solution
WO2023203897A1 (en) Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine
US4528349A (en) Polymerization products of vinylacetylene-terminated polyimide derivatives
JPS63122668A (en) Production of bis(hydroxyphthalimide)
JPH04366131A (en) Thermosetting oligomer and its production
JPH06100536A (en) Production of bismaleimides
Ueda et al. Synthesis of polyamides from linear bisanhydrides and diamines