JPH0314835A - Preparation of aromatic cyclic polyimide - Google Patents

Preparation of aromatic cyclic polyimide

Info

Publication number
JPH0314835A
JPH0314835A JP14923589A JP14923589A JPH0314835A JP H0314835 A JPH0314835 A JP H0314835A JP 14923589 A JP14923589 A JP 14923589A JP 14923589 A JP14923589 A JP 14923589A JP H0314835 A JPH0314835 A JP H0314835A
Authority
JP
Japan
Prior art keywords
acid
reaction
anhydride
solvent
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14923589A
Other languages
Japanese (ja)
Inventor
Mikiro Nakazawa
中澤 幹郎
Tsuratake Fujitani
貫剛 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP14923589A priority Critical patent/JPH0314835A/en
Publication of JPH0314835A publication Critical patent/JPH0314835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To improve the conversion and selectivity by imidizing a polyamic acid in a specific solvent in the presence of an alpha,beta-unsatd. dicarboxylic acid (anhydride) and an acid catalyst, and separating the reaction product by crystallization. CONSTITUTION:An alpha,beta-unsatd. dicarboxylic acid (anhydride) (e.g. maleic anhydride) is reacted with an arom. polyamine having at least two primary amino groups in the molecule to give a polyamic acid (e.g. N,N'-4,4'- diphenylmethanedismaleamic acid). 100 pts.wt. said polyamic acid is imidized in 50-1000 pts.wt. solvent mixture comprising 60-99wt.% nonpolar solvent boiling at 60-200 deg.C and capable of removing water generated in the reaction by azeotropic distillation i.e., capable of forming an azeotropic mixture with water (e.g. toluene) and 40-1wt.% aprotic polar solvent (e.g. N,N-dimethylformamide) in the presence of 1-50 pts.wt. (based on the mixture) said alpha,beta-unsatd. dicarboxylic acid (anhydride) and 1-50wt.% (based on the polyamic acid) acid catalyst (e.g. p-toluenesulfonic acid), and the reaction product is separated by crystallization.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、芳香族環状ポリイミド類の製造方法に関する
.芳香族環状ポリイミド類は、+91F剤、積層材料、
封止材科、摺動材科及び電気部品、航空機や車両などの
構造材料用原料として有用である. 《従来の技術) 2m以上の第1級アミノ基を有する芳香族ポリアミン類
とα.β一不飽和ジカルボン酸及び/又はその無水物か
ら相当する環状ポリイミド類を製造する方法は、ポリア
ミド酸を経由し、それを脱水イミド化する方法が一般的
である. この方法において、当該中間体であるポリアミド酸はポ
リアミンとα.β一不飽和ジカルボン酸無水物を温和な
条件下で混合するだけで容易に製造されるが、その後の
脱水イミド化が容易でないため、低収率であったり、純
度が低いために樹脂原料として不充分であるなどの問題
点がある.かかる問題点を解決するために種々の方法が
提案されているが、未だ充分満足できる方法はない。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing aromatic cyclic polyimides.
It is useful as a raw material for sealing materials, sliding materials, electrical parts, and structural materials such as aircraft and vehicles. <<Prior Art> Aromatic polyamines having a primary amino group of 2 m or more and α. A common method for producing corresponding cyclic polyimides from β-unsaturated dicarboxylic acids and/or their anhydrides is to dehydrate and imidize them via polyamic acid. In this method, the intermediate polyamic acid is mixed with a polyamine and α. Although it is easily produced by simply mixing β-unsaturated dicarboxylic acid anhydride under mild conditions, the subsequent dehydration and imidization is not easy, resulting in low yield and low purity, so it is not used as a resin raw material. There are problems such as insufficiency. Although various methods have been proposed to solve these problems, no method has yet been fully satisfactory.

例えば、芳香族ジアミンと無水マレイン酸から得たビス
アミド酸に無水酢酸などの脱水剤と酢酸ナトリウムや3
級アミンなどの脱水触媒を加え、比較的低温でイミド化
する方法〈例えば、特公昭46−29140.特公昭4
9−40231.特公昭52−29 1 3、特開昭5
5−13202、特開昭59−212470、特開昭6
1−24564〉が開示されている.しかし、この方法
では高価な脱水剤を多量に消費するため、工業的には不
利である. このため脱水剤を用いない方法も種々提案されている.
例えば,水と共沸する炭化水素やハロゲン化炭化水素溶
媒又はN,N−ジメチルホルムアミドやN−メチルピロ
リドンなどの非プロトン性極性溶媒、さらにはそれらの
混合溶媒系で、酸触媒や無触媒下、加熱脱水する方法な
ど(例えば、特開昭53−68770、特開昭57−1
59764、特開昭60−260623、特開昭62−
123169、特開昭63−201166)が開示され
ている. しかし、いずれの方法においても原料アミド酸及び目的
ポリイミドの両者に対して高い溶解度を有する溶媒を用
いているため、目的ポリイミドを反応溶液から取り出す
に当り、反応終了後、大量の水やメタノール中に投入す
る方法が採用されている.このため、触媒や溶媒の回収
再使用ができず、多量の廃水を発生することになる等の
問題点が生じ、工業的に満足しうる製造方法とはいえな
かった. 一方、反応溶媒に炭化水素などの非極性溶媒を用いれば
、生戒ポリイミドの溶解度が低く、目的物は固体として
生成し、P過などの容易な操作で反応溶液から分離させ
ることができる.しかし、これらの溶媒に対する原料ア
ミド酸の溶解度もまた低く、極めて遅い反応速度でしか
得られない。
For example, bisamidic acid obtained from aromatic diamine and maleic anhydride is combined with a dehydrating agent such as acetic anhydride and sodium acetate or
A method of adding a dehydration catalyst such as a grade amine and imidizing at a relatively low temperature (for example, Japanese Patent Publication No. 46-29140. Tokuko Showa 4
9-40231. Special Publication No. 52-29 1 3, No. 5 Publication No. 1973
5-13202, JP-A-59-212470, JP-A-6
1-24564> is disclosed. However, this method is industrially disadvantageous because it consumes a large amount of expensive dehydrating agent. For this reason, various methods that do not use dehydrating agents have been proposed.
For example, hydrocarbons or halogenated hydrocarbon solvents that are azeotropic with water, aprotic polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone, or mixed solvent systems thereof, can be used under acid or non-catalytic conditions. , heating dehydration method, etc. (for example, JP-A-53-68770, JP-A-57-1)
59764, JP-A-60-260623, JP-A-62-
123169, Japanese Patent Application Laid-Open No. 63-201166). However, in both methods, a solvent with high solubility for both the raw material amic acid and the target polyimide is used. The method of input is adopted. For this reason, problems such as the inability to recover and reuse the catalyst and solvent and the generation of a large amount of waste water occurred, and the production method could not be said to be industrially satisfactory. On the other hand, if a non-polar solvent such as a hydrocarbon is used as the reaction solvent, the solubility of Seikai polyimide is low and the target product is produced as a solid, which can be separated from the reaction solution by easy operations such as P filtration. However, the solubility of the starting amic acid in these solvents is also low, and it can only be obtained at extremely slow reaction rates.

そのため、やむを得ず高温で反応させたり及び/又は大
量の触媒の存在下で反応させると、ポリマー状の副生物
が生威したりして、反応の継続ができない状態になって
しまい、このままではポリイミドの製造方法としては全
く成立しないものであった. (問題を解決するための手段) 本発明者らは生成ポリイミドの分離が容易で、かつ高反
応性で選択率の良いプロセスを鋭意検討した結果、所定
比率の非プロトン性極性溶媒と非極性溶媒との混合溶媒
系で、ポリアミド酸の脱水イミド化時にα.β一不飽和
ジカルボン欣及び/又はその無水物を所定量存在させる
ことが、低温下での反応速度を著しく増加させ、ボリマ
ー状の副生物を抑制するのに極めて効果的であり、かつ
目的とするポリイミドの晶析性を損なうことなく、収率
及び純度を向上させることができることを見いだし本発
明に到達した. すなわち、α,β一不飽和ジカルボン酸無水物と分子内
に2個以上の第一級アミン基を有する芳香族ボリアミン
類及び/又はα.β一不飽和ジカルボン酸無水物と分子
内に2個以上の第一級アミ7基を有する芳香族ポリアミ
ン類との反応により得られるポリアミド酸を触媒存在下
、加熱脱水して環状ポリイミドを製造するに際し、当該
ポリアミド酸100重量部に対し、水と共沸性を有する
非極性溶媒60〜99重量%と非プロトン性極性溶媒4
0〜1重量%からなる混合溶媒50〜1000重量部及
び、当該混合溶媒に対し、l〜50重量部のα,β一不
飽和ジカルボン酸及び/又はその無水物の存在下で脱水
イミド化し、得られた反応混合物からポリイミドを晶析
分離することを特徴とする芳香族環状ポリイミド類のw
J′a方法である. 従来,ポリアミド酸を生成し、続いて脱水イミド化して
ポリイミドを生成する場合、アミノ基1当量に当該ジカ
ルボン酸及びその無水物を1.1モル程度反応させて、
アミド酸を生成せしめ、ついで同一反応器で脱水イミド
化を行うのが通例となっている.α.β一不飽和ジカル
ボン酸及び/又はその無水物の存在はジカルボン酸の異
性化反応や異性化酸との分子間脱水による重合物の生戒
等の原因とされてきた.従って、所定量のα,β一不飽
和ジカルボン酸及び/又はその無水物の存在が反応を促
進して、低温での反応を可能にし、ボリマー状副生物の
抑制につながるという本発明に開示された効果が全く認
識されていなかったのである. ここに掲げた高反応率、高選択率の反応方法が本発明の
第一の利益である.第二の利益は上記の特性を活かした
まま反応終了後、冷却により目的ポリイミドを結晶化し
容易に分離できる溶媒系に求められる.これにより大量
の廃水の処理などの工業上の不利益が排除させるばがっ
でなく、晶析母液を再度反応に供することができるため
、溶液中に溶存している過剰量のα,β一不飽和ジカル
ボン酸及び/又はその無水物の効率的使用が可能となり
本発明の利益を増大させる. このことから本発明において予め添加しておくα,β一
不飽和ジカルボン酸及び/又はその無水物は環状ポリイ
ミドの原料であるα,β一不飽和ジカルボン酸及び/又
はその無水物と同一であることが望ましい. 本発明に用いる芳香族ポリアミン類とは、分子内に第1
級アミノ基を2個以上有する芳香族アミンである.一般
式(A>.(B)、(C)及び(D>で示されるポリア
ミンが例示できる.NHオ く式中Xは水素原子、ハロゲン原子、炭素数1〜8のア
ルキル基、アルコキシ基、ヒドロキシル基、nは1〜3
の整数、n′はO〜10の整数、Yは− o − 、−
 s − 、+ s oユー+− S O一又はーCO
〜で各々同一であっても異なってもよい〉.さらに具体
的には、一般式(A)で示されるポリアミンとして m−フ二二レンジアミン、 p−フェニ1/ンジアミン、 2.4−ジアミノトルエン、 2.6−ジアミノトルエン、 2−クロルーp−フェニレンジアミン,一a式(B)で
示されるポリアミンとして2,2−ビス(4−アミノフ
ェニル)プロパン、4,4゜−ジアミノジフェニルメタ
ン、4.4 −ジアミノジフェニルエーテル、4,4′
−ジアミノジフェニルスルフィド、4.4 −ジアミノ
ジフエニルスルホン、4.4 −ジアミノジフェニルメ
チルエチルメタン、4.4゛−ジアミノジフェニノレジ
(トリフロロメチル〉メタン 3.3゛−ジアミノジフェニルエーテル、3.3゛−ジ
アミノジフエニルスルフィド、3.3゛−ジアミノジフ
ェニルスルホンアニリンとホルムアルデヒドのm=’t
h、アニリンとアセトアルデヒドの縮合物、トルイジン
とホルムアルデヒドの縮金物、などが例示される. 一般式(C)で示されるポリアミンは、4.4’−(P
−フ二二レンジイソプロビリデン〉ジアニリン、 3.4’−(P−フ二二レンジイソブロビリデン)ジア
ニリン、 3.3’−(p−フェニレンジイソプロビリデン〉ジア
ニリン、 1,4゜−ビス(p−アミノフェノキシ)ベンゼン1,
3゜−ビス(p−アミノフエノキシ)ベンゼン1 4゛
−ビス〈p−アミノフェノキシチオエーテル〉ベンゼン
、 1,3゜−ビス(p−アミノフェノキシチオエーテル)
ベンゼン、 1.4″−ビス(p−アミノフエニル)ベンゼン、1 
3゜−ビス(p−アミノフエニル)ベンゼン並びに上記
各ジアミンのメタ一体が例示される.−i式(D)で示
されるポリアミンとしては、2,2−ビス[4−(p−
アミノフェニルチオエーテル)フエニル]プロパン、 2,2−ビス[3−(p−アミノフェノキシチオエーテ
ル〉フエニルコプロパン、 4.4゜−ビス(p−アミノフエノキシ)ジフエニルス
ルホン、 3.3′−ビス(p−アミノフエノキシ)ジフエニルス
ルホン、 4,4゜−ビス(p−アミノフエニルチオエーテルジフ
ェニルスルホン、 3,3゜−ビス(p−アミノフェニルチオエーテルジフ
ェニルスルホン、 4,4゛−ビス(p−アミノフェノキシ)ジフエニルエ
ーテル、 3,3゛−ビス(p−アミノフェノキシ)ジフエニルエ
ーテル、 4,4′−ビス(p−アミノフエノキシ)ジフエニルス
ルフィド、 3,3゜−ビス(p−アミノフエノキシ)ジフェニルス
ルフィド、 4,4゜−ピス(p−アミノフェニルチオエーテルジフ
ェニルスルフィド、 3 3゜−ビス(p−アミノフエニルチオエーテルジフ
エニルスルフィド、 4,4゜−ビス〈p−アミノフエニルチオエーテルジフ
ェニルエーテル, 3 3゛−ビス(p−アミノフエニルチオエーテルジフ
ェニルエーテル, 4 4゜−ビス(p−アミノフェノキシ)ベンゾフエノ
ン、 3.3″−ビス〈p−アミノフェノキシ)ペンゾフェノ
ン、 4.4゛−ビス(p−アミノフェニルチオエーテルベン
ゾフェノン、 3.3′−ビス<p−アミノフエニルチオエーテルベン
ゾフエノン、 4.4″−ビス(p−アミノフエニルチオエーテルジフ
ェニル、 3.3゛−ビス(p−アミノフエニルチオエーテルジフ
ェニル、 並びに上記各ジアミンのメタ一体が例示される.一般式
(A)から(D)で示されるこれらのボリアミンは、単
独又は2種以上を組み合わせて用いることができ、また
、本発明の所定の効果が得られる限りにおいて、前記に
例示された以外に、他の芳香族ポリアミンを併用しても
よい。
Therefore, if the reaction is unavoidably carried out at high temperatures and/or in the presence of a large amount of catalyst, polymeric by-products will grow, making it impossible to continue the reaction. It was completely unworkable as a manufacturing method. (Means for Solving the Problem) As a result of intensive studies by the present inventors on a process that allows easy separation of polyimide produced, high reactivity, and good selectivity, the inventors found that a predetermined ratio of an aprotic polar solvent and a nonpolar solvent. When dehydrated and imidized polyamic acid in a mixed solvent system with α. Presence of a predetermined amount of β-unsaturated dicarbonate and/or its anhydride is extremely effective in increasing the reaction rate at low temperatures and suppressing the formation of polymeric by-products. The inventors have discovered that the yield and purity of polyimide can be improved without impairing the crystallization properties of polyimide, and have arrived at the present invention. That is, α,β monounsaturated dicarboxylic acid anhydride, aromatic polyamines having two or more primary amine groups in the molecule, and/or α. A cyclic polyimide is produced by heating and dehydrating a polyamic acid obtained by reacting a β-unsaturated dicarboxylic anhydride with an aromatic polyamine having two or more 7 primary amide groups in the molecule in the presence of a catalyst. In this case, based on 100 parts by weight of the polyamic acid, 60 to 99% by weight of a non-polar solvent that has azeotropy with water and 4 parts by weight of an aprotic polar solvent.
50 to 1000 parts by weight of a mixed solvent consisting of 0 to 1% by weight, and the mixed solvent is dehydrated and imidized in the presence of 1 to 50 parts by weight of α, β monounsaturated dicarboxylic acid and/or its anhydride, W of aromatic cyclic polyimides characterized by crystallizing and separating polyimide from the obtained reaction mixture
This is the J′a method. Conventionally, when polyamic acid is produced and then dehydrated and imidized to produce polyimide, 1 equivalent of amino group is reacted with about 1.1 mol of the dicarboxylic acid and its anhydride,
It is customary to generate amic acid and then perform dehydration and imidization in the same reactor. α. The presence of β-monounsaturated dicarboxylic acids and/or their anhydrides has been considered to be a cause of isomerization reactions of dicarboxylic acids and intermolecular dehydration of dicarboxylic acids, resulting in poor quality of polymers. Therefore, it is disclosed in the present invention that the presence of a predetermined amount of α,β-monounsaturated dicarboxylic acid and/or its anhydride accelerates the reaction, allowing the reaction to occur at low temperatures and leading to the suppression of polymeric by-products. The effects of this were not recognized at all. The reaction method with high reaction rate and high selectivity listed here is the first benefit of the present invention. The second advantage is required for a solvent system that takes advantage of the above properties and allows the target polyimide to be crystallized and easily separated by cooling after the reaction is completed. This not only eliminates industrial disadvantages such as the treatment of large amounts of waste water, but also allows the crystallization mother liquor to be subjected to the reaction again, which eliminates the excess amount of α, β, and This enables efficient use of unsaturated dicarboxylic acids and/or their anhydrides, increasing the benefits of the present invention. Therefore, in the present invention, the α,β-unsaturated dicarboxylic acid and/or its anhydride added in advance are the same as the α,β-unsaturated dicarboxylic acid and/or its anhydride, which are the raw materials for the cyclic polyimide. It is desirable that The aromatic polyamines used in the present invention are
It is an aromatic amine having two or more amino groups. Examples include polyamines represented by the general formulas (A>.(B), (C) and (D>). Hydroxyl group, n is 1-3
n' is an integer from 0 to 10, Y is - o -, -
s - , + s o you + - s o one or - CO
Each of ~ may be the same or different〉. More specifically, the polyamine represented by the general formula (A) includes m-phenyl diamine, p-phenylene diamine, 2.4-diaminotoluene, 2.6-diaminotoluene, 2-chlorop- Phenylene diamine, 1a Polyamines represented by formula (B) include 2,2-bis(4-aminophenyl)propane, 4,4°-diaminodiphenylmethane, 4,4-diaminodiphenyl ether, 4,4'
-Diaminodiphenylsulfide, 4.4-Diaminodiphenyl sulfone, 4.4-Diaminodiphenylmethylethylmethane, 4.4'-Diaminodiphenylenedi(trifluoromethyl)methane, 3.3'-Diaminodiphenyl ether, 3. m='t of 3'-diaminodiphenylsulfide, 3.3'-diaminodiphenylsulfoneaniline and formaldehyde
h, a condensate of aniline and acetaldehyde, a condensate of toluidine and formaldehyde, etc. The polyamine represented by the general formula (C) is 4.4'-(P
-Phenylene diisopropylidene>dianiline, 3.4'-(P-phenylene diisopropylidene)dianiline, 3.3'-(p-phenylene diisopropylidene>dianiline, 1,4゜- Bis(p-aminophenoxy)benzene 1,
3゜-bis(p-aminophenoxy)benzene 1 4゛-bis〈p-aminophenoxythioether〉benzene, 1,3゜bis(p-aminophenoxythioether)
Benzene, 1.4″-bis(p-aminophenyl)benzene, 1
Examples include 3°-bis(p-aminophenyl)benzene and meta-units of each of the above diamines. -i As the polyamine represented by formula (D), 2,2-bis[4-(p-
aminophenylthioether)phenyl]propane, 2,2-bis[3-(p-aminophenoxythioether)phenylcopropane, 4.4°-bis(p-aminophenoxy)diphenylsulfone, 3.3'-bis( p-aminophenylthioether diphenyl sulfone, 4,4゜-bis(p-aminophenylthioether diphenyl sulfone, 3,3゜bis(p-aminophenylthioether diphenyl sulfone, 4,4゛-bis(p-aminophenoxy) ) diphenyl ether, 3,3゛-bis(p-aminophenoxy) diphenyl ether, 4,4′-bis(p-aminophenoxy) diphenyl sulfide, 3,3゜bis(p-aminophenoxy) diphenyl sulfide, 4,4゜-pis(p-aminophenylthioether diphenyl sulfide, 3 3゜-bis(p-aminophenylthioether diphenyl sulfide, 4,4゜-bis〈p-aminophenylthioether diphenyl ether, 3 3゛- Bis(p-aminophenylthioether diphenyl ether, 4 4゜-bis(p-aminophenoxy)benzophenone, 3.3''-bis〈p-aminophenoxy)penzophenone, 4.4゛-bis(p-aminophenylthioether benzophenone) , 3.3′-bis<p-aminophenylthioetherbenzophenone, 4.4″-bis(p-aminophenylthioetherdiphenyl, 3.3′-bis(p-aminophenylthioetherdiphenyl), and the above Examples include meta-units of each diamine.These polyamines represented by the general formulas (A) to (D) can be used alone or in combination of two or more, and the desired effects of the present invention can be obtained. As far as possible, other aromatic polyamines may be used in addition to those exemplified above.

次にα.β一不飽和ジカルボン酸及び/又はその無水物
としては、マレイン酸、3−メチルマレイン酸、3−エ
チルマレイン酸、3,4−ジメチルマレイン酸、3.4
−ジエチルマレイン酸、3−フエニルマレイン酸、3−
クロルマレイン酸、ジクロルマレイン酸、テトラヒドロ
フタル酸、メチルテトラヒドロフタル酸、5−ノルボル
ネンー2.3−ジカルボン酸及びそれらの酸無水物、さ
らにはマレイン化アロオシメン、マレイン1ヒミルセン
などが例示される. 本発明では、触媒のブレンステッド酸はリン酸、亜リン
酸、次亜リン酸、メタリン酸、ビロリン酸、トリポリリ
ン酸、硫酸などの無機酸やメタンスルホン酸、P−ト/
レエンスルホン敢、ベンゼンスルホン酸、ナフタレンス
ルホン酸などの有機酸が使用できる.又、これらの酸触
媒に少量の五酸化リンなどの脱水剤を併用させることも
できる.上記ブレンステッド酸のうち、特にP−}ルエ
ンスルホン酸が副反応が少なく色相が良好な点で好まし
い。これらの触媒は、原料のポリアミド酸に対しl〜5
0重量%使用する. 反応に用いる溶媒の量は、原料のポリアミド酸100重
量部に対し、50〜1 000重量部程度用いる.好ま
しくは、100〜300重量部である.これより多いと
、生成したポリイミドの溶解量が多くなり損失が大きく
なる.また逆にこれより少ないと、生成したポリイミド
が多量に析出し、反応を完結させる上で、不都合が生じ
る.本発明における非プロトン性極性溶媒とは、例えば
N,N−ジメチルホルムアミド、N,N−ジメチルアセ
トアミド、N,N−ジエチルホルムアミド,N−メチル
−2−ビロリドン、ジメチルスルホキシド、ヘキサメチ
ルホスホロアミド、γブチロラクタム、テトラメチル尿
素、1.3−ジメチル−2−イミダゾリジノン、ジグラ
イム、ジオキサンなどが例示される。
Next α. Examples of the β-unsaturated dicarboxylic acid and/or its anhydride include maleic acid, 3-methylmaleic acid, 3-ethylmaleic acid, 3,4-dimethylmaleic acid, 3.4
-diethylmaleic acid, 3-phenylmaleic acid, 3-
Examples include chloromaleic acid, dichloromaleic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, 5-norbornene-2,3-dicarboxylic acid and their acid anhydrides, as well as maleated allocimene and maleic 1-himircene. In the present invention, the Brønsted acids used as catalysts include inorganic acids such as phosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, birophosphoric acid, tripolyphosphoric acid, and sulfuric acid, methanesulfonic acid, P-t/
Organic acids such as rhenesulfonic acid, benzenesulfonic acid, and naphthalenesulfonic acid can be used. Additionally, a small amount of a dehydrating agent such as phosphorus pentoxide can be used in combination with these acid catalysts. Among the Bronsted acids mentioned above, P-}luenesulfonic acid is particularly preferred because it causes fewer side reactions and has a good hue. These catalysts have a ratio of 1 to 5 with respect to the raw material polyamic acid.
Use 0% by weight. The amount of solvent used in the reaction is about 50 to 1,000 parts by weight per 100 parts by weight of the raw material polyamic acid. Preferably it is 100 to 300 parts by weight. If the amount is more than this, the amount of dissolved polyimide produced will increase and the loss will increase. On the other hand, if the amount is less than this, a large amount of the polyimide produced will precipitate, causing problems in completing the reaction. The aprotic polar solvent in the present invention includes, for example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-diethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphoramide, Examples include γ-butyrolactam, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, diglyme, and dioxane.

一方、非極性溶媒とは、好ましくは60〜200℃程度
の沸点範囲を有し、生戒水を共沸留去できる溶媒であり
、具体的にはトルエン、キシレン、エチルベンゼン、ヘ
キサン、オクタン、デカン、シクロヘキサン、メチルシ
クロヘキサン、エチルシクロヘキサン、軽油、軽油の水
素化物などの炭化水素、クロルベンゼン、ジクロルエタ
ン、トリクロルエタン.パークロルエチレンなどのハロ
ゲン化炭化水素などが例示され、単独又はそれらの任意
の2種以上の混合物で使用できる.前記非プロトン性極
性溶媒と水共沸性非極性溶媒の混合比率は、非極性溶媒
60〜99重量%、非プロトン性極性溶媒40〜1重量
%の範囲である.非プロトン性極性溶媒の割合が少なす
ぎると、反応速度が大幅に低下すると共に粘着性の強い
ボリマーが多量に副生し、反応続行が困難となるなどの
障害が生じる.逆に多すぎると、目的とする環状ポリイ
ミドの溶解性が高くなり、イミドの分離回収が困難とな
ると同時に、反応の選択性も低下する. 前記の溶媒に溶解せしめるα,β一不飽和ジカルボン酸
及び/又はその無水物の濃度は、1 w t%〜50w
t%で、好ましくは5wt%〜30wt%である.該ジ
カルボン酸及び/又はその無水物の濃度がlwt%より
も少ないと収率及び得られるポリイミド純度が大幅に低
下し、逆に過大であると該ジカルボン酸及び/又はその
無水物の損失が増加する。
On the other hand, nonpolar solvents preferably have a boiling point range of about 60 to 200°C and are solvents that can azeotropically distill off natural water, and specifically include toluene, xylene, ethylbenzene, hexane, octane, and decane. , cyclohexane, methylcyclohexane, ethylcyclohexane, gas oil, hydrocarbons such as hydrogenated gas oil, chlorobenzene, dichloroethane, trichloroethane. Examples include halogenated hydrocarbons such as perchlorethylene, which can be used alone or in a mixture of two or more of them. The mixing ratio of the aprotic polar solvent and water azeotropic nonpolar solvent is in the range of 60 to 99% by weight of the nonpolar solvent and 40 to 1% by weight of the aprotic polar solvent. If the proportion of the aprotic polar solvent is too small, the reaction rate will drop significantly and a large amount of highly sticky polymer will be produced as a by-product, making it difficult to continue the reaction. On the other hand, if it is too large, the solubility of the target cyclic polyimide becomes high, making it difficult to separate and recover the imide, and at the same time reducing the selectivity of the reaction. The concentration of α,β monounsaturated dicarboxylic acid and/or its anhydride dissolved in the above solvent is 1 wt% to 50w
t%, preferably 5wt% to 30wt%. If the concentration of the dicarboxylic acid and/or its anhydride is less than lwt%, the yield and the purity of the polyimide obtained will decrease significantly, and if it is too high, the loss of the dicarboxylic acid and/or its anhydride will increase. do.

さらに、反応物の着色を防ぎ、高品質の環状ポリイミド
を得るために,安定剤の存在下に反応を行うこともでき
る.安定剤としては、ハイドロキノン、メトキシベンゾ
キノン、フエノチアジン、t−ブチルカテコール、ジメ
チル力ルバミン酸などが適当で、その添加量は一般的に
は、反応系中の濃度で0.001〜1重量%が好ましい
.当該反応は加熱還流条件下で行われ、具体的には60
〜200℃である,より好ましくは100゜C〜130
℃である. 本発明方法は、一JR的に以下のように行われる.即ち
、ポリアミド酸、触媒、α,β一不飽和ジカルボン酸及
び/又はその無水物をデカンター付き反応器に仕込み、
1〜10uI間加熱還流しつつ脱水イミド化反応させる
.ポリアミド酸の供給は、粉末のままあるいは前記の溶
媒に懸濁させ、連続的に供給してもよい.反応終了後、
攪拌を停止し静置する. 反応液が分層する場合は、ポリイミドが析出しない任意
の温度で、ポリイミドを含む層と触媒を含む層を分離す
る.ポリイミドの結晶は、ポリイミドを含む溶液を冷却
するか、または溶媒の一部を留出させてから冷却して、
析出させることができる.分離した触媒層はそのまま繰
り返し使用できる. 反応液が分層しない場合は、そのままポリイミドを含む
溶液を冷却するが、または溶媒の一部を留出させてから
冷却して、ポリイミドの結晶を析出させることができる
.析出したポリイミドはr過又は遠心分離などで枦液と
分けて得ることができる.場合によっては炭化水素系溶
媒や水、炭酸ナトリウム水溶液及び/又はメタノールな
どの適当な溶剤で洗浄することにより、ポリイミドに付
着している酸触媒やα,β一不飽和ジカルボン酸及び/
又はその無水物を除去することができる.そのr液は、
そのまま又は該ジカルボン酸及び/又はその無水物を添
加して繰り遅し使用できる。
Furthermore, the reaction can be carried out in the presence of a stabilizer in order to prevent coloring of the reactants and obtain a high-quality cyclic polyimide. Suitable stabilizers include hydroquinone, methoxybenzoquinone, phenothiazine, t-butylcatechol, dimethylrubamic acid, etc., and the amount added is generally preferably 0.001 to 1% by weight in the reaction system. .. The reaction is carried out under heating and reflux conditions, specifically 60
-200°C, more preferably 100°C - 130°C
It is ℃. The method of the present invention is carried out in the following manner. That is, a polyamic acid, a catalyst, an α,β monounsaturated dicarboxylic acid and/or its anhydride are charged into a reactor equipped with a decanter,
Dehydration and imidization reaction is carried out while heating under reflux for 1 to 10 uI. The polyamic acid may be supplied continuously as a powder or suspended in the above-mentioned solvent. After the reaction is complete,
Stop stirring and let stand. If the reaction solution separates into layers, separate the polyimide-containing layer and the catalyst-containing layer at an arbitrary temperature at which polyimide does not precipitate. Polyimide crystals can be obtained by cooling a solution containing polyimide, or by distilling off a portion of the solvent and then cooling it.
It can be precipitated. The separated catalyst layer can be used repeatedly as is. If the reaction solution does not separate into layers, the polyimide-containing solution can be cooled as it is, or a portion of the solvent can be distilled off and then cooled to precipitate polyimide crystals. The precipitated polyimide can be separated from the molasses solution by filtration or centrifugation. In some cases, by washing with a suitable solvent such as a hydrocarbon solvent, water, aqueous sodium carbonate solution, and/or methanol, the acid catalyst, α,β monounsaturated dicarboxylic acid and/or
Or its anhydride can be removed. The R liquid is
It can be used as it is or repeatedly by adding the dicarboxylic acid and/or its anhydride.

以下、実施例及び比較例をあげ、本発明を詳細に説明す
る. (実施例〉 実施例1 水分離器付冷却管,滴下ロート、温度計及び攪拌器を備
えた四つ口フラスコにP−}ルエンスルホンwi4g、
トルエンl00g.DMF10g、無水マレイン酸14
.2g(混合溶液中の濃度は11.3wt%)及びN,
N’−4.4’−ジフエニルメタンビスマレアミド13
9.4g (0.1モル)を仕込み、撹拌しつつ還流温
度に加熱して、生戒水を除きながら4時間反応した.反
応終了後、20℃まで冷却した.析出した結晶をr別し
て2%の炭酸ナトリウム水溶液で洗浄後、乾燥し、淡黄
色の粉末のN.N’−4.4’−ジフェニルメタンビス
マレイミド30.0gを得た.高速液体クロマトグラフ
〈以下、rHPLC,と略記する〉で純度を測定した.
その結果を表1に示す。
The present invention will be explained in detail below with reference to Examples and Comparative Examples. (Example) Example 1 In a four-necked flask equipped with a cooling tube with a water separator, a dropping funnel, a thermometer, and a stirrer, 4 g of P-}luenesulfone,
Toluene 100g. DMF 10g, maleic anhydride 14
.. 2g (concentration in mixed solution is 11.3wt%) and N,
N'-4.4'-diphenylmethane bismaleamide 13
9.4 g (0.1 mole) was charged, heated to reflux temperature with stirring, and reacted for 4 hours while removing raw water. After the reaction was completed, it was cooled to 20°C. The precipitated crystals were separated, washed with a 2% aqueous sodium carbonate solution, and dried to give a pale yellow powder of N. 30.0 g of N'-4,4'-diphenylmethane bismaleimide was obtained. Purity was measured using high performance liquid chromatography (hereinafter abbreviated as rHPLC).
The results are shown in Table 1.

実施例2 無水マレイン酸の濃度を22wt%に変えた以外は実施
例1と同様に行い、黄色粉末のN,N’4,4゛−ジフ
ェニルメタンビスマレイミドを得た.その結果を表1に
示す. 実施例3 無水マレイン酸の濃度を6 w t%に変えた以外は実
施例1と同様に行い、黄色粉末のN,N’−4.4′−
ジフェニルメタンビスマレイミドを得た.その結果を表
1に示す. 実施例4 無水マレイン酸の濃度を11.3wt%のままで、トル
エン300g.DMF30gを用いた以外は実施例1と
同様に行い、黄色粉末のN,N−4,4゛−ジフェニル
メタンビスマレイミドを得た.その結果を表1に示す. 実施例5 酸触媒として85%リン酸6gを使用した以外は実施例
1と同様に反応した.反応後、静置して70℃まで冷却
し下層の触媒層を分離し、上層をさらに30℃まで冷却
して結晶を析出させた.結晶を枦別し、炭酸ナトリウム
水溶液で洗浄した後、乾燥してN,N“−4,4′−ジ
フエニルメタンビスマレイミドの黄色の粉末を得た.そ
の結果を表1に示す. 実施例6 実施例1において回収されたビスマレイミドを含むr液
110g(液組成は、トルエン76.2wt%、DMF
7.6wt%、ρ一トルエンスルホン酸1.5wt%、
無水マレイン酸10.8Wt%、該マレイミド3.9w
t%〉を反応器に仕込み、これにN,N’−4.4’−
ジフェニルメタンビスマレアミド酸37.1g (0.
084モル)を仕込んだ以外は、実施例1と同様の操作
で反応し、黄色粉末のN,N’−4.4’−ジフェニル
メタンビスマレイミドを得た.その結果を表1に示す. 実施r?47〜13 各種α,β一不飽和ジカルボン酸無水物及び芳香族ポリ
アミンから得たポリアミド酸を用い、酸触媒及び添加す
るα,β一不飽和ジカルボン酸及び/又はその無水物を
表2のように変え、実施例1と同様の操作を行って芳香
族環状ポリイミドを得た.反応後触媒層を分液し晶析し
た。それらの結果を表2に示す. 比較例1 無水マレイン酸を添加、実施例1と同様の反応を行い、
黄色粉末のN,N’−4.4’−ジフェニルメタンビス
マレイミドを得た.その結果を表3に示す. 比較例2 無水マレイン敢を混合溶媒に対し、0.2wt%溶解せ
しめた以外は、実施例lと同様の反応を行い、黄色粉末
のN,N’−4.4’−ジフェニルメタンビスマレイミ
ドを得た.その結果を表3に示す。
Example 2 A yellow powder of N,N'4,4'-diphenylmethane bismaleimide was obtained in the same manner as in Example 1 except that the concentration of maleic anhydride was changed to 22 wt%. The results are shown in Table 1. Example 3 The same procedure as Example 1 was carried out except that the concentration of maleic anhydride was changed to 6 wt%, and yellow powder N,N'-4.4'-
Diphenylmethane bismaleimide was obtained. The results are shown in Table 1. Example 4 While keeping the concentration of maleic anhydride at 11.3 wt%, 300 g of toluene was added. A yellow powder of N,N-4,4'-diphenylmethane bismaleimide was obtained in the same manner as in Example 1 except that 30 g of DMF was used. The results are shown in Table 1. Example 5 A reaction was carried out in the same manner as in Example 1, except that 6 g of 85% phosphoric acid was used as the acid catalyst. After the reaction, the mixture was allowed to stand and cooled to 70°C, the lower catalyst layer was separated, and the upper layer was further cooled to 30°C to precipitate crystals. The crystals were separated, washed with an aqueous sodium carbonate solution, and dried to obtain a yellow powder of N,N"-4,4'-diphenylmethane bismaleimide. The results are shown in Table 1. Examples 6 110 g of r liquid containing bismaleimide recovered in Example 1 (liquid composition: toluene 76.2 wt%, DMF
7.6wt%, ρ-toluenesulfonic acid 1.5wt%,
Maleic anhydride 10.8wt%, maleimide 3.9w
t%> into a reactor, and add N,N'-4.4'-
Diphenylmethane bismaleamic acid 37.1g (0.
The reaction was carried out in the same manner as in Example 1, except that 084 mol) was charged, and a yellow powder of N,N'-4.4'-diphenylmethane bismaleimide was obtained. The results are shown in Table 1. Implementation? 47-13 Using polyamic acids obtained from various α,β-unsaturated dicarboxylic acid anhydrides and aromatic polyamines, the acid catalyst and the α,β-unsaturated dicarboxylic acids and/or their anhydrides to be added are as shown in Table 2. , and the same operation as in Example 1 was performed to obtain an aromatic cyclic polyimide. After the reaction, the catalyst layer was separated and crystallized. The results are shown in Table 2. Comparative Example 1 Maleic anhydride was added and the same reaction as in Example 1 was carried out,
A yellow powder of N,N'-4,4'-diphenylmethane bismaleimide was obtained. The results are shown in Table 3. Comparative Example 2 The same reaction as in Example 1 was carried out except that 0.2 wt% of maleic anhydride was dissolved in the mixed solvent to obtain N,N'-4.4'-diphenylmethane bismaleimide as a yellow powder. Ta. The results are shown in Table 3.

(発明の効果)(Effect of the invention)

Claims (1)

【特許請求の範囲】[Claims] α、β−不飽和ジカルボン酸無水物と分子内に2個以上
の第一級アミノ基を有する芳香族ポリアミン類及び/又
はα,β−不飽和ジカルボン酸無水物と分子内に2個以
上の第一級アミノ基を有する芳香族ポリアミン類との反
応により得られるポリアミド酸を、酸触媒存在下、加熱
脱水して環状ポリイミドを製造するに際し、当該ポリア
ミド酸100重量部に対し、水と共沸性を有する非極性
溶媒60〜99重量%と非プロトン性極性溶媒40〜1
重量%からなる混合溶媒50〜1000重量部及び、当
該混合溶媒に対し1〜50重量部のα,β−不飽和ジカ
ルボン酸及び/又はその無水物の存在下で脱水イミド化
し、得られた反応混合物からポリイミドを晶析分離する
ことを特徴とする芳香族環状ポリイミド類の製造方法。
α,β-unsaturated dicarboxylic anhydride and aromatic polyamines having two or more primary amino groups in the molecule and/or α,β-unsaturated dicarboxylic anhydride and two or more primary amino groups in the molecule When producing a cyclic polyimide by heating and dehydrating a polyamic acid obtained by reaction with an aromatic polyamine having a primary amino group in the presence of an acid catalyst, an azeotropic reaction with water is performed based on 100 parts by weight of the polyamic acid. 60-99% by weight of a non-polar solvent with a polarity and 40-1% of an aprotic polar solvent
The reaction obtained by dehydration imidization in the presence of 50 to 1000 parts by weight of a mixed solvent consisting of % by weight and 1 to 50 parts by weight of α,β-unsaturated dicarboxylic acid and/or its anhydride based on the mixed solvent. A method for producing aromatic cyclic polyimides, which comprises crystallizing and separating polyimide from a mixture.
JP14923589A 1989-06-12 1989-06-12 Preparation of aromatic cyclic polyimide Pending JPH0314835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14923589A JPH0314835A (en) 1989-06-12 1989-06-12 Preparation of aromatic cyclic polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14923589A JPH0314835A (en) 1989-06-12 1989-06-12 Preparation of aromatic cyclic polyimide

Publications (1)

Publication Number Publication Date
JPH0314835A true JPH0314835A (en) 1991-01-23

Family

ID=15470833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14923589A Pending JPH0314835A (en) 1989-06-12 1989-06-12 Preparation of aromatic cyclic polyimide

Country Status (1)

Country Link
JP (1) JPH0314835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976730A1 (en) * 1998-07-28 2000-02-02 RHEIN-CHEMIE RHEINAU GmbH Process for the production of aromatic maleimides
US7459585B2 (en) 1998-09-11 2008-12-02 Ajinomoto Co., Inc. Benzene derivatives and pharmaceutical use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212362A (en) * 1986-03-13 1987-09-18 Nippon Kayaku Co Ltd Production of bismaleimide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212362A (en) * 1986-03-13 1987-09-18 Nippon Kayaku Co Ltd Production of bismaleimide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976730A1 (en) * 1998-07-28 2000-02-02 RHEIN-CHEMIE RHEINAU GmbH Process for the production of aromatic maleimides
US7459585B2 (en) 1998-09-11 2008-12-02 Ajinomoto Co., Inc. Benzene derivatives and pharmaceutical use thereof

Similar Documents

Publication Publication Date Title
US4405520A (en) Addition products of di-acetylene-terminated polymide derivatives and dienophiles having terminal maleimide grops
JPS6252746B2 (en)
JPS6143372B2 (en)
US4520198A (en) Vinylacetylene-terminated polyimide derivatives
US4528373A (en) Vinylacetylene-terminated polyimide derivatives
JP2011219539A (en) Bisimide compound, bisamic acid compound and method for producing those
JPH0314835A (en) Preparation of aromatic cyclic polyimide
JPH0761969A (en) Production of high-purity polymaleimide
JPH10310640A (en) Spiroacid dianhydiride, polyamic acid, spiropolyimide, and their production
US4331794A (en) Polymerization products of diimides having terminal diacetylene groups
JPH0377865A (en) Production of aromatic cyclic polyimide
US4435323A (en) Vinylacetylene-terminated polymide derivatives
JPH0616629A (en) Imide ring-containing diamine and its production
JPS60210630A (en) Production of polyamic acid solution
JPH02103231A (en) Production of aromatic cyclic polyimide
JPH0755928B2 (en) Imide ring-containing diamines and method for producing the same
JPS63122668A (en) Production of bis(hydroxyphthalimide)
JPS61291669A (en) Heat-resistant adhesive
US4528349A (en) Polymerization products of vinylacetylene-terminated polyimide derivatives
WO2023203897A1 (en) Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine
US4517363A (en) Vinylacetylene-terminated polyimide derivatives
JPH0755929B2 (en) Novel diphenol having imide ring and method for producing the same
JPH02145568A (en) Production of bisphthalimides
JPH04366131A (en) Thermosetting oligomer and its production
JP3386383B2 (en) Method for producing polyimide