JPH0476949B2 - - Google Patents

Info

Publication number
JPH0476949B2
JPH0476949B2 JP60085789A JP8578985A JPH0476949B2 JP H0476949 B2 JPH0476949 B2 JP H0476949B2 JP 60085789 A JP60085789 A JP 60085789A JP 8578985 A JP8578985 A JP 8578985A JP H0476949 B2 JPH0476949 B2 JP H0476949B2
Authority
JP
Japan
Prior art keywords
temperature
diamond
tin
coating
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60085789A
Other languages
Japanese (ja)
Other versions
JPS61247673A (en
Inventor
Hiroshi Ishizuka
Shuhei Kuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO
Original Assignee
ISHIZUKA KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO filed Critical ISHIZUKA KENKYUSHO
Priority to JP8578985A priority Critical patent/JPS61247673A/en
Publication of JPS61247673A publication Critical patent/JPS61247673A/en
Publication of JPH0476949B2 publication Critical patent/JPH0476949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は研削工具の材料として用いられる硬質
材の粉末、焼結又は成形体、工具刃先等の表面
に、窒化チタンの被覆を施す方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coating the surfaces of hard material powders, sintered or molded bodies, tool cutting edges, etc. used as materials for grinding tools with titanium nitride.

研削・切削材としては従来、ダイヤモンドや高
圧相(立方晶、ウルツ鉱型)窒化硼素(cBN、
wBN)のような超砥粒、又はこれらの焼結体や、
超硬合金、サーメツト、セラミツクス等の焼結
材、あるいは高速度鋼等が広く利用されている。
Conventionally, diamond and high-pressure phase (cubic, wurtzite) boron nitride (cBN,
superabrasive grains such as wBN) or sintered bodies of these,
Sintered materials such as cemented carbide, cermet, and ceramics, and high-speed steel are widely used.

一方窒化チタン(TiN)は耐熱性及び靱性に
すぐれ、これをダイヤモンドやcBN、wBN等の
砥粒に被覆することによつて、砥粒の見かけ上の
強度が向上すると共に研削工具を構成する結合材
への保持力が増すので、砥粒の脱落が防止され、
この点において工具の研削性能乃至寿命の向上が
見込まれる。
On the other hand, titanium nitride (TiN) has excellent heat resistance and toughness, and by coating abrasive grains such as diamond, cBN, wBN, etc., the apparent strength of the abrasive grains is improved and the bond forming the grinding tool is improved. The holding power to the material increases, preventing the abrasive grains from falling off.
In this respect, it is expected that the grinding performance and life of the tool will be improved.

また砥粒をTiC系サーメツト質結合材中に分散
させた焼結工具の製作において、予めTiNで被
覆したダイヤモンドやcBN、wBNを砥粒として
用いることが望ましい。つまりこの場合、TiN
が結合材主成分のTiCと反応しやすく、それによ
つて砥粒が結合材中に強固に固定されるためであ
る。
Furthermore, in manufacturing a sintered tool in which abrasive grains are dispersed in a TiC-based cermet binder, it is desirable to use diamond, cBN, or wBN coated with TiN in advance as the abrasive grains. In other words, in this case, TiN
This is because the abrasive grains easily react with TiC, which is the main component of the binder, and thereby the abrasive grains are firmly fixed in the binder.

基材にTiN被覆を形成する方法としてはいく
つか知られているが、ダイヤモンドや高圧相窒化
硼素は常圧下でそれぞれ約1000℃ 、1200℃ の高温
に供されると軟質の黒鉛及び六方晶窒化硼素
(hBN)に変化するので、処理温度がこの温度よ
り低くなければならない。このような方法として
は、イオン化したチタンの蒸気とN2ガスとを基
材表面で反応させ、TiNとして析出させるイオ
ンプレ−テイング法がある。この方法では基材の
到達温度は500℃ 程度であり、熱による物性の劣
化は生じない。しかし一般に処理容量は小さく、
処理コストが高くつくという欠点がある。
There are several known methods for forming TiN coatings on substrates, but diamond and high-pressure phase boron nitride form soft graphite and hexagonal nitride when exposed to high temperatures of approximately 1000°C and 1200°C, respectively, under normal pressure. Since it changes to boron (hBN), the processing temperature must be lower than this temperature. As such a method, there is an ion plating method in which ionized titanium vapor and N2 gas are reacted on the surface of the base material to precipitate TiN. In this method, the temperature reached by the base material is approximately 500°C, and no deterioration of physical properties occurs due to heat. However, the processing capacity is generally small,
The disadvantage is that the processing cost is high.

一般の基材にTiNを被覆する方法としてこの
ほかに、TiNを蒸発した基材上に析出させる方
法、及びTiCl4とN2ガスとを基材表面で反応あせ
てTiNとして析出させる化学蒸着(CVD)法が
知られている。しかし前者の方法では高沸点の
TiN蒸気を得るためにプラズマやアーク放電を
用いて高エネルギーでTiNの分子を叩き出し、
これを基材上に付着せしめる必要があるので、基
材も必然的に高温に曝される。また後者の方法で
もTiNの生成反応を効率的に進めるために、基
材を1000℃ 程度に保つ必要がある従つてこれらの
方法はどちらも、ダイヤモンドやcBN、wBNへ
のTiNの被覆に用いるのは不適である。
Other methods for coating general substrates with TiN include a method in which TiN is deposited on the evaporated substrate, and a chemical vapor deposition method in which TiCl 4 and N 2 gas are reacted on the surface of the substrate and deposited as TiN. CVD) method is known. However, in the former method, high boiling point
To obtain TiN vapor, TiN molecules are blasted out with high energy using plasma or arc discharge.
Since it is necessary to deposit this onto the substrate, the substrate is also necessarily exposed to high temperatures. In addition, even with the latter method, it is necessary to maintain the base material at around 1000℃ in order to efficiently proceed with the TiN production reaction.Therefore, both of these methods cannot be used to coat diamond, cBN, or wBN with TiN. is inappropriate.

それ故本発明は、ダイヤモンドや高温相窒化硼
素に適用可能な比較的低温にて、しかも高能率で
TiN被覆を形成できる方法を提供するものであ
つて、その要旨とするところは、ダイヤモンド又
は高圧相窒化硼素粒子の表面に、800℃以下の温
度で減圧下の析出法を用いて金属チタンの被覆層
を形成し、ついでこの被覆層を窒素雰囲気中で約
500℃以上の温度に加熱して窒化することを特徴
とする、硬質材に窒化チタンを被覆する方法に存
する。
Therefore, the present invention can be applied to diamond and high-temperature phase boron nitride at relatively low temperatures and with high efficiency.
The present invention provides a method for forming a TiN coating, the gist of which is to coat the surface of diamond or high-pressure phase boron nitride particles with metallic titanium using a precipitation method under reduced pressure at a temperature of 800°C or less. layer, and then this coating layer is exposed to nitrogen in a nitrogen atmosphere.
The present invention relates to a method for coating a hard material with titanium nitride, which is characterized by nitriding by heating to a temperature of 500°C or higher.

本発明においては基材に金属チタンの被覆層を
形成するには、真空蒸着、プラズマ、アーク放
電、スパツタリング、イオンプレーテイング等
の、従来公知の方法を用いて、基材温度が800℃
以下となるような操作条件を選ぶ。また経済上有
利なように、できるだけ大量処理方式で行う。こ
うして形成された金属チタン層の窒化は約500℃
以上、好ましくは約800±50℃ の温度範囲で行う。
この処理の実施には、この温度を保持可能な、温
度分布の良好な雰囲気炉を利用するのがよい。
In the present invention, in order to form a coating layer of metallic titanium on a base material, a conventionally known method such as vacuum evaporation, plasma, arc discharge, sputtering, ion plating, etc. is used, and the base material temperature is 800°C.
Select operating conditions that are as follows. Also, in order to be economically advantageous, the process is carried out in a mass processing manner as much as possible. The nitridation of the metallic titanium layer thus formed is approximately 500°C.
The above temperature range is preferably about 800±50°C.
To carry out this treatment, it is preferable to use an atmospheric furnace that can maintain this temperature and has a good temperature distribution.

本発明方法は上記のように、比較的低温で実施
できるので、ダイヤモンドや高圧相BNに有効な
TiNを被覆できるが、基材としてその他の硬質
材、例えば超硬合金、サーメツト、セラミツク、
高速度鋼等を利用できることは、言うまでもな
い。
As mentioned above, the method of the present invention can be carried out at relatively low temperatures, so it is effective for diamond and high-pressure phase BN.
Although TiN can be coated, other hard materials such as cemented carbide, cermet, ceramic, etc. can be used as the base material.
Needless to say, high speed steel etc. can be used.

本発明に従つて窒化チタンの被覆を形成すると
きは、金属チタン層の窒化の際に基材と金属相と
の間で化学反応が生じ、その結果接着力の大きな
被覆層を得ることができる。従つて最初の金属チ
タン層形成段階では析出層の密着度は特に考慮の
必要がなく、専ら析出速度を基準にして処理方法
を選ぶことができる。
When forming a titanium nitride coating according to the invention, a chemical reaction occurs between the substrate and the metal phase during the nitridation of the metallic titanium layer, resulting in a coating layer with high adhesion. . Therefore, at the initial stage of forming the metallic titanium layer, there is no need to particularly consider the degree of adhesion of the deposited layer, and the treatment method can be selected solely on the basis of the deposition rate.

実施例 1 60/80メツシユのメタルボンド級合成ダイヤモ
ンド粉末20gに、真空蒸着により約3μmの厚さ
に金属チタンを被覆した。次に、銀白色を呈する
この粉末を磁製ボートに入れ、横型電気炉で約
800℃ に加熱し、N2気流中でこの温度に15分間保
つた。この操作によつて粒子表面はすべて窒化チ
タン特有の金色を呈すると共に、また基材ダイヤ
モンドと被覆層間にはTiC結合層が生じ、密着度
の高い被覆が形成されていた。この被覆ダイヤモ
ンド粒子をコバルトで結合してチツプを製作し、
さらに500mmφ のセグメント型ブレードを製作し
た。これを花崗岩の切断に用いた一例では、未被
覆の同種ダイヤモンド使用のブレードに対し、55
%の切削比の向上を示した。
Example 1 20 g of 60/80 mesh metal bond grade synthetic diamond powder was coated with metallic titanium to a thickness of about 3 μm by vacuum deposition. Next, this silvery-white powder was placed in a porcelain boat and heated in a horizontal electric furnace for about 20 minutes.
It was heated to 800°C and kept at this temperature for 15 min under a stream of N2 . As a result of this operation, all particle surfaces exhibited a golden color characteristic of titanium nitride, and a TiC bonding layer was formed between the base diamond and the coating layer, forming a coating with high adhesion. These coated diamond particles are bonded with cobalt to make chips.
Furthermore, a segment type blade with a diameter of 500 mm was manufactured. In one example when this was used to cut granite, a blade using an uncoated diamond of the same type had a cutting speed of 55
% improvement in cutting ratio.

実施例 2 イオンプレーテイング法により約1.5μmの金属
チタン被覆を予め施した200/300メツシユのcBN
粉末を、上記実施例と同様の方法で窒化処理し
て、TiN被覆を形成した。この粒子55vol%とサ
ーメツト(組成:80TiC−10Ni−10Mo:重量
比)の粉末45%との混合物を50Kb、1500℃の圧
力温度条件下に5分間保ち、直径11mm、厚さ4.5
mmの円板状塊体を作成した。この塊体を通常の方
法で加工して切削工具(バイト)を作成し、SK
種鋼材の切削加工に用いた。これは未被覆の
cBNの粒子を出発材料を用いた同様の工具に比
して、約34%の切削比向上を示した。
Example 2 200/300 mesh cBN coated with metallic titanium of approximately 1.5 μm by ion plating method
The powder was nitrided in the same manner as in the above example to form a TiN coating. A mixture of 55 vol% of these particles and 45% of cermet powder (composition: 80TiC-10Ni-10Mo: weight ratio) was kept at 50Kb under pressure and temperature conditions of 1500℃ for 5 minutes, and the diameter was 11mm and the thickness was 4.5mm.
A disc-shaped mass of mm was created. This lump is processed in the usual way to create a cutting tool (bite), and the SK
Used for cutting steel materials. This is an uncoated
Compared to a similar tool using cBN particles as a starting material, the cutting ratio was improved by approximately 34%.

以上の操作では専ら硬質材としてダイヤモンド
またはcBN粒子を用いた場合についてのみ記載
したが、本発明方法はこの外にも、成形または焼
結された超硬合金やサーメツトに対しても同様に
実施し得ることが自明である。この場合、これら
の基材の耐熱性や靱性も、未被覆時に比較して大
幅に向上させ得るものである。
Although the above operations have been described only for cases where diamond or cBN particles are used as the hard material, the method of the present invention can also be performed on molded or sintered cemented carbide or cermet. Obtaining is obvious. In this case, the heat resistance and toughness of these base materials can also be significantly improved compared to when they are uncoated.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド又は高圧相窒化硼素粒子の表面
に、800℃以下の温度で減圧下の析出法を用いて
金属チタンの被覆層を形成し、ついでこの被覆層
を窒素雰囲気中で約500℃以上の温度に加熱して
窒化することを特徴とする、硬質材に窒化チタン
を被覆する方法。 2 上記析出法が真空蒸着、プラズマ化析出、ス
パツタリング、イオンプレーテイングから選ばれ
る、特許請求の範囲第1項記載の方法。
[Claims] 1. A coating layer of metallic titanium is formed on the surface of diamond or high-pressure phase boron nitride particles using a precipitation method under reduced pressure at a temperature of 800°C or less, and then this coating layer is deposited in a nitrogen atmosphere. A method for coating hard materials with titanium nitride, which is characterized by nitriding by heating to a temperature of approximately 500°C or higher. 2. The method of claim 1, wherein the deposition method is selected from vacuum evaporation, plasma deposition, sputtering, and ion plating.
JP8578985A 1985-04-22 1985-04-22 Method of coating titanium nitride on hard material Granted JPS61247673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8578985A JPS61247673A (en) 1985-04-22 1985-04-22 Method of coating titanium nitride on hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8578985A JPS61247673A (en) 1985-04-22 1985-04-22 Method of coating titanium nitride on hard material

Publications (2)

Publication Number Publication Date
JPS61247673A JPS61247673A (en) 1986-11-04
JPH0476949B2 true JPH0476949B2 (en) 1992-12-07

Family

ID=13868653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8578985A Granted JPS61247673A (en) 1985-04-22 1985-04-22 Method of coating titanium nitride on hard material

Country Status (1)

Country Link
JP (1) JPS61247673A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326273B2 (en) 2001-07-03 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
GB2408752B (en) * 2001-07-03 2005-07-20 Honda Motor Co Ltd Method of maunfacturing multicomponent ceramics powder or sintered body thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242809A (en) * 1975-09-30 1977-04-04 Union Carbide Corp Promoting catalytic production of polyhydric alcohol
JPS5534223A (en) * 1978-08-30 1980-03-10 Barnes Carl E Polypyrrolidoneeiodine complex

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242809A (en) * 1975-09-30 1977-04-04 Union Carbide Corp Promoting catalytic production of polyhydric alcohol
JPS5534223A (en) * 1978-08-30 1980-03-10 Barnes Carl E Polypyrrolidoneeiodine complex

Also Published As

Publication number Publication date
JPS61247673A (en) 1986-11-04

Similar Documents

Publication Publication Date Title
JP4850074B2 (en) Method for coating abrasives
JP4861831B2 (en) Coated abrasive
JPH08119774A (en) Combined material having high hardness for tool
JPH0566349B2 (en)
JP2004100004A (en) Coated cemented carbide and production method therefor
CN102650049A (en) Method of manufacturing surface-coated cutting tool with excellent abrasion resistance
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JPH0568548B2 (en)
CN102978618A (en) Making method for surface coating cutting tool with excellent wear resistance property
JPH0476949B2 (en)
US20090031637A1 (en) Coated abrasives
KR101106884B1 (en) Boron coated abrasives
JP2794111B2 (en) Diamond coated cutting tool
WO2001066492A1 (en) Coated sinter of cubic-system boron nitride
JP2001322884A (en) Coated cubic boron nitride sintered compact
JPH02192483A (en) Diamond silicon carbide composite
JPH07164209A (en) Composite cutting tool
JPH05220668A (en) Highly hard powder for coating and its manufacture
JP2001322067A (en) Extra-abrasive grain coated with metal carbide, its manufacturing method and extra-abrasive grain tool
JP2662692B2 (en) Hard polycrystalline diamond tool
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPH02172673A (en) Grinding tool and manufacture thereof
JPH05125542A (en) Manufacture of thin diamond film tool
JPS62105628A (en) High-tenacity coated cemented carbide and manufacture thereof
JPH04120265A (en) Boron nitride coated member