JPH0476841A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH0476841A JPH0476841A JP18793990A JP18793990A JPH0476841A JP H0476841 A JPH0476841 A JP H0476841A JP 18793990 A JP18793990 A JP 18793990A JP 18793990 A JP18793990 A JP 18793990A JP H0476841 A JPH0476841 A JP H0476841A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magneto
- optical recording
- metal
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010410 layer Substances 0.000 claims abstract description 89
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 238000005260 corrosion Methods 0.000 claims abstract description 20
- 230000007797 corrosion Effects 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 150000002739 metals Chemical class 0.000 claims abstract description 15
- 239000011241 protective layer Substances 0.000 claims abstract description 15
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 4
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 4
- 150000003624 transition metals Chemical class 0.000 claims abstract description 4
- 150000004767 nitrides Chemical class 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 3
- 229910052709 silver Inorganic materials 0.000 claims abstract description 3
- 229910052752 metalloid Inorganic materials 0.000 claims description 2
- 150000002738 metalloids Chemical class 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 229910052719 titanium Inorganic materials 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 238000002310 reflectometry Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 35
- 230000001681 protective effect Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 10
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 and DV Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 108010088874 Cullin 1 Proteins 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱磁気的に記録および消去を行い、磁気光学的
に再生を行う光磁気記録媒体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optical recording medium in which recording and erasing are performed thermomagnetically and reproduction is performed magneto-optically.
近年、情報の大容量化、高密度化に対応可能な記録媒体
として光デイスクメモリーの開発が活発に行われている
。中でも、記録、消去、書換えが可能な光磁気記録媒体
は、実用性、用途の広さから最も注目されている。2. Description of the Related Art In recent years, optical disk memories have been actively developed as recording media that can accommodate larger volumes and higher information densities. Among them, magneto-optical recording media that can be recorded, erased, and rewritten are attracting the most attention because of their practicality and wide range of uses.
光磁気記録媒体の記録層は磁気光学特性に優れた非晶質
の希土類−遷移金属合金が最も多く使われているが、こ
の合金は水分等による腐食を起こし易く、不動態形成金
属等の添加により耐食性を向上させている。Amorphous rare earth-transition metal alloys with excellent magneto-optical properties are most often used in the recording layer of magneto-optical recording media, but these alloys are easily corroded by moisture and require the addition of passivation-forming metals. This improves corrosion resistance.
また、前述の記録層だけでは実用に充分な磁気光学特性
が得られないため、基板上に干渉層、記録層、反射層、
保護層を順次形成する層構成によりカー効果とファラデ
ー効果を併用させ、レーザー光照射時の記録、再生効率
の向上をはかっている。In addition, since sufficient magneto-optical properties cannot be obtained for practical use only with the above-mentioned recording layer, it is necessary to add an interference layer, a recording layer, a reflective layer, etc. on the substrate.
The layer structure in which protective layers are sequentially formed allows both the Kerr effect and the Faraday effect to be used together, thereby improving recording and reproducing efficiency during laser beam irradiation.
反射層が記録層に隣接して設けられた光磁気記録媒体に
おいて、反射層として一般的にはAIやA1合金の薄膜
が用いられている。しかしながら、AIは局部腐食を起
こし易(、また、その高熱伝導性のため記録感度が大幅
に低下する。AIは表面に不動態を形成するため全面腐
食については強固な耐食性を示すが、−度ピンホールが
生じた場合、ピンホール部分でアノード反応、それ以外
の部分でカソード反応が進行して腐食電池を形成し局所
的に深い礼状の侵食を生じる。また、光磁気記録媒体は
記録層の温度を上昇させて記録を行うのであるが、記録
層と反射層が隣接した該構造においては、反射層の熱伝
導性が高いと、記録層から反射層を通じて熱が逃げてし
まい、記録層の温度が十分に上がらず記録感度が低下し
てしまう。In magneto-optical recording media in which a reflective layer is provided adjacent to a recording layer, a thin film of AI or A1 alloy is generally used as the reflective layer. However, AI is prone to local corrosion (and its high thermal conductivity significantly reduces recording sensitivity. AI forms a passive state on its surface, so it shows strong corrosion resistance against general corrosion; When a pinhole occurs, an anode reaction progresses in the pinhole area and a cathode reaction proceeds in other areas, forming a corrosion cell and causing localized deep erosion.Furthermore, in magneto-optical recording media, the recording layer Recording is performed by raising the temperature, but in such a structure where the recording layer and the reflective layer are adjacent to each other, if the reflective layer has high thermal conductivity, heat will escape from the recording layer through the reflective layer, causing the recording layer to deteriorate. The temperature does not rise sufficiently and the recording sensitivity decreases.
一方、A1合金を用いたものは記録感度の点においては
改善できるが、高い耐食性を示す組成では反射率が低い
ため、十分なC/N比が得られないという欠点を持って
いる。On the other hand, although the recording sensitivity can be improved using the A1 alloy, the composition exhibiting high corrosion resistance has a low reflectance, so it has the disadvantage that a sufficient C/N ratio cannot be obtained.
上記問題点に鑑み本発明の解決すべき課題は、高い記録
感度を有し、かつ十分なC/N比が得られる光磁気記録
媒体を提供することにある。In view of the above problems, it is an object of the present invention to provide a magneto-optical recording medium that has high recording sensitivity and can obtain a sufficient C/N ratio.
基板上に干渉層、記録層、反射層、保護層を順次形成し
てなる光磁気記録媒体において、該反射層をTiとAu
S PtS PdS AgS Cuの不活性金属からな
る合金膜とすることにより、耐食性、記録感度、C/N
比の向上が達成できる。In a magneto-optical recording medium in which an interference layer, a recording layer, a reflective layer, and a protective layer are sequentially formed on a substrate, the reflective layer is made of Ti and Au.
S PtS PdS AgS By forming an alloy film made of an inert metal of Cu, corrosion resistance, recording sensitivity, and C/N are improved.
An improvement in the ratio can be achieved.
本発明は、基板上に金属の酸化物或は窒化物或は酸窒化
物からなる干渉層、遷移金属と希土類金属と耐食性金属
からなる光磁気記録層、反射層、及び保護層により形成
された光磁気記録媒体において、該反射層がA us
P tSP cJSA gSCuの不活性金属から選
択される少なくとも1種とTiとを主成分とする合金で
あり、かつ、反射層中の不活性金属含有量が3〜97原
子%で、反射層の膜厚が10〜200nmであることを
特徴とする光磁気記録媒体に関する。The present invention includes an interference layer made of a metal oxide, nitride, or oxynitride, a magneto-optical recording layer made of a transition metal, a rare earth metal, and a corrosion-resistant metal, a reflective layer, and a protective layer formed on a substrate. In the magneto-optical recording medium, the reflective layer has A us
P tSP cJSA gSCu is an alloy mainly composed of at least one selected from inert metals and Ti, and the inert metal content in the reflective layer is 3 to 97 atomic %, and the reflective layer film The present invention relates to a magneto-optical recording medium having a thickness of 10 to 200 nm.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
第1図〜第3図は本発明に関わる光磁気記録媒体の層構
成を模式的に示したものである。1 to 3 schematically show the layer structure of a magneto-optical recording medium according to the present invention.
基板としては、ポリカーボネート、PMMA。The substrate is polycarbonate or PMMA.
アモルファスポリオレフィン等のプラスチ、り、或はガ
ラスに直接案内溝を形成した基板、ガラスまたはプラス
チックの平板上にフォトポリマー法により案内溝を形成
した基板等が挙げられる。基板の屈折率は1.4〜1.
6、厚みは1.0〜1゜5mm程度が望ましい。Examples include a substrate made of plastic such as amorphous polyolefin, or a substrate in which guide grooves are formed directly on glass, and a substrate in which guide grooves are formed on a flat plate of glass or plastic by a photopolymer method. The refractive index of the substrate is 1.4 to 1.
6. The thickness is preferably about 1.0 to 1.5 mm.
一般的に、干渉層には透明性、屈折率の高い誘電体膜が
用いられる。材質としては、例えば、SiN、5SiO
,%AI S iON、 AI S 1NSAIN、
AlTiN、TazOa等が挙げられる。Generally, a dielectric film with high transparency and refractive index is used for the interference layer. Examples of the material include SiN, 5SiO
,% AI S iON, AI S 1NSAIN,
Examples include AlTiN and TazOa.
これら干渉膜の屈折率nは1. 8<n<2. 8、吸
収係数には0≦k<0.2の範囲であることが好ましい
。干渉膜の膜厚は、基板側の反射率が最小となる膜厚か
ら0〜20%厚めであるのが良く、この場合、干渉膜の
膜厚は50〜1100nである。 この干渉膜は、磁
気光学特性を向上させる、すなわち見かけ上カー回転角
を増大させるエンハンスメント効果だけでな(、基板側
から記録層への水分等の浸透を防ぐ保護効果も合わせ持
つ。The refractive index n of these interference films is 1. 8<n<2. 8. The absorption coefficient preferably falls within the range of 0≦k<0.2. The thickness of the interference film is preferably 0 to 20% thicker than the thickness at which the reflectance on the substrate side is minimum, and in this case, the thickness of the interference film is 50 to 1100 nm. This interference film not only has an enhancement effect of improving the magneto-optical properties, that is, increasing the apparent Kerr rotation angle, but also has a protective effect of preventing penetration of moisture etc. from the substrate side to the recording layer.
光磁気記録層は、Nd、Gd、Tb、DV等の希土類金
属のうち少なくとも1種と、Fe、Co。The magneto-optical recording layer includes at least one rare earth metal such as Nd, Gd, Tb, and DV, and Fe and Co.
Ni等の遷移金属のうち少なくとも1種と、耐食性金属
とからなる。耐食性金属としてはCr、Ti、 V、
Zr、 Nb、 Ta等の不動態形成金属、或
はAu、Pt、Pd等の不活性金属が好適である。これ
らの金属は、10原子%程度まで添加することにより、
磁気光学特性を悪化させずに耐食性を向上させることが
できる。It consists of at least one transition metal such as Ni and a corrosion-resistant metal. Corrosion-resistant metals include Cr, Ti, V,
Passivation-forming metals such as Zr, Nb, and Ta, or inert metals such as Au, Pt, and Pd are suitable. By adding these metals up to about 10 atom%,
Corrosion resistance can be improved without deteriorating magneto-optical properties.
光磁気記録層の具体例として、TbFeCo、TbFe
CoCr、TbFeCoTi5 NdDyFeCo等が
挙げられる。光磁気記録層は単一の膜、もしくは磁気特
性の異なる複数の膜を重ねた構造のどちらでもよい。光
磁気記録層の膜厚は10〜70nmであるのが良く、好
ましくはレーザー光が十分透過し得る20〜40nmで
あるのが望ましい。Specific examples of the magneto-optical recording layer include TbFeCo and TbFe.
Examples include CoCr, TbFeCoTi5 NdDyFeCo, and the like. The magneto-optical recording layer may be a single film or may have a structure in which a plurality of films having different magnetic properties are layered. The thickness of the magneto-optical recording layer is preferably 10 to 70 nm, preferably 20 to 40 nm through which laser light can sufficiently pass through.
反射層として、Au、PtS Pc1S Ag、Cu等
の不活性でかつ高反射率な金属のうち少なくとも1種と
Tiとを主成分とする合金を用いる。Au、P tSP
d、A gSCu等の不活性金属で反射層を形成した
光磁気記録媒体は、反射率が高いため良好なC/N比が
得られるが、反面高い熱伝導性のため記録感度は大きく
低下する。また、Tiは熱伝導性の低い金属であるため
、反射層として単体で用いた場合、熱の拡散が起こりに
くく高い記録感度を示すが、反射率が低いため十分なC
/N比が得られないという欠点があった。Tiと不活性
金属の合金はその組成比を変えることにより、熱伝導率
を4.lXl0−’〜1.0XIO−”cal/cm−
deg−sの範囲で任意に調節でき、かつ反射率をTi
反射膜より向上させることができる。反射率を向上させ
るためにはAu、PtS PdSAg、Cuの不活性金
属添加量が3原子%以上であることが望ましく、一方、
実用的な記録感度にするためには97原子%以下である
ことが必要である。Tiは強度、耐食性にすぐれた金属
であり、酸化によって形成する不動態は腐食に対して強
固な性質を示す。また、不活性金属は化学的に安定であ
るためTi−不活性金属合金薄膜は高い耐食性を有する
。As the reflective layer, an alloy whose main components are Ti and at least one of inert and highly reflective metals such as Au, PtS, Pc1S, Ag, and Cu is used. Au, PtSP
d, A Magneto-optical recording media in which a reflective layer is formed with an inert metal such as gSCu have a high reflectance, so a good C/N ratio can be obtained, but on the other hand, the recording sensitivity is greatly reduced due to high thermal conductivity. . In addition, since Ti is a metal with low thermal conductivity, when used alone as a reflective layer, it is difficult to cause heat diffusion and exhibits high recording sensitivity.
There was a drawback that a /N ratio could not be obtained. By changing the composition ratio of the alloy of Ti and inert metal, the thermal conductivity can be increased to 4. lXl0-'~1.0XIO-"cal/cm-
It can be adjusted arbitrarily within the range of deg-s, and the reflectance can be adjusted to
It can be improved more than a reflective film. In order to improve the reflectance, it is desirable that the amount of inert metals added such as Au, PtS, PdSAg, and Cu is 3 atomic % or more;
In order to achieve practical recording sensitivity, it is necessary that it be 97 atomic % or less. Ti is a metal with excellent strength and corrosion resistance, and the passive state formed by oxidation exhibits strong properties against corrosion. Furthermore, since the inert metal is chemically stable, the Ti-inert metal alloy thin film has high corrosion resistance.
Tiに不活性金属を3〜97原子%添加した合金は、高
反射率で熱伝導性が低いため、反射層として使用した場
合、高いC/N比と良好な記録感度を持ち、なおかつ耐
食性に優れた光磁気記録媒体が得られる。An alloy made by adding 3 to 97 atomic percent of an inert metal to Ti has a high reflectance and low thermal conductivity, so when used as a reflective layer, it has a high C/N ratio and good recording sensitivity, and has good corrosion resistance. An excellent magneto-optical recording medium can be obtained.
反射層上に用いられる保護層は、金属、半金属の窒化物
、酸化物、酸窒化物等の誘電体からなる無機保護膜、並
びに紫外線硬化樹脂、ホットメルト樹脂等からなる有機
保護膜により形成される。The protective layer used on the reflective layer is formed of an inorganic protective film made of a dielectric material such as a metal or metalloid nitride, oxide, or oxynitride, or an organic protective film made of an ultraviolet curing resin, hot melt resin, etc. be done.
保護層には、これらの保護膜を単体でつけてもよく、無
機保護膜、有機保護膜の順に重ね合わせて使用してもよ
い。無機保護膜として、例えば、SiN、、SiOいA
I S iON、 AI S iN。For the protective layer, these protective films may be applied alone, or an inorganic protective film and an organic protective film may be stacked in this order. As an inorganic protective film, for example, SiN, SiO, A
IS iON, AI S iON.
AlN5 AlTi0N、Ta2es等の干渉層に用い
られるものと同様の誘電体が挙げられるが、無機保護膜
の組成は干渉層と同じであっても、なくても良い。保護
層の厚みは、無機保護膜の場合は20〜200nmであ
るのが好ましく、有機保護膜の場合は1〜50μmであ
ることが好ましい。Dielectrics similar to those used for the interference layer, such as AlN5, AlTi0N, and Ta2es, may be used, but the composition of the inorganic protective film may or may not be the same as that of the interference layer. The thickness of the protective layer is preferably 20 to 200 nm in the case of an inorganic protective film, and preferably 1 to 50 μm in the case of an organic protective film.
干渉層、光磁気記録層、反射層、無機保護膜はスパッタ
リング、イオンプレーディング等の物理蒸着法(PVD
)、プラズマCVD等の化学蒸着法(CVD)等によっ
て形成し、有機保護膜はスピンコード法、ロールコート
法等により塗布したのち硬化させて形成する。The interference layer, magneto-optical recording layer, reflective layer, and inorganic protective film are formed using physical vapor deposition methods (PVD) such as sputtering and ion plating.
), or by chemical vapor deposition (CVD) such as plasma CVD, and the organic protective film is formed by applying it by spin coating, roll coating, etc. and then curing it.
不活性金属とTiを主成分とする反射層は、隣接する光
磁気記録層との界面で高い反射率を有し、反射層として
使用可能である。また、この合金は熱伝導性が低いため
熱の拡散が起こりにくく、記録、消去の感度が他の反射
層に比べ向上する。A reflective layer mainly composed of an inert metal and Ti has a high reflectance at the interface with an adjacent magneto-optical recording layer, and can be used as a reflective layer. Furthermore, since this alloy has low thermal conductivity, it is difficult for heat to diffuse, and the recording and erasing sensitivity is improved compared to other reflective layers.
更に、この反射層は化学的に不活性な金属を使用してい
るため腐食しない。この合金は水分、腐食性ガス等を透
過させないため光磁気記録層にも腐食が起こらない。ま
た、不活性金属は延展性に優れており、反射層に添加す
ることにより、記録層。Furthermore, this reflective layer does not corrode because it is made of chemically inert metal. This alloy does not allow moisture, corrosive gases, etc. to pass through it, so corrosion does not occur in the magneto-optical recording layer. In addition, inert metals have excellent spreadability and can be added to the recording layer by adding them to the reflective layer.
保護層によるストレスを緩和し、クラックの発生を防止
することができる。It is possible to alleviate the stress caused by the protective layer and prevent the occurrence of cracks.
以下に実施例及び比較例を示す。なお、本発明は要旨を
逸脱しない限りにおいては以下の実施例に限定されるも
のではない。Examples and comparative examples are shown below. It should be noted that the present invention is not limited to the following examples unless it departs from the scope of the invention.
実施例1
130mmφのポリカーボネート基板をスパッタリング
装置に装着し、6.5X10−’torr以下まで排気
した後、Arガスを用いて、Al5iONターゲツトの
RFマグネトロンスパッタリングを行い750^のAl
5iON干渉膜を形成した。Example 1 A polycarbonate substrate with a diameter of 130 mm was mounted on a sputtering device, and after the exhaust was evacuated to below 6.5 x 10-'torr, RF magnetron sputtering was performed on an Al5iON target using Ar gas.
A 5iON interference film was formed.
次いで、5mm角のCrチップをのせたTbFeCo合
金ターゲットを用い、Arガス中で、DCマグネトロン
スパッタリングにより膜厚25OAのT boFe s
ac Osc r *記録層を形成した。Next, using a TbFeCo alloy target on which a 5 mm square Cr chip was placed, T boFe s with a thickness of 25 OA was formed by DC magnetron sputtering in Ar gas.
ac Oscr *A recording layer was formed.
引き続いて、5mm角のPtチップをのせたTiターゲ
ットを用い、Arガス中で、DCマグネトロンスパッタ
リングにより膜厚52o六のTi−pt反射膜を形成し
た。 この反射膜の組成は、ICPによる分析の結果
、Pt14原子%、Ti86原子%であった。Subsequently, a Ti-pt reflective film having a thickness of 52°6 was formed by DC magnetron sputtering in Ar gas using a Ti target on which a 5 mm square Pt chip was mounted. As a result of ICP analysis, the composition of this reflective film was found to be 14 atomic % of Pt and 86 atomic % of Ti.
最後に、Arガス中で、Al5iONターゲツトのRF
マグネトロンスパッタリングを行い、膜厚750久のA
l5iON保護膜を形成した。Finally, in Ar gas, the RF of the Al5iON target was
A film with a thickness of 750 mm was obtained by magnetron sputtering.
A 15iON protective film was formed.
以上の製膜作業は真空を破らずに連続的に行つた。The above film forming operations were performed continuously without breaking the vacuum.
このようにして作成した光磁気ディスクの内側ミラ一部
における基板側からの反射率を測定した結果25.2%
であった。The reflectance from the substrate side of a part of the inner mirror of the magneto-optical disk created in this way was measured and was 25.2%.
Met.
このディスクの記録再生特性を記録周波数−IMHz(
Duty比50%)、回転数=CAV1800rpm、
測定半径位置=30mm、再生レーザーパワー=1mW
で評価した。この結果、最適記録レーザーパワー(記録
時の2次歪みが最小となる記録レーザーパワーと定義す
る。)は、4゜0mWであり、C/N比は61.2dB
であった。The recording and playback characteristics of this disc are determined by recording frequency - IMHz (
Duty ratio 50%), rotation speed = CAV 1800 rpm,
Measurement radius position = 30mm, reproduction laser power = 1mW
It was evaluated by As a result, the optimal recording laser power (defined as the recording laser power that minimizes second-order distortion during recording) is 4°0 mW, and the C/N ratio is 61.2 dB.
Met.
最適記録レーザーパワーは比較例1,2と較べて、それ
ぞれ4.5mWおよび1.5mW低く、記録感度が向上
しているのが明らかである(第1表参照)。The optimum recording laser power was lower by 4.5 mW and 1.5 mW, respectively, than in Comparative Examples 1 and 2, and it is clear that the recording sensitivity was improved (see Table 1).
このディスクを80℃、85%RHの条件下で2000
Hrの加速耐久試験を行い、バイトエラーレート(BE
R)を測定したところ、初期状態に対する試験後のBE
Rの増加率(試験後のBER/初期状態のBER)は約
2.1と、比較例に較べて優位性がみられた(第4図参
照)。This disc was heated to 2000°C under the conditions of 80℃ and 85%RH.
An accelerated durability test of Hr was conducted to determine the byte error rate (BE).
R) was measured, and it was found that the BE after the test compared to the initial state
The rate of increase in R (BER after test/BER in initial state) was approximately 2.1, which was superior to the comparative example (see Figure 4).
実施例2
反射層以外の干渉層、記録層、保護層は実施例1と同じ
条件で製膜した。Example 2 The interference layer, recording layer, and protective layer other than the reflective layer were formed under the same conditions as in Example 1.
反射層は、5mm角のptチップをのせたTiターゲッ
トを用い、Arガス中で、DCマグネトロンスパッタリ
ングにより膜Jli9F49OAのTlPt合金膜を形
成した。ICPによる分析の結果、Pt4原子%、Ti
96原子%であった。For the reflective layer, a TlPt alloy film of film Jli9F49OA was formed by DC magnetron sputtering in Ar gas using a Ti target on which a 5 mm square PT chip was mounted. As a result of analysis by ICP, Pt4 atomic%, Ti
It was 96 atomic %.
このディスクの記録再生特性を実施例1と同様に評価を
行った。結果を第1表及び第4図に示す。The recording and reproducing characteristics of this disc were evaluated in the same manner as in Example 1. The results are shown in Table 1 and Figure 4.
実施例3
反射層以外の干渉層、記録層、保護層は実施例1と同じ
条件で製膜した。Example 3 The interference layer, recording layer, and protective layer other than the reflective layer were formed under the same conditions as in Example 1.
反射層は、5mm角のTiチップをのせたptジターッ
トを用い、Arガス中で、DCマグネトロンスパッタリ
ングによりlli厚590 A(DT iPt合金膜を
形成した。ICPによる分析の結果、Pt97原子%、
Ti3原子%であった。For the reflective layer, a 590 A (DT) iPt alloy film was formed by DC magnetron sputtering in Ar gas using a PT ditat on which a 5 mm square Ti chip was mounted. As a result of ICP analysis, Pt was 97 atomic %,
The Ti content was 3 atomic %.
このディスクの記録再生特性を実施例1と同様に評価を
行った。結果を第1表及び第4図に示す。The recording and reproducing characteristics of this disc were evaluated in the same manner as in Example 1. The results are shown in Table 1 and Figure 4.
実施例4
反射層以外の干渉層、記録層、保護層は実施例1と同じ
条件で製膜した。Example 4 The interference layer, recording layer, and protective layer other than the reflective layer were formed under the same conditions as in Example 1.
反射層は、5mm角のCuチップをのせたTiターゲッ
トを用い、Arガス中で、DCマグネトロンスパッタリ
ングにより膜厚460AのTi−Cu合金膜を形成した
。 ICPによる分析の結果、Cul 1原子%、T
i89原子%であった。For the reflective layer, a Ti--Cu alloy film with a thickness of 460 Å was formed by DC magnetron sputtering in Ar gas using a Ti target on which a 5 mm square Cu chip was mounted. As a result of analysis by ICP, Cul 1 atomic%, T
The i content was 89 atom%.
このディスクを実施例1と同様に評価を行った。This disk was evaluated in the same manner as in Example 1.
結果を第1表及び第4図に示す。The results are shown in Table 1 and Figure 4.
比較例1
反射層以外の干渉層、記録層、保護層は実施例1と同じ
条件で製膜した。Comparative Example 1 The interference layer, recording layer, and protective layer other than the reflective layer were formed under the same conditions as in Example 1.
反射層は、AIツタ−ットを用い、Arガス中でDCマ
グネトロンスパッタリングにより、膜厚450AのAl
膜を形成した。The reflective layer was made of Al with a thickness of 450 Å by DC magnetron sputtering in Ar gas using an AI tube.
A film was formed.
このディスクを実施例1と同様に評価を行った。This disk was evaluated in the same manner as in Example 1.
結果を第1表及び第4図に示す。The results are shown in Table 1 and Figure 4.
比較例2
反射層以外の干渉層、記録層、保護層は実施例1と同じ
条件で製膜した。Comparative Example 2 The interference layer, recording layer, and protective layer other than the reflective layer were formed under the same conditions as in Example 1.
反射層は、5mm角のTiチップをのせたAIツタ−ッ
トを用い、Arガス中でDCマグネトロンスパッタリン
グにより膜厚450AO)Al−Ti合金膜を形成した
。 ICPによる分析の結果、A188原子%、Ti
12原子%であった。For the reflective layer, an Al--Ti alloy film having a thickness of 450 AO was formed by DC magnetron sputtering in Ar gas using an AI stud on which a 5 mm square Ti chip was mounted. As a result of ICP analysis, A188 atomic%, Ti
It was 12 atom%.
このディスクを実施例1と同様に評価を行った。This disk was evaluated in the same manner as in Example 1.
結果を第1表及び第4図に示す。The results are shown in Table 1 and Figure 4.
第1表
図面の浄書(内容に変更なし)
第
■
図
第
図
第3図
、光磁気記録媒体
3・・・干渉層
5・・・反射層
7 無機保護膜
2・ 基板
4・・光磁気記録層
6・ 保護層
8・・・有機保護膜
〔発明の効果〕
本発明の光磁気記録媒体は記録再生特性、耐蝕性に優れ
る。Engraving of the drawings in Table 1 (no changes to the contents) Figure ■ Figure Figure 3, Magneto-optical recording medium 3...Interference layer 5...Reflection layer 7 Inorganic protective film 2/Substrate 4...Magneto-optical recording Layer 6/Protective layer 8: Organic protective film [Effects of the invention] The magneto-optical recording medium of the present invention has excellent recording and reproducing characteristics and corrosion resistance.
第1図、第2図、及び第3図は本発明に関わる光磁気記
録媒体の層構成を模式的に示したもので、第4図は実施
例の加速耐久試験におけるバイトエラーレート(BER
)の増加率(試験後のBER/初期状態のBER)の変
化を示したものである。
1・・光磁気記録媒体 2・・基板1, 2, and 3 schematically show the layer structure of the magneto-optical recording medium according to the present invention, and FIG. 4 shows the byte error rate (BER) in the accelerated durability test of the example.
) shows the change in the rate of increase (BER after test/BER in initial state). 1. Magneto-optical recording medium 2. Substrate
Claims (1)
酸窒化物からなる干渉層、遷移金属と希土類金属と耐蝕
性金属からなる光磁気記録層、反射層、及び保護層を順
次形成してなる光磁気記録媒体において、該反射層が不
活性金属から選択される少なくとも1種とTiとを主成
分とする合金からなることを特徴とする光磁気記録媒体
。 2、上記不活性金属がAu、Pt、Pd、Ag、Cuで
あることを特徴とする特許請求の範囲第1項記載の光磁
気記録媒体。 3、反射層中の不活性金属含有量が3〜97原子%であ
り、反射膜層の膜厚が10〜200nmであることを特
徴とする特許請求の範囲第一項記載の光磁気記録媒体。[Claims] 1. An interference layer made of a metal, metalloid oxide, nitride, or oxynitride on a substrate, and a magneto-optical recording layer made of a transition metal, a rare earth metal, and a corrosion-resistant metal; A magneto-optical recording medium formed by sequentially forming a reflective layer and a protective layer, characterized in that the reflective layer is made of an alloy whose main components are at least one selected from inert metals and Ti. recoding media. 2. The magneto-optical recording medium according to claim 1, wherein the inert metal is Au, Pt, Pd, Ag, or Cu. 3. The magneto-optical recording medium according to claim 1, characterized in that the content of inert metal in the reflective layer is 3 to 97 atomic %, and the thickness of the reflective film layer is 10 to 200 nm. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18793990A JPH0476841A (en) | 1990-07-18 | 1990-07-18 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18793990A JPH0476841A (en) | 1990-07-18 | 1990-07-18 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0476841A true JPH0476841A (en) | 1992-03-11 |
Family
ID=16214823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18793990A Pending JPH0476841A (en) | 1990-07-18 | 1990-07-18 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0476841A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594516A2 (en) * | 1992-10-19 | 1994-04-27 | Eastman Kodak Company | High stability silver based alloy reflectors for use in a writable compact disk |
US5853872A (en) * | 1992-11-17 | 1998-12-29 | Mitsubishi Chemical Corporation | Magneto-optical recording medium |
-
1990
- 1990-07-18 JP JP18793990A patent/JPH0476841A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594516A2 (en) * | 1992-10-19 | 1994-04-27 | Eastman Kodak Company | High stability silver based alloy reflectors for use in a writable compact disk |
EP0594516A3 (en) * | 1992-10-19 | 1995-03-22 | Eastman Kodak Co | High stability silver based alloy reflectors for use in a writable compact disk. |
US5853872A (en) * | 1992-11-17 | 1998-12-29 | Mitsubishi Chemical Corporation | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02192046A (en) | Magneto-optical recording medium | |
JP2504946B2 (en) | Magneto-optical recording medium | |
JPH0476841A (en) | Magneto-optical recording medium | |
JPS62114141A (en) | Magnetooptic memory element | |
JPH0461045A (en) | Magneto-optical recording medium | |
JP2670846B2 (en) | Optical recording medium | |
JPH01173455A (en) | Magneto-optical recording medium | |
JPH04263143A (en) | Magneto-optical recording medium | |
JPH02265051A (en) | Optical recording medium | |
JPH01173454A (en) | Magneto-optical recording medium | |
JPH04103051A (en) | Magneto-optical recording medium | |
JP2527762B2 (en) | Magneto-optical recording medium | |
JPH04137241A (en) | Magneto-optical recording medium | |
JP2523180B2 (en) | Optical recording medium and manufacturing method thereof | |
JPH01204243A (en) | Magneto-optical recording medium | |
JPH02261822A (en) | Optical recording medium and preparation thereof | |
JP2754658B2 (en) | Magneto-optical recording medium | |
JP2703003B2 (en) | Optical disc and method of manufacturing the same | |
JPH02128346A (en) | Magneto-optical disk | |
JPS6168748A (en) | Photomagnetic recording medium | |
JP2737241B2 (en) | Magneto-optical recording medium | |
JP2583255B2 (en) | Magneto-optical recording medium | |
JPH02297739A (en) | Magneto-optical recording medium | |
JPH02285533A (en) | Optical recording medium | |
JP2882915B2 (en) | Magneto-optical recording medium |