JPH0476510B2 - - Google Patents

Info

Publication number
JPH0476510B2
JPH0476510B2 JP60283124A JP28312485A JPH0476510B2 JP H0476510 B2 JPH0476510 B2 JP H0476510B2 JP 60283124 A JP60283124 A JP 60283124A JP 28312485 A JP28312485 A JP 28312485A JP H0476510 B2 JPH0476510 B2 JP H0476510B2
Authority
JP
Japan
Prior art keywords
layer
photodiode
semiconductor
groove
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60283124A
Other languages
Japanese (ja)
Other versions
JPS62143459A (en
Inventor
Hironari Matsuda
Saburo Adaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60283124A priority Critical patent/JPS62143459A/en
Publication of JPS62143459A publication Critical patent/JPS62143459A/en
Publication of JPH0476510B2 publication Critical patent/JPH0476510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光集積装置に係わり、pinホストダイ
オードと電界効果トランジスタを集積化した半導
体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical integrated device, and more particularly to a semiconductor device in which a pin host diode and a field effect transistor are integrated.

〔発明の背景〕[Background of the invention]

三浦他、昭和58年春季応用物理学会講演予稿
7P−I−10にはGaAs半絶縁基板上に成長したn+
−GaAs導電層がpin型ホトダイオード部および
電界効果トランジスタ(FET)部を構成するこ
とが記載されている。しかし、この構造では
FETの下部に比較的抵抗が小さいn+層が存在す
るためFET部において寄生容量が生じ、その結
果、周波数応答特性が劣化する可能性がある。
Miura et al., Spring 1981 Applied Physics Conference Lecture Proceedings
7P-I-10 has n + grown on a GaAs semi-insulating substrate.
- It is described that a GaAs conductive layer constitutes a pin type photodiode section and a field effect transistor (FET) section. But with this structure
Since there is an n + layer with relatively low resistance under the FET, parasitic capacitance is generated in the FET section, which may result in deterioration of frequency response characteristics.

この点を改善した構造は、浜口他昭和59年秋季
応用物理学会講演予稿12a−N−7および三浦他
昭和59年秋季応用物理学会講演予稿12a−N−8
に記載され、FET部にはn+層は無いため周波数
応答特性は改善されている。しかし、段差を有す
る構造となつてしまうため、FET作製の際に必
要なリソグラフイーの精度が損われる可能性があ
る。また、pinホトダイオード部とFET部の接続
のための配線も段差の上を経由するので断線の可
能性がある。
Structures that have improved this point are Hamaguchi et al. 1981 Autumn Conference of Applied Physics Conference Proceedings 12a-N-7 and Miura et al.
Since there is no n + layer in the FET section, the frequency response characteristics are improved. However, since this results in a structure with steps, there is a possibility that the precision of lithography necessary for FET fabrication may be impaired. Additionally, the wiring for connecting the pin photodiode section and the FET section runs over a step, so there is a possibility of disconnection.

また、前述のいずれの方法においてもp+領域
形成にはp型不純物の熱拡散を用いているので、
熱拡散の拡散深さの制御性が悪く、面内分布の不
均一性も大きい。更に、熱拡散によく見られる横
方向拡散がpn接合面積の増大をもたらし、その
結果pinホトダイオードの接合容量の増大となつ
て周波数応答性を低下させる。
In addition, in both of the above-mentioned methods, thermal diffusion of p-type impurities is used to form the p + region, so
The controllability of the diffusion depth of thermal diffusion is poor, and the in-plane distribution is highly non-uniform. Furthermore, lateral diffusion, which is often seen in thermal diffusion, causes an increase in the pn junction area, resulting in an increase in the junction capacitance of the pin photodiode and a decrease in frequency response.

これらの方法は伝送速度が1Gb/sec未満の場
合には特徴をもつて活用できるが、1Gb/sec以
上の高速伝送においては実用化が困難と推定され
る。
Although these methods can be effectively utilized when the transmission speed is less than 1 Gb/sec, it is estimated that it is difficult to put them into practical use at high-speed transmissions of 1 Gb/sec or higher.

〔発明の目的〕[Purpose of the invention]

本発明の目的はpin型ホトダイオードと電界効
果トランジスタとが集積化された受光器を作製す
る上で、FET部における寄生容量を低減し、か
つ素子内の各面を平坦化することにより微細加工
を容易にし、pinホストダイオードのp+領域形成
をp型不純物となる核種のイオン打込みにより行
なうことによつて、装置作製の歩留りを向上せる
とともに周波数応答特性を改善できる構造を提供
することにある。
The purpose of the present invention is to reduce the parasitic capacitance in the FET section and to flatten each surface within the element to facilitate microfabrication in manufacturing a photodetector in which a pin-type photodiode and a field effect transistor are integrated. It is an object of the present invention to provide a structure that can improve the yield of device fabrication and improve frequency response characteristics by easily forming a p + region of a pin host diode by implanting ions of a nuclide serving as a p-type impurity.

〔発明の概要〕[Summary of the invention]

本発明においては、液相成長法に特有な、溝を
埋め込み平坦にする性質を利用し、溝内にn+
を形成した後、溝を埋め込み、その上に形成した
pinホトダイオード作製に必須な高純度化した光
吸収層を前置増幅器のFETのバツフアー層ある
いはイオン打込層として用いる。すなわち、まず
基板内に溝を形成し、該溝内にのみn+層を形成
した後、それを埋込むように、かつ全面にi層を
液相成長法により平坦に形成し、この表面に高純
度光吸収層を形成する。このようにして作製する
集積化受光装置は微細加工に有利な平坦な構造を
持つことになる。この構造においてpinホトダイ
オードのp+領域作製の再現性を高めれば、装置
の高性能化、高信頼化が達成できることになる。
そのためにイオン打込によるp+領域形成を行な
つて、熱拡散に見られる拡散深さの分布を改善
し、更にp+領域の深さも0.1μm程度に薄く制御で
き、p電極作製に適した高濃度層を形成すること
ができることも見出した。
In the present invention, by utilizing the property of burying the trench and flattening it, which is unique to the liquid phase growth method, after forming an n + layer in the trench, filling the trench and forming a
The highly purified light absorption layer, which is essential for the production of pin photodiodes, is used as the buffer layer or ion implantation layer of the FET in the preamplifier. That is, first, a groove is formed in the substrate, an n + layer is formed only in the groove, and then an i layer is formed flatly on the entire surface by liquid phase growth method so as to bury it, and then on this surface. Form a high purity light absorption layer. The integrated light receiving device manufactured in this manner has a flat structure that is advantageous for microfabrication. In this structure, if the reproducibility of manufacturing the p + region of the pin photodiode is improved, higher performance and reliability of the device can be achieved.
For this purpose, we formed a p + region by ion implantation to improve the diffusion depth distribution seen in thermal diffusion, and the depth of the p + region could also be controlled to be as thin as 0.1 μm, making it suitable for manufacturing p electrodes. It has also been found that a highly concentrated layer can be formed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第1図を用いて説明する。GaAs半絶縁性基板
1には予め溝25が形成されており、n+−Gax
Al1xAs(0<x≦0.5)層2およびn+−GaAs層
3を液相エピタキシヤル成長法、気相成長法等で
成長させた後該層2および3が溝内部のみに残る
ように微細加工する。続いて、高純度のi−Gay
Al1yAs(0<y≦0.5)層4、i−GaAs層5を
液相エピタキシヤル成長法で溝を埋め込み、かつ
平坦な層4および5となるように成長する。平坦
化された半導体層の表面に形成すべきFET能動
層14をi−GaAS層5にn型不純物の核種をイ
オン打込することにより作製し、次にp型不純物
の核種を打込んだ領域6をpinホストダイオード
の受光面として作製する。続いてソース8、ドレ
イン10、ホトダイオードのp電極のオーミツク
電極を形成し、次いで絶縁膜7を形成する。この
絶縁膜の所望領域に開孔を施こす。更にゲート9
のシヨツトキー電極およい内部配線11を蒸着に
より作製し、またホトダイオードのn電極13は
裏面からバイアホール型にエツチングしてn+
GaxAl1xAsまで露出させた後(図中、12はこ
のホールを示している)裏面全体に電極金属を蒸
着して作製する。なお、ホトダイオードおよび
FET部そのものの製造は従来の製造方法を用い
て十分である。本実施例によれば、FET部での
寄生容量は低減し、素子表面が平坦化されたこと
により周波数応答特性が改善され、更にp+領域
形成にイオン打込を用いることによりホストダイ
オードのpn接合の特性改善ができ周波数応答特
性が向上する効果がある。また、バイアホール型
を用いるとホストダイオードの直列抵抗が低減で
き周波数応答特性が改善できる効果がある。
Example 1 This will be explained using FIG. 1. A groove 25 is formed in advance in the GaAs semi-insulating substrate 1, and n + −Ga x
After Al 1x As (0<x≦0.5) layer 2 and n + -GaAs layer 3 are grown by liquid phase epitaxial growth, vapor phase growth, etc., layers 2 and 3 remain only inside the groove. Microfabrication is performed as shown in the figure. Next, high purity i-Ga y
The Al 1y As (0<y≦0.5) layer 4 and the i-GaAs layer 5 are grown by liquid phase epitaxial growth so that the grooves are filled and flat layers 4 and 5 are formed. The FET active layer 14 to be formed on the surface of the planarized semiconductor layer is prepared by ion-implanting an n-type impurity nuclide into the i-GaAS layer 5, and then a region into which a p-type impurity nuclide is implanted. 6 as the light receiving surface of the pin host diode. Subsequently, a source 8, a drain 10, and an ohmic electrode for the p-electrode of the photodiode are formed, and then an insulating film 7 is formed. Openings are made in desired areas of this insulating film. Furthermore, gate 9
The shot key electrode and internal wiring 11 of the photodiode are fabricated by vapor deposition, and the n electrode 13 of the photodiode is etched from the back side into a via hole type .
After exposing up to Ga x Al 1 - x As (in the figure, 12 indicates this hole), an electrode metal is deposited on the entire back surface. In addition, the photodiode and
It is sufficient to manufacture the FET section itself using conventional manufacturing methods. According to this example, the parasitic capacitance in the FET section is reduced, the frequency response characteristic is improved by flattening the element surface, and the pn of the host diode is improved by using ion implantation to form the p + region. This has the effect of improving the characteristics of the junction and improving the frequency response characteristics. Furthermore, the use of a via-hole type has the effect of reducing the series resistance of the host diode and improving frequency response characteristics.

実施例 2 本例はホトダイオードに窓層を設けた例であ
る。
Example 2 This example is an example in which a window layer is provided on a photodiode.

第2図を用いて説明する。実施例1と同様にi
−GaAs層5を形成した後、i−GazAl1zAs窓
層(0<z<0.5、y<z)22を形成し、この
窓層22の一部にp型不純物のイオン打込を行な
つてp+領域6を形成した。この場合、イオン打
込の深さが窓層22の膜厚で制御し得るので安定
な装置を、歩留り良く作製できる。n+GaAs層の
形成方法は実施例1と同様である。
This will be explained using FIG. As in Example 1, i
- After forming the GaAs layer 5, an i-Ga z Al 1 - z As window layer (0<z<0.5, y<z) 22 is formed, and a part of this window layer 22 is ion-implanted with p-type impurities. A p + region 6 was formed by adding a p + region. In this case, since the depth of ion implantation can be controlled by the thickness of the window layer 22, a stable device can be manufactured with high yield. The method for forming the n + GaAs layer is the same as in Example 1.

実施例 3 本例はn電極13を実施例1および2と異なる
方法で形成している。
Example 3 In this example, the n-electrode 13 is formed using a method different from those in Examples 1 and 2.

第3図を用いて説明する。装置の断面を第3図
に示すが、n電極13はn+−GaAs層の手前およ
びもしくは向う側にあるため図示しにくい。よつ
て、同図のA−A′断面図を第4図に示すことに
よつて、これを図示してある。n電極は平坦化の
ための半導体層4の上部に設けられて外部に取り
出されている。ただし、n電極13は1個所のみ
を図示してある。必要に応じて2個所以上設けて
もよいことは言うまでもない。
This will be explained using FIG. A cross section of the device is shown in FIG. 3, but the n-electrode 13 is difficult to illustrate because it is located in front of and/or on the opposite side of the n + -GaAs layer. Therefore, this is illustrated by showing a sectional view taken along line A-A' in FIG. 4. The n-electrode is provided on the top of the semiconductor layer 4 for planarization and taken out to the outside. However, only one location of the n-electrode 13 is illustrated. It goes without saying that two or more locations may be provided as necessary.

実施例 4 n電極13の別な引き出し方を例示するもので
ある。
Example 4 This example illustrates another way of drawing out the n-electrode 13.

第3図および第5図を用いて説明する。 This will be explained using FIGS. 3 and 5.

第5図は第3図のA−A′断面図である。 FIG. 5 is a sectional view taken along line A-A' in FIG.

実施例3とn電極13の構成が異なり、
n+GaAs層を素子を横切つて形成し、その側壁に
n電極13を形成した。n電極13は片方のみで
もよい。
The configuration of the n-electrode 13 is different from Example 3,
An n + GaAs layer was formed across the device, and an n electrode 13 was formed on the sidewall thereof. Only one side of the n-electrode 13 may be provided.

実施例 5 第6図が本実施例による装置の断面図で、実施
例2の窓層を有する半導体装置に対しn電極13
を実施例3もしくは4と同様にした場合である。
(A−A′断面図は第4図もしくは第5図から推考
し得るので省略する。) 実施例 6 第7〜8図を用いて説明する。
Example 5 FIG. 6 is a cross-sectional view of a device according to this example, in which the n-electrode 13 is
This is a case where the same as in Example 3 or 4 is applied.
(The cross-sectional view taken along line A-A' is omitted because it can be estimated from FIG. 4 or FIG. 5.) Example 6 This will be explained using FIGS. 7 and 8.

FETのホトダイオード形成のための半導体層
5とは別体の能動層(nチヤネル層)15をエピ
タキシヤル成長法で作製した例を示す。第7図は
実施例による装置の断面図である。上述の能動層
15を設けた以外これまでに説明した例えば第1
図の例と同様である。
An example will be shown in which an active layer (n-channel layer) 15 separate from the semiconductor layer 5 for forming a photodiode of an FET is manufactured by epitaxial growth. FIG. 7 is a cross-sectional view of the device according to the embodiment. For example, the first
This is similar to the example in the figure.

第8図は、n電極13を実施例3もしくは実施
例4の方法で形成した場合で、A−A′断面図は
第4図もしくは第5図から推考し得るので省略す
る。
FIG. 8 shows the case where the n-electrode 13 is formed by the method of Example 3 or Example 4, and the sectional view taken along line A-A' is omitted since it can be estimated from FIG. 4 or FIG.

以上の実施例1〜6において、埋め込むための
i−GayAl1-yAs層とi−GaAs層の2層は液相エ
ピタキシヤル成長法で高純度化(1×1014cm-3
下の不純物濃度)して作製し、他の成長層2,
3,15,20,22および23は液相エピタキ
シヤル成長法を含む一般の成長法で作製すること
によつて、n+層の不純物濃度を高濃度(≧5×
1017cm-3)とし、高純度層を1×1014cm-3以下の
不純物濃度とすることができる。また、p+領域
の不純物濃度は5×1018cm-3以上の高濃度とする
ことがのぞましい。
In the above Examples 1 to 6, the two layers, the i-Ga y Al 1-y As layer and the i-GaAs layer for embedding, were made highly purified (1×10 14 cm -3 or less) by liquid phase epitaxial growth. (impurity concentration), and other growth layers 2,
Nos. 3, 15, 20, 22 and 23 are fabricated using general growth methods including liquid phase epitaxial growth to increase the impurity concentration of the n + layer to a high concentration (≧5×
10 17 cm -3 ), and the high purity layer can have an impurity concentration of 1×10 14 cm -3 or less. Further, it is desirable that the impurity concentration in the p + region is as high as 5×10 18 cm −3 or more.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、pinホトダイオードと磁界効
果トランジスタからなる前置増幅器を集積化する
場合、周波数応答特性が改善できるばかりでな
く、ホトダイオードのp+領域の特性が向上する
ため素子の高信頼化をはかり得る効果がある。
According to the present invention, when a preamplifier consisting of a pin photodiode and a magnetic field effect transistor is integrated, not only the frequency response characteristics can be improved, but also the characteristics of the p + region of the photodiode are improved, making the device highly reliable. It has a measurable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に示す装置の断面図、第2図
は実施例2に示す装置の断面図、第3および4図
は実施例3に示す装置の断面図、第5図は実施例
4に示す装置の断面図、第6図は実施例5に示す
装置の断面図、第7および8図は実施例6に示す
装置の断面図である。 1;半絶縁性GaAs基板、2;n+−GaxAl1x
As層(0<x≦0.5)、3;n+−GaAs、4;i−
GayAl1-yAs層(0<y≦0.5)、5;i−GaAs光
吸収層、6;p+領域、7;絶縁膜、8;ソース、
9;ゲート、10;ドレイン、11;内部配線、
12;バイアホール、13;n電極、14;
FETのイオン打込領域、15;FETのnチヤネ
ル層、20;n+−GaAs層、22;i−GazAl1
As窓層(0<z≦0.5)、23;i−GaAsキヤツ
プ層。
FIG. 1 is a cross-sectional view of the device shown in Example 1, FIG. 2 is a cross-sectional view of the device shown in Example 2, FIGS. 3 and 4 are cross-sectional views of the device shown in Example 3, and FIG. 5 is a cross-sectional view of the device shown in Example 3. 4, FIG. 6 is a sectional view of the device shown in Example 5, and FIGS. 7 and 8 are sectional views of the device shown in Example 6. 1; Semi-insulating GaAs substrate, 2; n + −Ga x Al 1x
As layer (0<x≦0.5), 3; n + -GaAs, 4; i-
Ga y Al 1-y As layer (0<y≦0.5), 5; i-GaAs light absorption layer, 6; p + region, 7; insulating film, 8; source,
9; gate, 10; drain, 11; internal wiring,
12; via hole, 13; n electrode, 14;
Ion implantation region of FET, 15; n-channel layer of FET, 20; n + -GaAs layer, 22; i-Ga z Al 1 -
z As window layer (0<z≦0.5), 23; i-GaAs cap layer.

Claims (1)

【特許請求の範囲】 1 半導体基板上にpin型ホトダイオードと、前
置増幅器として用いる電界効果トランジスタがモ
ノリシツクに集積化された半導体装置において、
該半導体基板のホトダイオードを形成する部分に
溝を有し、該溝内にn+層およびこの上部に平坦
な面を有する第1の半導体層と、当該平坦な面を
有する半導体層の上部に設けられた第2の半導体
層とを有し、且該第2の半導体層に前記ホトダイ
オードと前置増幅器が設けられていることを特徴
とする半導体装置。 2 前記第2の半導体層は複数層で構成されてい
ることを特徴とする特許請求の範囲第1項記載の
半導体装置。 3 前記第2の半導体層は複数層で構成され、且
ホトダイオードと前置増幅器はこれら複数層の別
異の層に設けられていることを特徴とする特許請
求の範囲第2項記載の半導体装置。 4 基板上にpin型ホトダイオードと、前置増幅
器として用いる電界効果トランジスタをモノリシ
ツクに集積化する半導体装置の製造方法におい
て、少なくとも、該基板のpin型ホトダイオード
を形成する位置に溝を形成する工程、該溝内に
n+層を形成する工程、および液相成長法を用い
て該溝を埋めて、基体表面を平坦にする工程、該
基体表面に単数又は複数の半導体層を形成する工
程、この半導体層に所定のホトダイオードおよび
前置増幅器を形成する工程を含むことを特徴とす
る半導体装置の製造方法。
[Claims] 1. A semiconductor device in which a pin-type photodiode and a field effect transistor used as a preamplifier are monolithically integrated on a semiconductor substrate,
a first semiconductor layer having a groove in a portion of the semiconductor substrate where a photodiode is to be formed; an n + layer in the groove; and a first semiconductor layer having a flat surface on top of the groove; 1. A semiconductor device comprising: a second semiconductor layer formed by a semiconductor device; the photodiode and a preamplifier are provided in the second semiconductor layer. 2. The semiconductor device according to claim 1, wherein the second semiconductor layer is composed of a plurality of layers. 3. The semiconductor device according to claim 2, wherein the second semiconductor layer is composed of a plurality of layers, and the photodiode and the preamplifier are provided in different layers of the plurality of layers. . 4. A method for manufacturing a semiconductor device in which a pin type photodiode and a field effect transistor used as a preamplifier are monolithically integrated on a substrate, at least the step of forming a groove in the position of the pin type photodiode on the substrate; in the groove
a step of forming an n + layer, a step of filling the groove using a liquid phase growth method to flatten the surface of the substrate, a step of forming one or more semiconductor layers on the surface of the substrate, a step of forming a predetermined layer on the semiconductor layer, 1. A method of manufacturing a semiconductor device, comprising the steps of forming a photodiode and a preamplifier.
JP60283124A 1985-12-18 1985-12-18 Semiconductor device and its manufacture Granted JPS62143459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283124A JPS62143459A (en) 1985-12-18 1985-12-18 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283124A JPS62143459A (en) 1985-12-18 1985-12-18 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS62143459A JPS62143459A (en) 1987-06-26
JPH0476510B2 true JPH0476510B2 (en) 1992-12-03

Family

ID=17661535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283124A Granted JPS62143459A (en) 1985-12-18 1985-12-18 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS62143459A (en)

Also Published As

Publication number Publication date
JPS62143459A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
JP2833588B2 (en) Photodetector and method of manufacturing the same
JP2867983B2 (en) Photodetector and method of manufacturing the same
JPH06232494A (en) Plane emitting element and its manufacture
JPS6348867A (en) Vertical composition field effect transistor and manufacture of the same
US6495380B2 (en) Epitaxially grown avalanche photodiode
CN111508834A (en) Method for manufacturing silicon-based photoelectric detector
CN112786684A (en) Super junction device for improving EMI (electro-magnetic interference) and reducing characteristic resistance and manufacturing method thereof
US5147809A (en) Method of producing a bipolar transistor with a laterally graded emitter (LGE) employing a refill method of polycrystalline silicon
CN111129226A (en) Method for manufacturing germanium detector
US5447883A (en) Method of manufacturing semiconductor device
JPH0476510B2 (en)
JPH02121382A (en) Manufacture of buried stripe semiconductor laser and said semiconductor laser
US5416030A (en) Method of reducing leakage current in an integrated circuit
JP2869653B2 (en) Semiconductor device and manufacturing method thereof
JPH01212483A (en) Semiconductor device
JP2729870B2 (en) Variable capacitance diode and manufacturing method thereof
JP2658013B2 (en) Manufacturing method of semiconductor light receiving element
JPH06291352A (en) Light receiving device and circuit-built-in light receiving device
KR950000139B1 (en) Bipolar transistor and manufacturing method thereof
JPH0644617B2 (en) Method of manufacturing integrated circuit
JPH0691231B2 (en) Method for manufacturing optical semiconductor device
JP2670525B2 (en) Light receiving element and manufacturing method thereof
JPH01102984A (en) Semiconductor device and manufacture thereof
JPH02253666A (en) Semiconductor photodetector
JPS58164269A (en) Field effect semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term