JPH0476360A - Refrigerant distributor - Google Patents

Refrigerant distributor

Info

Publication number
JPH0476360A
JPH0476360A JP2189122A JP18912290A JPH0476360A JP H0476360 A JPH0476360 A JP H0476360A JP 2189122 A JP2189122 A JP 2189122A JP 18912290 A JP18912290 A JP 18912290A JP H0476360 A JPH0476360 A JP H0476360A
Authority
JP
Japan
Prior art keywords
refrigerant
outflow
cylindrical container
inflow pipe
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189122A
Other languages
Japanese (ja)
Inventor
Hiroaki Kase
広明 加瀬
Koichi Nakayama
浩一 中山
Shinichi Ide
井手 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2189122A priority Critical patent/JPH0476360A/en
Publication of JPH0476360A publication Critical patent/JPH0476360A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Abstract

PURPOSE:To promote the mixing of the gas and the liquid of refrigerant at the nozzle, to dispense with adjustment of outflow tubes with regard to their marginal portions for insertion, and to enable even distribution by providing an inflow tube and a plurality of outflow tubes, said inflow tube having an outflow port formed of a nozzle part and each of said outflow tubes having the inserted end in contact with and joined with the lower side of a cylindrical vessel and having a notch in the inserted end. CONSTITUTION:A nozzle part 8 in an inflow tube 3 functions to promote the mixing and reduce the separation between the gas and the liquid of refrigerant. Each of outflow tubes 4 is inserted into a cylindrical vessel 2 and brought into contact with the lower side of the cylindrical vessel 2 and joined so that adjustment of the marginal portions for insertion between the outflow tubes 4 can be dispensed with and the parts in contact can be joined easily. The uniformity of the marginal portions for insertion between the outflow tubes, which is rendered possible, enables providing a refrigerant inlet with a fixed height in each outflow tube so that, in the operation of a refrigeration cycle, the refrigerant, which flows out of the nozzle part 8 as a mixture of the gas and the liquid as a result of the effect of the nozzle part 8, flows smoothly into the respective equally distant outflow tubes. Thus even distribution can be rendered possible. Also according to this constitution, the marginal portions for insertion between refrigerant distributors show little diversity so that refrigerant distributors having stabilized distribution characteristics can be supplied.

Description

【発明の詳細な説明】 産業上の利用分野 本発′明は空機機器や冷凍機器等の冷凍サイクルにおい
て、冷媒を均等に分流するだめの冷媒分流器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigerant flow divider for uniformly dividing refrigerant in a refrigeration cycle of aircraft equipment, refrigeration equipment, etc.

従来の技術 近年、冷凍システムのマルチ化及び熱交換器の伝熱管細
径化に伴う複数回路化等に対応するために冷媒分流器が
用いられておシ、その重要度が増している。
BACKGROUND OF THE INVENTION In recent years, refrigerant flow dividers have been used to cope with the multiplication of refrigeration systems and the use of multiple circuits as heat exchanger tubes become smaller in diameter, and their importance is increasing.

前記冷媒分流器の中でも、コンパクトで低コストでしか
も製作・取付が容易であることよシ銅製成形品が多用さ
れている(例えば特開昭61−93366夛公報)。
Among the refrigerant flow dividers, copper molded products are often used because they are compact, low cost, and easy to manufacture and install (for example, Japanese Patent Application Laid-Open No. 61-93366).

以下、図面を参照しながら上述した従来の冷媒分流器に
ついて説明を行う。
Hereinafter, the conventional refrigerant flow divider mentioned above will be explained with reference to the drawings.

第8図と第9図は従来の冷媒分流器の形状を示す斜視図
、断面図で、第10図は冷媒分流器の熱交換器への抱付
状態を示す外観斜視図で、第11図から第13図は熱交
換器を冷凍サイクル運転し蒸発器として使用した際の冷
媒分流器内部の冷媒状態を示す断面図である。
Figures 8 and 9 are a perspective view and a cross-sectional view showing the shape of a conventional refrigerant divider, Figure 10 is an external perspective view showing how the refrigerant divider is attached to a heat exchanger, and Figure 11 is a perspective view showing the shape of a conventional refrigerant divider. FIG. 13 is a sectional view showing the refrigerant state inside the refrigerant flow divider when the heat exchanger is operated in a refrigeration cycle and used as an evaporator.

第8図から第13図において、51は冷媒分流器で、流
入管52と複数の流出管63と円筒容器64からなる。
8 to 13, reference numeral 51 denotes a refrigerant flow divider, which is composed of an inflow pipe 52, a plurality of outflow pipes 63, and a cylindrical container 64.

円筒容器54には、上面に配設された流出管挿入孔56
に複数の流出管53が接合され、下方に配設された流入
管挿入孔56に流入管62が接合されている。また、5
7は冷媒管58によって冷媒回路を構成している熱交換
器で、冷媒分流器61が複数の冷媒回路を形成するため
に熱交換器67の側面に取シ付けられている。なお、図
中矢印Aは冷媒流の動方向、矢印Gは重力方向を示す。
The cylindrical container 54 has an outflow pipe insertion hole 56 arranged on the top surface.
A plurality of outflow pipes 53 are joined to the inflow pipe 62, and an inflow pipe 62 is joined to the inflow pipe insertion hole 56 disposed below. Also, 5
Reference numeral 7 denotes a heat exchanger that constitutes a refrigerant circuit using refrigerant pipes 58, and a refrigerant flow divider 61 is attached to the side surface of the heat exchanger 67 to form a plurality of refrigerant circuits. Note that arrow A in the figure indicates the moving direction of the refrigerant flow, and arrow G indicates the direction of gravity.

以上のように構成された冷媒分流器について、以下第1
0図、第11図を用いてその動作を説明する。
Regarding the refrigerant flow divider configured as above, the following is the first part.
The operation will be explained using FIG. 0 and FIG. 11.

冷凍サイクルを流れる冷媒Aは熱交換器57に流入する
とき、冷媒分流器61へ一旦流入し、冷媒分流器61に
より分流され冷媒管68で形成される複数の冷媒回路に
流れ込む。蒸発器として熱交換器を使用した場合、冷媒
分流器61は、気相A1と液相A2との二相流となった
冷媒Aが流入管52から円筒容器64内部に流入し、複
数の流出管53から流出していく。このとき、気液二相
流の冷媒Aは円筒容器64で流速が低下し、気液がいっ
そう分離される。液相A2の一部は円筒容器64下部に
滞留し、液だまりを生じ、液だまシは新たに流入する冷
媒Aによって循環、攪乱されている。
When the refrigerant A flowing through the refrigeration cycle flows into the heat exchanger 57, it once flows into the refrigerant flow divider 61, is divided by the refrigerant flow divider 61, and flows into a plurality of refrigerant circuits formed by refrigerant pipes 68. When a heat exchanger is used as an evaporator, the refrigerant flow divider 61 allows the refrigerant A, which has become a two-phase flow of a gas phase A1 and a liquid phase A2, to flow into the cylindrical container 64 from the inflow pipe 52, and flows into the cylindrical container 64 through multiple outflows. It flows out from the pipe 53. At this time, the flow velocity of the gas-liquid two-phase refrigerant A is reduced in the cylindrical container 64, and the gas and liquid are further separated. A portion of the liquid phase A2 remains at the bottom of the cylindrical container 64, forming a liquid pool, and the liquid pool is circulated and agitated by the newly flowing refrigerant A.

発明が解決しようとする課題 しかしながら、第1の課題として上記のような構成では
、複数の流出管530円筒円筒容器64内挿入の調整が
困難であり、接合時に挿入しろのばらつきが発生する。
Problems to be Solved by the Invention However, the first problem with the above configuration is that it is difficult to adjust the insertion of the plurality of outflow pipes 530 into the cylindrical container 64, and variations in the insertion margin occur during joining.

第11図に示すように、挿入しろのばらつきは流出管6
3の流入口と液面との距離のばらつきとなり、液面との
距離が近い流出管に冷媒Aの液相A2が多く流れ均等な
分流ができず、また挿入しろのばらつきによって冷媒分
流器ごとに分流特性がことなシ、安定した冷媒分流器を
供給できないという課題を有していた。
As shown in Fig. 11, the variation in the insertion allowance is caused by
3, the distance between the inlet and the liquid level will vary, and a large amount of liquid phase A2 of refrigerant A will flow into the outlet pipe that is close to the liquid level, making it impossible to divide the flow evenly. Also, due to variations in the insertion clearance, each refrigerant flow divider The problem was that it was not possible to supply a stable refrigerant flow divider with different flow characteristics.

また、第2の課題として上記のような構成では、第12
図のように分流器全体が傾斜して取り付けられた場合、
円筒容器64上面に取り付けられた流出管53のうち鉛
直下部に位置する一部の流出管53が液面との距離が近
くなるため、冷媒Aの液相A2が多く流れ、冷媒Aの重
量の均等な分流ができないという課題を有していた。ま
た、第13図に示すように流入管62が傾斜している場
合でも流入管62より流入する冷媒Aによって流入方向
の液面が攪乱され液相A2が一部の流出管53に流れや
すくなル、冷媒へ重量の均等な分流ができないという課
題を有していた。
In addition, as a second problem, in the above configuration, the 12th
If the entire flow divider is installed at an angle as shown in the figure,
Among the outflow pipes 53 attached to the upper surface of the cylindrical container 64, some of the outflow pipes 53 located at the bottom vertically are closer to the liquid surface, so a large amount of the liquid phase A2 of the refrigerant A flows, and the weight of the refrigerant A is reduced. The problem was that it was not possible to divide the flow evenly. Further, even when the inflow pipe 62 is inclined as shown in FIG. 13, the liquid level in the inflow direction is disturbed by the refrigerant A flowing in from the inflow pipe 62, and the liquid phase A2 easily flows into a part of the outflow pipe 53. However, the problem was that it was not possible to distribute the weight evenly to the refrigerant.

本発明は上記課題に鑑み、冷媒の均等な分流が行える冷
媒分流器を提供するものである。
In view of the above problems, the present invention provides a refrigerant flow divider that can evenly divide refrigerant.

課題を解決するための手段 上記第1の課題を解決するために本発明の第1発明は、
上面に配設された複数の流出管挿入孔と、下面中央部に
配設された流入管挿入孔とから成る円筒容器と、前記流
入管挿入孔に接合され流出口にノズル部が形成された流
入管と、前記流出管挿入孔に挿入され挿入部先端が円筒
容器下面に接触した状態で接合され、かつ挿入側端部の
円筒容器中心方向に切り欠き部を有した複数の流出管か
ら構成されるものである。
Means for Solving the Problems In order to solve the above first problem, the first invention of the present invention is as follows:
A cylindrical container consisting of a plurality of outflow pipe insertion holes arranged on the upper surface and an inflow pipe insertion hole arranged in the center of the lower surface, and a nozzle part joined to the inflow pipe insertion hole and formed at the outflow port. Consisting of an inflow pipe and a plurality of outflow pipes that are inserted into the outflow pipe insertion hole and joined with the tip of the insertion part in contact with the lower surface of the cylindrical container, and have a notch at the insertion side end toward the center of the cylindrical container. It is something that will be done.

まだ、第2の課題を解決するだめに本発明の第2発明は
、上面中央部に配設された凸部と、凸部周辺に配設され
た複数の流出管挿入孔と、下面中央部に配設された流入
管挿入孔とから成る円筒容器と、前記流入管挿入孔に接
合され流出口にノズル部が形成された流入管と、前記流
出管挿入孔に接合された複数の流出管から構成されるも
のである。
However, in order to solve the second problem, the second aspect of the present invention has a convex portion disposed at the center of the upper surface, a plurality of outflow pipe insertion holes disposed around the convex portion, and a central portion of the lower surface. a cylindrical container consisting of an inflow pipe insertion hole disposed in the inflow pipe insertion hole; an inflow pipe joined to the inflow pipe insertion hole and having a nozzle portion formed at the outflow port; and a plurality of outflow pipes joined to the outflow pipe insertion hole. It consists of:

作  用 本発明の第1発明は上記した構成によって、冷媒の気液
混合を促進し、気液の分離を抑えることが可能となる。
Effects The first aspect of the present invention, with the above-described configuration, can promote gas-liquid mixing of the refrigerant and suppress separation of gas and liquid.

さらに、流出管の挿入しろの調整が必要なく、かつ各流
出管の挿入しろを均一にすることができるため、流出管
冷媒流入口の高さが各流出管で一定とすることができ、
均等な分流が可能となる。また、サンプル間で分流特性
の安定した冷媒分流器が供給できる。
Furthermore, there is no need to adjust the insertion allowance of the outflow pipes, and the insertion allowance of each outflow pipe can be made uniform, so the height of the refrigerant inlet of the outflow pipe can be made constant for each outflow pipe,
Equal flow distribution becomes possible. Furthermore, a refrigerant flow divider with stable flow characteristics between samples can be provided.

また、本発明の第2発明は上記した構成によって、流入
管を流れる気液分離した冷媒を流入管流出口のノズル部
より噴出し、円筒容器上面に設けられた凸部内面に衝突
させノズルによる噴出効果と壁面への衝突、擾乱効果に
より気液混合を進め、気液二相流の均一化を促進させる
とともに放射方向に配置された流出管へ円滑に流出させ
ることによって傾斜取付状態でも各冷媒管への均等分流
を行うものである。
Further, according to the second aspect of the present invention, with the above-described configuration, the refrigerant separated into gas and liquid flowing through the inflow pipe is ejected from the nozzle portion of the inflow pipe outlet and collides with the inner surface of the convex portion provided on the upper surface of the cylindrical container. The jetting effect, collision with the wall surface, and disturbance effect promote gas-liquid mixing, promote uniformity of the gas-liquid two-phase flow, and allow each refrigerant to flow smoothly into the outflow pipes arranged in the radial direction, even when installed at an inclined angle. It divides the flow evenly into the pipes.

実施例 以下本発明の第1発明の実施例の冷媒分流器について図
面を参照しながら説明する。
EXAMPLE Hereinafter, a refrigerant flow divider according to an example of the first aspect of the present invention will be described with reference to the drawings.

第1図、第2図は本発明の第1発明の実施例における冷
媒分流器の形状を示し、第3図は熱交換器を冷凍サイク
ル運転し蒸発器として使用した際の冷媒分流器内部の冷
媒状態を示す。
Figures 1 and 2 show the shape of the refrigerant divider in the first embodiment of the present invention, and Figure 3 shows the inside of the refrigerant divider when the heat exchanger is operated in a refrigeration cycle and used as an evaporator. Indicates refrigerant status.

1は冷媒分流器、2は上面に流出管挿入孔7を有し、下
面に流入管挿入孔6を有した円筒容器、3は円筒容器2
の流入管挿入孔6に接合され、流出口にノズル部8を設
けた流入管、4は流出管挿入孔7に挿入され、挿入側先
端が円筒容器2下面内壁に接触している状態で円筒容器
2に接合された流出管である。また、流出管14の端部
の円筒容器2中心方向には切り欠き部19が設けられ、
冷媒の通路となる。
1 is a refrigerant flow divider, 2 is a cylindrical container having an outflow pipe insertion hole 7 on the top surface and an inflow pipe insertion hole 6 on the bottom surface, and 3 is a cylindrical container 2.
The inflow pipe 4 is connected to the inflow pipe insertion hole 6 of the cylindrical container 2 and has a nozzle part 8 at the outflow port. It is an outflow pipe joined to the container 2. Further, a notch 19 is provided at the end of the outflow pipe 14 toward the center of the cylindrical container 2,
It becomes a passage for refrigerant.

冷媒分流器1は流入管3のノズル部8によシ、冷媒の気
液混合が促進され気液の分離が抑えらねる。また、流出
管4を円筒容器2下面にあたるまで挿入接合することに
よって、流出管4の挿入しろ調整が必要なくなり、接合
が容易に行える。各流出管の挿入しろを均一にすること
ができるため、流出管冷媒流入口の高さが各流出管で一
定し、冷凍サイクル運転時において、第3図に示すよう
にノズル部8の効果により気液が混合された冷媒は、距
離を同じくする各流出管に円滑に流れ均等な分流が可能
となる。また、この方法によると冷媒分流器間の挿入し
るのばらつきがほとんどなく、安定した分流特性を有す
る冷媒分流器を供給できる。
In the refrigerant flow divider 1, the nozzle portion 8 of the inflow pipe 3 promotes gas-liquid mixing of the refrigerant, and prevents separation of gas and liquid. Further, by inserting and joining the outflow pipe 4 until it touches the bottom surface of the cylindrical container 2, there is no need to adjust the insertion margin of the outflow pipe 4, and joining can be easily performed. Since the insertion allowance of each outflow pipe can be made uniform, the height of the refrigerant inlet of the outflow pipe is constant for each outflow pipe, and during refrigeration cycle operation, the effect of the nozzle part 8 as shown in FIG. The refrigerant mixed with gas and liquid flows smoothly to each outflow pipe having the same distance, and can be evenly divided. Further, according to this method, there is almost no variation in insertion between refrigerant flow dividers, and refrigerant flow dividers having stable flow distribution characteristics can be provided.

以上のように本実施例によれば、上面に配設された複数
の流出管挿入孔7と、下面中央部に配設された流入管挿
入孔6とから成る円筒容器2と、前記流入管挿入孔6に
接合され流出口にノズル部8が形成された流入管3と、
前記流出管挿入孔7に挿入され挿入部先端が円筒容器下
面に接触した状態で接合され、かつ挿入側端部の円筒容
器中心方向に切り欠き部9を有した複数の流出管4から
構成される冷媒分流器1によって冷媒の気液混合が促進
され冷媒分流器内の気液分離を抑えることが可能となる
。また、流出管の接合が挿入しろ調整の手間なく容易に
行え、さらに、挿入しろが均一であるため均等な分流が
可能となる。また、サンプル間での挿入しろのばらつき
もほとんどなく分流特性の安定した冷媒分流器が供給で
きる。
As described above, according to this embodiment, the cylindrical container 2 includes a plurality of outflow pipe insertion holes 7 arranged on the upper surface and an inflow pipe insertion hole 6 arranged at the center of the lower surface, and the inflow pipe an inflow pipe 3 joined to the insertion hole 6 and having a nozzle portion 8 formed at the outflow port;
It is composed of a plurality of outflow pipes 4 which are inserted into the outflow pipe insertion hole 7 and joined with the tip of the insertion part in contact with the lower surface of the cylindrical container, and which has a notch 9 at the insertion side end toward the center of the cylindrical container. The refrigerant flow divider 1 promotes gas-liquid mixing of the refrigerant, making it possible to suppress gas-liquid separation within the refrigerant flow divider. In addition, the outflow pipes can be easily joined without the need for adjusting the insertion margin, and furthermore, since the insertion margin is uniform, it is possible to divide the flow evenly. Furthermore, a refrigerant flow divider with stable flow flow characteristics with almost no variation in insertion margin between samples can be provided.

つぎに、本発明の第2発明の実施例の冷媒分流器につい
て図面を参照しながら説明する。
Next, a refrigerant flow divider according to a second embodiment of the present invention will be described with reference to the drawings.

第4図、第6図は本発明の第2発明の実施例における冷
媒分流器の形状を示し、第6図および第7図は熱交換器
を冷凍サイクル運転し蒸発器として使用した際の冷媒分
流器内部の冷媒状態を示す。
4 and 6 show the shape of the refrigerant flow divider in the embodiment of the second invention of the present invention, and FIGS. 6 and 7 show the refrigerant flow when the heat exchanger is operated in a refrigeration cycle and used as an evaporator. Indicates the refrigerant condition inside the flow divider.

11は冷媒分流器、12は上面中央に凸部15と凸部1
5周辺に流出管挿入孔17を有し、下面に流入゛管挿入
孔16を有した円筒容器、13は円筒容器12の流入管
挿入孔16に接合され、流出口にノズル部18を設けた
流入管、14は流出管挿入孔17に挿入接合された流出
管である。また、図中矢印Bは冷媒の流動方向、矢印G
は重力方向を示す。
11 is a refrigerant flow divider, 12 is a convex part 15 and a convex part 1 in the center of the upper surface.
A cylindrical container having an outflow pipe insertion hole 17 around 5 and an inflow pipe insertion hole 16 on the lower surface; 13 is joined to the inflow pipe insertion hole 16 of the cylindrical container 12, and a nozzle part 18 is provided at the outflow port. The inflow pipe 14 is an outflow pipe inserted into the outflow pipe insertion hole 17. In addition, arrow B in the figure indicates the flow direction of the refrigerant, and arrow G
indicates the direction of gravity.

以上のように構成された冷媒分流器について、以下第6
図および第7図を用いてその動作について説明する。
Regarding the refrigerant flow divider configured as above, the sixth section will be described below.
The operation will be explained using the diagram and FIG. 7.

冷凍サイクルの閉回路を流れる冷媒Bが気相B1と液相
B2との二相流Bとなって冷媒分流器11に流れ込む。
The refrigerant B flowing through the closed circuit of the refrigeration cycle becomes a two-phase flow B of a gas phase B1 and a liquid phase B2 and flows into the refrigerant flow divider 11.

冷媒分流器11に流れ込む冷媒Bは流入管13のノズル
部18によって縮流・加速され噴流となって円筒容器1
2内部に流出し、円筒容器12上面の凸部16内壁に衝
突し、さらに攪はん混合される。この衝突・攪はん・混
合作用によって冷[Bの気液二相流の混合状態は均一化
され、均一化された冷媒Bは凸部15および円筒容器1
2内壁内にそって放射状に広がり、各流出管14へ流れ
る。この時、円筒容器12内部での冷媒B(l−1:気
液の分離が小さく、均一化されていることに°より、第
6図に示すように傾斜して取り付けられた場合でも、重
力の影響が少なく均等な分流が得られる。また、第7図
に示すように流入管が傾斜して取り付けられた場合でも
、冷媒Bが混合され均一化していることと、凸部15内
壁に一旦衝突することにより冷媒が直接一部の流出管1
4に流れないため均等な分流が得られる。
The refrigerant B flowing into the refrigerant flow divider 11 is contracted and accelerated by the nozzle portion 18 of the inflow pipe 13 and becomes a jet flow, which flows into the cylindrical container 1.
2, collides with the inner wall of the convex portion 16 on the upper surface of the cylindrical container 12, and is further stirred and mixed. Through this collision, stirring, and mixing action, the mixed state of the gas-liquid two-phase flow of the coolant B is homogenized, and the homogenized refrigerant B is transferred to the convex portion 15 and the cylindrical container 1.
2 radially along the inner wall and flow into each outflow pipe 14 . At this time, because the refrigerant B (l-1: gas-liquid separation is small and uniform inside the cylindrical container 12), even if the refrigerant B (l-1) is installed at an angle as shown in FIG. Furthermore, even if the inflow pipe is installed at an angle as shown in FIG. By colliding, the refrigerant directly flows out of some pipes 1
Since the flow does not flow into 4, an even divided flow can be obtained.

なお1円筒容器12の高さが小さく流出管入口までの距
離が小さいほど円筒容器内冷媒Bの流速が大きく、よシ
冷媒の気液混合効果が発揮され、また、液だまりの発生
も抑えられる。
Note that the smaller the height of the cylindrical container 12 and the shorter the distance to the outlet of the outflow pipe, the higher the flow velocity of the refrigerant B in the cylindrical container, the more effective the gas-liquid mixing effect of the refrigerant is, and the more the generation of liquid pools can be suppressed. .

以上のように本実施例によれば、上面中央部に配設され
た凸部16と、凸部16周辺に配設された複数の流出管
挿入孔17と、下面中央部に配設された流入管挿入孔1
6とから成る円筒容器12と、前記流入管挿入孔16に
接、合され流出口にノズル部18が形成された流入管1
3と、前記流出管挿入孔17に接合された複数の流出管
14からなる冷媒分流器11によって、円筒容器12内
の冷媒の気液混合を進め、気液二相流の均一化した状態
で、放射方向に配置された流出管14へ円滑に流出させ
ることができ、冷媒分流器11が傾斜して取り付けられ
た場合でも均等な分流を行うことができる。
As described above, according to this embodiment, the convex portion 16 disposed at the center of the upper surface, the plurality of outflow pipe insertion holes 17 disposed around the convex portion 16, and the plurality of outflow pipe insertion holes 17 disposed at the center of the lower surface. Inflow pipe insertion hole 1
6, and an inflow pipe 1 which is in contact with and fitted to the inflow pipe insertion hole 16 and has a nozzle portion 18 formed at the outflow port.
3, and a refrigerant flow divider 11 consisting of a plurality of outflow pipes 14 connected to the outflow pipe insertion hole 17, the gas-liquid mixing of the refrigerant in the cylindrical container 12 is progressed, and the gas-liquid two-phase flow is homogenized. , the refrigerant can flow smoothly into the outflow pipes 14 arranged in the radial direction, and even if the refrigerant flow divider 11 is installed at an angle, the flow can be divided evenly.

発明の効果 以上のように本発明の第1発明は、上面に配設された複
数の流出管挿入孔と、下面中央部に配設された流入管挿
入孔とから成る円筒容器と、前記流出管挿入孔に接合さ
れ流出口にノズル部が形成された流入管と、前記流出管
挿入孔に挿入され挿入部先端が円筒容器下面に接触した
状態で接合され、かつ挿入側端部の円筒容器中心方向に
切り欠き部を有した複数の流出管から構成される冷媒分
流器1によって、ノズルによシ冷媒の気液混合を促進し
、気液の分離を抑えることが可能となり、さらに、流出
管の挿入しろの調整が必要なく、かつ各流出管の挿入し
ろを均一にすることができるため、均等な分流が可能と
なる。捷だ、サンプル間での流出管挿入しろばらつきが
ほとんどなく、分流特性の安定した冷媒分流器が供給で
きる。
Effects of the Invention As described above, the first aspect of the present invention provides a cylindrical container comprising a plurality of outflow pipe insertion holes arranged on the upper surface and an inflow pipe insertion hole arranged in the center of the lower surface, An inflow pipe joined to the pipe insertion hole and having a nozzle portion formed at the outflow port, and a cylindrical container inserted into the outflow pipe insertion hole and joined with the tip of the insertion part in contact with the lower surface of the cylindrical container, and the insertion side end of the cylindrical container. The refrigerant flow divider 1, which is composed of a plurality of outflow pipes having a notch in the center direction, allows the nozzle to promote gas-liquid mixing of the refrigerant and suppress separation of gas and liquid. There is no need to adjust the insertion allowance of the tubes, and the insertion allowance of each outflow pipe can be made uniform, so that equal flow distribution is possible. It is possible to supply a refrigerant flow divider with stable flow characteristics, with almost no variation in outlet tube insertion between samples.

また、本発明の第2発明は、上面中央部に配設された凸
部と、凸部周辺に配設された複数の流出管挿入孔と、下
面中央部に配設された流入管挿入孔とから成る円筒容器
と、前記流入管挿入孔に接合され流出口にノズル部が形
成された流入管と、前記流出管挿入孔に接合された複数
の流出管から構成することにより、円筒容器内の冷媒の
気液混合を進め、気液二相流の均一化した状態で、放射
方向に配置された流出管へ円滑に流出させることができ
、分流器が傾斜して取シ付けられた場合でも均等な分流
を行うことができる。
Further, the second invention of the present invention provides a convex portion disposed at the center of the upper surface, a plurality of outflow pipe insertion holes disposed around the convex portion, and an inflow pipe insertion hole disposed at the center of the lower surface. A cylindrical container consisting of a cylindrical container, an inflow pipe joined to the inflow pipe insertion hole and having a nozzle portion formed at the outflow port, and a plurality of outflow pipes joined to the outflow pipe insertion hole. The refrigerant can be mixed with gas and liquid, and the gas-liquid two-phase flow can be made uniform and smoothly flowed out to the outflow pipes arranged in the radial direction, and when the flow divider is installed at an angle. However, it is possible to divide the flow evenly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1発明の実施例における冷媒分流器
の概略形状を示す斜視図、第2図は冷媒分流器における
断面図、第3図は同冷媒分流器の冷凍サイクル運転時の
冷媒の流れを示す断面図、第4図は本発明の第2発明の
実施例における冷媒分流器の概略形状を示す斜視図、第
6図は同冷媒分流器の断面図、第6図は同冷媒分流器に
おい℃全体を傾斜して取υ付けた際の冷凍サイクル運転
時の冷媒の流れを示す断面図、第7図は同冷媒分流器に
おいて流入管を傾斜して取υ付けだ際の冷凍サイクル運
転時の冷媒の流れを示す断面図、第8図は従来の分流器
の概略形状を示す斜視図、第9図は同冷媒分流器の断面
図、第10図は同冷媒分流器の熱交換器取付状態を示す
斜視図、第11図は同冷媒分流器において流出管の挿入
しるが異なった際の冷凍サイクル運転時の冷媒の流れを
示す断面図、第12図は同冷媒分流器の全体を傾斜して
取υ付けた際の冷媒の流れを示す断面図、第13図は同
冷媒分流器の流入管を傾斜して取シ付けた際の冷媒の流
れを示す断面図である。 1.11・・・・・・冷媒分流器、2,12・・・・・
・円筒容器、3,13・・・・・・流入管、4,14・
・・・・・流出管、15・・・・・・凸部、6,1e・
・・・・・流入管挿入孔、7゜17・・・・・・流出管
挿入孔、8,18・・・・・・ノズル部、9・・・・・
・切り欠き部。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名搾線
分良シ ! 沸拝分う晟舞 11 −−一 ン1; 重!9  シ気5;【+2−°
円 藺ぶ4区 13−−づ気入菅 17・・−5L 出 菅挿入孔 第10図 沢 第11m 0  O− θ 第12図
FIG. 1 is a perspective view showing the schematic shape of a refrigerant divider in an embodiment of the first invention, FIG. 2 is a sectional view of the refrigerant divider, and FIG. 3 is a diagram of the refrigerant divider during refrigeration cycle operation. FIG. 4 is a cross-sectional view showing the flow of refrigerant, FIG. 4 is a perspective view showing the general shape of a refrigerant divider according to the second embodiment of the present invention, FIG. 6 is a cross-sectional view of the refrigerant divider, and FIG. A cross-sectional view showing the flow of refrigerant during refrigeration cycle operation when the refrigerant divider is installed with the entire inlet pipe tilted. A cross-sectional view showing the flow of refrigerant during refrigeration cycle operation, Fig. 8 is a perspective view showing the general shape of a conventional flow divider, Fig. 9 is a cross-sectional view of the same refrigerant flow divider, and Fig. 10 is a diagram of the same refrigerant flow divider. A perspective view showing the installed state of the heat exchanger, Fig. 11 is a sectional view showing the refrigerant flow during refrigeration cycle operation when the outflow pipe is inserted differently in the refrigerant divider, and Fig. 12 shows the refrigerant divider. Figure 13 is a cross-sectional view showing the refrigerant flow when the entire refrigerant divider is installed with the inlet pipe tilted. be. 1.11... Refrigerant flow divider, 2,12...
・Cylindrical container, 3, 13...Inflow pipe, 4, 14・
...Outflow pipe, 15...Protrusion, 6, 1e.
...Inflow pipe insertion hole, 7゜17...Outflow pipe insertion hole, 8, 18...Nozzle part, 9...
・Notch part. Name of agent: Patent attorney Shigetaka Awano and one other person Seimai 11 --1 N1; Heavy! 9 Shiki 5; [+2-°
Circle Ibu 4th section 13--Zuki inlet tube 17...-5L Outlet insertion hole Figure 10 Sawa No. 11m 0 O- θ Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)上面に配設された複数の流出管挿入孔と、下面中
央部に配設された流入管挿入孔とからなる円筒容器と、
前記流入管挿入孔に接合され流出口にノズル部が形成さ
れた流入管と、前記流出管挿入孔に挿入され挿入部先端
が円筒容器下面に接触した状態で接合され、かつ挿入側
端部の円筒容器中心方向に切り欠き部を有した複数の流
出管とからなる冷媒分流器。
(1) A cylindrical container consisting of a plurality of outflow pipe insertion holes arranged on the top surface and an inflow pipe insertion hole arranged in the center of the bottom surface,
The inflow pipe is joined to the inflow pipe insertion hole and has a nozzle portion formed at the outflow port, and the inflow pipe is inserted into the outflow pipe insertion hole and joined with the tip of the insertion part in contact with the lower surface of the cylindrical container, and the insertion side end A refrigerant flow divider consisting of a plurality of outflow pipes each having a notch in the direction of the center of a cylindrical container.
(2)上面中央部に配設された凸部と、凸部周辺に配設
された複数の流出管挿入孔と、下面中央部に配設された
流入管挿入孔とからなる円筒容器と、前記流入管挿入孔
に接合され流出口にノズル部が形成された流入管と、前
記流出管挿入孔に接合された複数の流出管とからなる冷
媒分流器。
(2) A cylindrical container consisting of a convex portion disposed at the center of the upper surface, a plurality of outflow pipe insertion holes disposed around the convex portion, and an inflow pipe insertion hole disposed at the center of the lower surface; A refrigerant flow divider comprising an inflow pipe joined to the inflow pipe insertion hole and having a nozzle portion formed at the outflow port, and a plurality of outflow pipes joined to the outflow pipe insertion hole.
JP2189122A 1990-07-16 1990-07-16 Refrigerant distributor Pending JPH0476360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189122A JPH0476360A (en) 1990-07-16 1990-07-16 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189122A JPH0476360A (en) 1990-07-16 1990-07-16 Refrigerant distributor

Publications (1)

Publication Number Publication Date
JPH0476360A true JPH0476360A (en) 1992-03-11

Family

ID=16235761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189122A Pending JPH0476360A (en) 1990-07-16 1990-07-16 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JPH0476360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106852169A (en) * 2014-10-16 2017-06-13 大金工业株式会社 Coolant flow divider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106852169A (en) * 2014-10-16 2017-06-13 大金工业株式会社 Coolant flow divider

Similar Documents

Publication Publication Date Title
KR20170087807A (en) Air conditioner
WO2020211582A1 (en) Air conditioner liquid separator
JP4430675B2 (en) Fluid flow supply device for mass transfer column
JPH0476360A (en) Refrigerant distributor
JPH04316785A (en) Distributor
JPH08254374A (en) Flow divider for refrigerant
JPH0498055A (en) Refrigerant flow divider
JP2000176201A (en) Method of feeding fluid to equipment and column by which can carrysied out the method
JP3387387B2 (en) Refrigerant distributor and refrigeration cycle device using the same
JPH0737865B2 (en) Shunt
US5243838A (en) Refrigerant shunt
JP2746681B2 (en) Refrigerant flow divider
JPH062990A (en) Refrigerant flow dividing device
JPH11257801A (en) Refrigerant distributor
EP3070419A1 (en) Heat exchanger distributor swirl vane
JP2013050221A (en) Refrigerant distributor and heat pump apparatus using the same
JPH0961016A (en) Refrigerant distributor
WO1991002931A1 (en) Flow diverter for refrigerant
JPH04148167A (en) Refrigerant flow divider and refrigerant flow dividing device
JPH0498056A (en) Refrigerant flow divider
JPH0468274A (en) Refrigerant divider
CN214620813U (en) Dispenser
JPH06201225A (en) Distributor for gas-liquid two phase fluid
JPH02306070A (en) Refrigerant flow divider
JPH02275266A (en) Refrigerant shunt