JPH0476355A - Solar heat collecting device - Google Patents

Solar heat collecting device

Info

Publication number
JPH0476355A
JPH0476355A JP2187299A JP18729990A JPH0476355A JP H0476355 A JPH0476355 A JP H0476355A JP 2187299 A JP2187299 A JP 2187299A JP 18729990 A JP18729990 A JP 18729990A JP H0476355 A JPH0476355 A JP H0476355A
Authority
JP
Japan
Prior art keywords
heat
floor
angle
heat collecting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2187299A
Other languages
Japanese (ja)
Other versions
JP2527832B2 (en
Inventor
Saburo Yui
油井 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2187299A priority Critical patent/JP2527832B2/en
Publication of JPH0476355A publication Critical patent/JPH0476355A/en
Application granted granted Critical
Publication of JP2527832B2 publication Critical patent/JP2527832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To make a substantial improvement of light collecting and heat collecting amount, collect efficiently and easily a solar energy flow in winter season in particular to make an economic utilization of the solar energy by a method wherein a light transparent plate is placed to cover a fixed reflector floor and a light collecting heat collecting surface and the reflector floor is installed at a lowering gradient of a specified angle in respect to a light collecting and heat collecting surface. CONSTITUTION:A light transparent plate 1 is mounted to cover a fixed reflector floor 2 and a light collecting and heat collecting surface 3. The reflector floor 2 is installed at a decreasing gradient with an angle of a range not exceeding a solar high angle at noon at least in the winter solstice in respect to the light collecting and heat collecting surface 3. Solar light passed through a transparent member 1 such as glass or the like directly impinges against the heat collecting surface 3 to get a direct radiation and another reflection part reflected against the reflector 2 with a decreasing gradient. Light reflected at the gradient reflector floor is reflector again at a rear surface 1' of the transparent member and reaches the reflection of repeated one through the reflection floor, glass rear surface and the reflector floor and the like so as to make a substantial improvement of the light collecting and heat collecting amount.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽の熱エネルギーを利用するシステムにお
いて、太陽光を効率良く集光して大きな熱エネルギーを
取り出すための太陽熱集熱装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solar heat collection device for efficiently concentrating sunlight and extracting a large amount of thermal energy in a system that utilizes solar thermal energy. It is.

〔従来の技術〕[Conventional technology]

一般に、密度の高い熱エネルギー流を得る方式として、
太陽光を追尾して集光する各種の集熱装置があるが、経
済面から民生用としては普及し難いために地域特性並び
に太陽依存率を考慮して屋根上に集熱器を南側に向けて
設置することが知られている。
In general, as a method for obtaining a high-density thermal energy flow,
There are various types of heat collectors that track and concentrate sunlight, but due to economic reasons, it is difficult to popularize them for consumer use, so considering regional characteristics and solar dependence, the heat collectors are mounted on the roof and oriented towards the south. It is known to be installed as

この従来の集熱器では集熱器に反射板を設けて傾斜屋根
に延設したり取付台で斜設しであるが、反射床は集熱面
に対して上り勾配で傾斜設置された傾斜式集熱器、或い
はガラス屋根を持った小屋裏で水平反射床で鉛直に集熱
器を備えた垂直式集熱器が多用されている。
In this conventional heat collector, a reflector is installed on the heat collector and extended to a sloped roof or installed diagonally with a mounting base, but a reflective floor is installed at an upward slope relative to the heat collection surface. Type heat collectors or vertical heat collectors with horizontal reflective floors and vertical heat collectors in attics with glass roofs are often used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の集熱器では、集熱器を屋根の棟寄りに
置いて南面させている関係上、その前面の構造物(例え
ば屋根等)を反射体として利用する場合、屋根面は南側
に勾配をもつが、これは太陽光路方向から見ると上り勾
配になり、反射光の集熱面への入射率は低い値になって
しまい、反射板の反射率を高く保つことができず性能面
においては不十分であった。
However, with conventional heat collectors, the heat collector is placed near the ridge of the roof and faces south, so if a structure in front of it (for example, a roof) is used as a reflector, the roof surface should face south. However, this is an upward slope when viewed from the direction of the sunlight path, and the incidence rate of reflected light on the heat collecting surface becomes a low value, making it impossible to maintain a high reflectance of the reflector, resulting in poor performance. was insufficient.

殊に在来の建築形式に固執し過ぎていて、また冬期間に
合わせた構成が採用されていて、経済的な太陽光の集光
が実現できず、まだ問題があったし、従来の屋上に配列
して直接太陽光を受ける平板型集熱器においては、冬期
暖房のために蓄熱槽に採湯蓄熱するために高負荷(高目
の温度)とすると、集熱面の正味吸収エネルギー流F、
□が高くないために極端に流量を絞らざるを得す、一方
、熱損失は流量に関係なく失われるので、実際に取得で
きて蓄熱槽に取り込む熱量よりも無駄に失う熱損失の方
が相当に大きいということになり、結局、大面積の集熱
器の負担に耐えられず実用化に至っていないのが実情で
ある。
In particular, there are still problems, as there is too much adherence to traditional architectural forms and configurations adapted to the winter season, making it impossible to achieve economical solar concentration. In flat plate heat collectors that are arranged on the ground and receive direct sunlight, when a high load (high temperature) is applied to collect hot water and store it in a heat storage tank for winter heating, the net absorbed energy flow on the heat collecting surface is F,
□ is not high, so the flow rate has to be extremely reduced. On the other hand, heat loss is lost regardless of the flow rate, so the heat loss wasted is more than the amount of heat that can actually be obtained and taken into the heat storage tank. The reality is that it has not been put into practical use because it cannot withstand the burden of a large-area heat collector.

本発明は、これら従来の欠点を排除しようとするもので
、集熱量を大幅に高め、特に冬期間において薄れている
太陽熱エネルギー流を効率良く簡易に集光して、暖房な
らびに給湯用として経済的にも有用で集熱面の保守にも
便利で実生活に十分成り立ち得る太陽熱集熱装置を得る
ことにあり、しかも建物との実用的調和に優れ、調和を
とることによって装置の熱損失を減らし、コスト低減も
計り得る集熱装置を構成筒車で安価な形態で提供しよう
とするものである。
The present invention aims to eliminate these conventional drawbacks by significantly increasing the amount of heat collected, efficiently and easily concentrating the fading solar thermal energy flow, especially in the winter, and making it economical for space heating and hot water supply. The objective is to obtain a solar heat collecting device that is useful for buildings, convenient for maintenance of the heat collecting surface, and sufficient for practical use, and that also has excellent practical harmony with buildings, and by achieving harmony, reduces heat loss of the device. The present invention aims to provide a heat collecting device that can reduce costs in an inexpensive form using a component hour wheel.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、太陽光を透過すべき透光板と、咳透光板を通
過する太陽光を受りる集熱面を有する集熱器と、集熱面
に反射光を照射しうる上向きの固定反射床とからなる太
陽熱集熱装置において、前記集熱面を南側に向けて設置
し、かつ集熱面以外の壁面は反射体で構成すると共に、
前記反射床を集熱面に対して少なくとも冬至の正午の太
陽高度角を超えない範囲の角度の下り勾配で配備したこ
とを特徴とする太陽熱集熱装置である。
The present invention provides a heat collector having a light-transmitting plate that transmits sunlight, a heat-collecting surface that receives the sunlight that passes through the light-transmitting plate, and an upward-facing surface that can irradiate the heat-collecting surface with reflected light. In a solar heat collection device consisting of a fixed reflective floor, the heat collection surface is installed facing south, and the wall surface other than the heat collection surface is composed of a reflector, and
The solar heat collecting device is characterized in that the reflective floor is arranged at a downward slope with respect to the heat collecting surface at an angle that does not exceed at least the solar altitude angle at noon on the winter solstice.

〔作 用〕[For production]

本発明の太陽熱集熱装置では、ガラス等の透光体lを透
って太陽光は集熱面3に直射して達する直射達分と、こ
れに隣接し、下り勾配反射床2で反射して集熱面に達す
る反射達分と、さらにこれに隣接して、下り勾配反射床
で反射したものが透過体の裏面1′で再反射されて集熱
面3に達する再反射達分、またこれに隣接して反射床、
ガラス裏面2反財産と再度繰り返し反射して達する再々
反射達分等が連なっていて反射率を高く保ち、集熱量を
大幅に向上して経済的に用いられ得るものである。
In the solar heat collecting device of the present invention, sunlight passes through the transparent material l such as glass, and is reflected by the direct beam reaching the heat collecting surface 3 and the adjacent downhill reflective floor 2. Adjacent to this, there is a re-reflection portion that is reflected off the downward slope reflective floor and is re-reflected on the back surface 1' of the transmitter and reaches the heat-collecting surface 3. Adjacent to this is a reflective floor,
The glass back surface 2 is connected with the second reflection portion that is repeatedly reflected again, and the reflectance is kept high, the amount of heat collected is greatly improved, and it can be used economically.

〔実施例〕〔Example〕

本発明の実施例第1〜12図例で説明すると、第1図に
おいて、太陽光を透過すべき透光板1と、該透光板1を
通過する太陽光を受ける集熱面3を有する集熱器と、集
熱面3に反射光を照射しうる上向きの固定反射床2とか
らなる太陽熱集熱装置であって、前記集熱面3を南側に
向けて設置し、かつ集熱面以外の壁面は反射体で構成す
ると共に、前記反射床2を集熱面3に対して少なくとも
冬至の正午の太陽高度角を超えない範囲の角度の下り勾
配で配備した太陽熱集熱装置としである。
Embodiments of the present invention will be explained with reference to Figures 1 to 12. In Figure 1, it has a transparent plate 1 that transmits sunlight, and a heat collecting surface 3 that receives sunlight that passes through the transparent plate 1. A solar heat collecting device consisting of a heat collector and an upwardly facing fixed reflective floor 2 capable of irradiating reflected light onto the heat collecting surface 3, the heat collecting surface 3 being installed facing south, and the heat collecting surface The other wall surfaces are constructed of reflectors, and the reflective floor 2 is arranged at a downward slope with respect to the heat collecting surface 3 at an angle that does not exceed the solar altitude angle at noon on the winter solstice. .

この場合、前記固定反射床2としては、前記太陽光透光
板1とともに集熱面3に対して開いた広がり角度で対向
していて、鉛直から南方側に反射床勾配角度の2倍以内
の角度を持った集熱面3を備えている構成とするのが有
効である。
In this case, the fixed reflective floor 2 is opposed to the heat collecting surface 3 along with the solar light transmitting plate 1 at an open spread angle, and has a slope within twice the reflective floor slope angle from the vertical to the south. It is effective to adopt a configuration including a heat collecting surface 3 having an angle.

図中4はフレーム室、5は給水ポンプ、6.6′はヘソ
グー、7は排水溝、8は建屋である。
In the figure, 4 is a frame room, 5 is a water supply pump, 6.6' is a heel drain, 7 is a drain, and 8 is a building.

即ち、反射達分の光路Sについて見るに、第2図におい
て太陽の天頂角Z(太陽高度角の余角)のときの反射床
面へ入射角は下り勾配がδであるとすると(Z+δ)で
、反射角も同じであるが、鉛直垂線に対しては(Z+2
6)となる。
That is, looking at the optical path S of the reflection reach, in Figure 2, when the sun's zenith angle is Z (complementary angle of the solar altitude angle), the angle of incidence on the reflecting floor surface has a downward slope of δ (Z + δ) The angle of reflection is also the same, but with respect to the vertical line, it is (Z+2
6).

いま、集熱面が鉛直線からν角だけ南側に傾いて南面し
ているとすると、反射光の集熱面に対する入射率(光線
と面の法線のなす角をθとするとcos θで表わされ
る)μ、は p@ ”cos θ=sin(Z +26−シ)となり
、反射床が水平である場合の5in(Z−ν)より26
の角度分だけ入射率が向上する。
Now, if the heat collecting surface is tilted south by an angle ν from the vertical line and faces south, the incidence rate of reflected light on the heat collecting surface (expressed as cos θ, where θ is the angle between the light ray and the normal to the surface) μ, becomes p@”cos θ=sin(Z +26-shi), and 26 from 5in(Z-ν) when the reflective floor is horizontal.
The incidence rate improves by the angle of .

次に、第3図に示す光路S、は反射床面に反射してから
更に透光体であるガラス等の裏面に再度反射して集熱面
に達する再反射光で、この光路Sは、ガラス面の南側へ
の勾配角をψとすると、反射床面で反射された太陽光の
ガラス裏面への入射角は(Z+2δ+ψ)となって、水
平反射床の場合の(Z+ψ)より2δ角だけ大きい。
Next, the optical path S shown in FIG. 3 is the re-reflected light that is reflected on the reflective floor surface, then reflected again on the back surface of the transparent material such as glass, and reaches the heat collecting surface. If the slope angle of the glass surface to the south is ψ, the angle of incidence of sunlight reflected on the reflective floor surface to the back surface of the glass is (Z + 2 δ + ψ), which is 2 δ angles smaller than (Z + ψ) in the case of a horizontal reflective floor. big.

ガラス裏面での反射率R9は第4図に示すように、入射
角が太き(なる程高くなり、特に90゜に近づくと僅か
な入射の増大が著しく高い反射率の向上となって現われ
てくる。
As shown in Figure 4, the reflectance R9 on the back surface of the glass becomes larger as the angle of incidence becomes wider (indeed, it gets higher, especially as it approaches 90°), and a slight increase in the incidence becomes a marked improvement in the reflectance. come.

このため強い再反射光を得るためには、極力入射角を大
きくし、しかも90@に近づけるようにするのが望まし
い。
Therefore, in order to obtain strong re-reflected light, it is desirable to make the incident angle as large as possible, and moreover, to make it close to 90@.

下り勾配反射床の角度δの2倍の角度分だけ入射角に加
わるので、下り勾配反射床は強い再反射光を得るための
有力な手段となっている。
Since the incident angle is added to the angle of incidence by twice the angle δ of the down-slope reflective floor, the down-slope reflective floor is an effective means for obtaining strong re-reflected light.

さらに、この事に加えてガラス面で反射された再反射光
路は鉛直垂線に対して(Z+2δ+2ψ)の角度で反射
され、傾角νの集熱面への入射率μlll1gは μl19  =cos  θ=sin(Z + 2δ+
2ψ→−ν)と増大する。
Furthermore, in addition to this, the re-reflected optical path reflected by the glass surface is reflected at an angle of (Z + 2 δ + 2 ψ) with respect to the vertical perpendicular, and the incidence rate μlll1g of the inclination angle ν to the heat collecting surface is μl19 = cos θ = sin ( Z + 2δ+
2ψ→−ν).

このように再反射光は、下り勾配反射床と透光体である
ガラス面が集熱面に対して開いた広がり角度で構成され
ていることによって、強い再反射光と集熱面に対して入
射率の向上の相乗作用が働いて集熱面の吸収エネルギー
流を高めている。
In this way, the re-reflected light is strongly re-reflected and the heat-collecting surface is suppressed by the downward-sloping reflective floor and the transparent glass surface, which has an open spread angle with respect to the heat-collecting surface. The synergistic effect of increasing the incidence rate works to increase the absorbed energy flow on the heat collecting surface.

このためには、下り勾配反射床と太陽光透光体とが集熱
面に対して開いた広がり角度で対向して構成されている
ことによって強い再反射光入射を実現させていることが
必要であるが、下り勾配反射床とガラス等の面とが集熱
面に対して開いた広がり角度をなして対向していれば、
ガラス面の上り下りの勾配は特に問題にならない。
To achieve this, it is necessary to realize strong re-reflected light incidence by configuring the down-sloping reflective floor and the solar light transmissive body to face each other at an open angle to the heat collecting surface. However, if the down-sloping reflective floor and the glass or other surface face each other at an open angle to the heat-collecting surface,
The slope of the glass surface up and down is not a particular problem.

しかし、開いた広がり角度でなく、平行か或いは閉じた
挟まり角度であると本発明の作用効果が失われてくるの
で避けるべきである。
However, instead of an open spread angle, parallel or closed pinch angles will reduce the effectiveness of the present invention and should be avoided.

即ち、平行であれば1δ1=1ψ1でガラス裏面への入
射角は(Z+26−ψ)=(Z十δ)と減少し、入射率
も5in(Z十ν)の値に減る。また、閉じ挾まる角度
であれば、下り勾配反射床であっても、1ψl>lδ1
であるということになって、ガラス裏面への入射角は(
Z+δ)より更に小さくなり、入射率も5in(Z十ν
)より更に小さい値に減ってしまうからである。
That is, if they are parallel, 1 δ1 = 1 ψ1, the angle of incidence on the back surface of the glass decreases to (Z + 26 - ψ) = (Z + δ), and the incidence rate also decreases to a value of 5 inches (Z + ν). Also, if the angle is closed, 1ψl>lδ1
Therefore, the angle of incidence on the back surface of the glass is (
It becomes even smaller than Z + δ), and the incidence rate is also 5 inches (Z + ν
) will be reduced to an even smaller value.

なお、上述では、反射達分と再反射違背についての作用
を述べたものであるが、これらに連接する再々反射違背
、さらに2回ガラス裏面に反射する再三反射違背や、そ
れが勾配反射床にもう一度反射して集熱面に達する再四
反射違背についても同様で反射の回数を重ねる毎に集熱
面への入射率そのものは向上する。
The above description describes the effects of the reflection beam and the re-reflection beam, but the effects of the re-reflection beam connected to these, the repeat-reflection beam that is reflected twice on the back of the glass, and the slope reflection floor. The same goes for the repeat reflection beam that is reflected once more and reaches the heat collecting surface, and as the number of reflections increases, the rate of incidence on the heat collecting surface itself improves.

また、ガラス裏面への入射角度も初回よりは2回目が格
段に大きくなるために反射率そのものも高くなる。
Furthermore, since the angle of incidence on the back surface of the glass is much larger the second time than the first time, the reflectance itself also becomes higher.

しかし乍ら、このように再三、再四反射違背が存在する
ときは天頂角Zが小さい(太陽高度が高い)場合である
ので、必然的に最初のガラス裏面への入射角(Z+26
+ψ)は比較的小さい値に止まるので、第4図から判る
ように反射率R,は低い値で、大刀は外部へ散逸して集
熱面への入力は、勾配反射床面で反射を繰り返すことに
よる減衰も加わって、僅かなものにならざるを得ない。
However, when such repeated reflections occur, the zenith angle Z is small (the sun's altitude is high), so the initial angle of incidence on the back surface of the glass (Z+26
+ψ) stays at a relatively small value, so as can be seen from Figure 4, the reflectance R is a low value, and the long sword is dissipated to the outside, and the input to the heat collection surface is repeatedly reflected on the sloped reflective floor surface. With the addition of attenuation due to this, it cannot help but be slight.

また、入射率においても改善されるとは言ってもZが小
さいので左程大きくはなり得ない。
Further, even though the incidence rate is improved, it cannot be as large as shown in the left because Z is small.

各反射達分の消長を見るに、天頂角Zが小さくなってい
くと、第1図を参照にして、当然ながら直射違背に続く
各反射達分が次第に立ってくると共に、互いに寄り合う
ようになり、図で言うと再々反射違背の領域が増え、次
の反射達分である再三反射違背が現れ、その領域が十分
増えると再四反射違背が立ち現れてくる。
Looking at the ebb and flow of each reflection, as the zenith angle Z becomes smaller, as shown in Figure 1, the reflections that follow the direct line of sight gradually stand up and approach each other. As shown in the diagram, the area of repeated reflex deviation increases, and the next reflex, the repeated reflex deviation, appears, and when that area increases sufficiently, the repeat reflex deviation appears.

また、逆に天頂角Zが次第に大きくなっていくと、最初
に再四反射達が痩せてきて遂に立ち消え、次の再三反射
違背、次いで再々反射違背が同じ筋違を辿ることになる
Conversely, when the zenith angle Z gradually increases, the repeat reflexes first thin out and finally disappear, and the next repeat reflex reflex and then the repeat reflex reflex follow the same path.

そして例えば、第1図のように再々反射違背が痩せてい
ても存在している状況では、再々反射違背の集熱面の照
射占有率は100%ではなく、小さい値ながらもってい
るとともに、再三反射達及び再四反射達は存在しないし
、反射違背及び再反射達分の照射占有率は100%であ
るということを示している。これらの解析数値を導出で
きるが、ここでは省略する。
For example, in a situation as shown in Figure 1, where the repeat reflection back is thin but still present, the irradiation occupancy rate of the heat collecting surface of the repeat reflection back is not 100%, but it has a small value, and the repeat reflection This shows that there are no reflections and reflections, and the irradiation occupancy rate of reflections and reflections is 100%. Although these analytical values can be derived, they are omitted here.

これらの各反射違背の消長の中でも際立つ現象は、天頂
角Zが大きくて直射達分と反射違背が殆ど占めている冬
至の前後の時期において、太陽が高度を増やすにつれて
再反射達分が参入してくるときの現象である。
The phenomenon that stands out among these fluctuations in the reflection angle is that during the period around the winter solstice, when the zenith angle Z is large and the direct reach and reflex reach are mostly occupied, as the sun increases in altitude, the re-reflection reach enters. This is a phenomenon that occurs when

すなわち、再反射光が立ち現われてくるときは、ガラス
裏面への入射角は90″から始まる。つまり、反射率1
00%から始まり、強い再反射光が集熱面の上部から、
直射達分と反射違背の照射に重合する形で照射されてく
ることになる。
That is, when the re-reflected light appears, the angle of incidence on the back surface of the glass starts from 90''.In other words, the reflectance is 1
Starting from 00%, strong re-reflected light from the top of the heat collecting surface,
It will be irradiated in the form of a combination of direct radiation and reflex radiation.

このため冬至を挾んだ時期において再反射光は強力に生
きて、しかも熱媒体(例えば水等)の加熱に都合の良い
エネルギー流入配分となって集熱面に流入することとな
って、冬期間の良い成績を示す有力要因となっている。
Therefore, during the winter solstice, the re-reflected light remains strong and flows into the heat collecting surface with an energy inflow distribution that is convenient for heating the heat medium (for example, water). This is a strong factor showing good performance during the period.

次に、集熱面の傾角νの選定については、例えば、第5
図のように取付頭角を45°に増大させると、夏期のZ
=15’のように小さいときには図示のように直射達分
は入射率は向上するが、反射光は集熱面に入り得す、全
体としては正味吸収エネルギー流F mbsを減少させ
ることになる。従って傾角を過大にすることは得策でな
い。
Next, regarding the selection of the inclination angle ν of the heat collecting surface, for example, the fifth
If the mounting head angle is increased to 45° as shown in the figure, the Z
When it is small, such as = 15', the incidence rate of the direct beam improves as shown in the figure, but the reflected light can enter the heat collecting surface, reducing the net absorbed energy flow F mbs as a whole. Therefore, it is not a good idea to make the inclination angle too large.

集熱面の傾角νをいろいろ変えて、下り勾配床角δのも
のに取付けて調べた結果を第6図に示す。
Figure 6 shows the results of an investigation by changing the inclination ν of the heat collecting surface and installing it on a device with a downwardly sloping floor angle δ.

太陽高度の著しく異なる二つの時期においても、シーδ
が一つのピーク値を与えている。このピーク値はなだら
かなものであるが、νの最適角度はδとしても、その前
後δ角度の幅、つまりシー0〜2δの範囲が好ましい取
付傾角範囲であるとみることができる。
Even at two periods with markedly different solar altitudes, the sea δ
gives one peak value. Although this peak value is gentle, even if the optimum angle of ν is δ, it can be seen that the width of the δ angle before and after it, that is, the range of sea 0 to 2 δ is the preferred mounting inclination angle range.

次に、下り勾配反射床の取付は勾配角δ。についてみる
に、少なくとも下記要件は具える必要がある。
Next, the slope angle δ is used to install the downward slope reflective floor. Therefore, at least the following requirements must be met.

すなわち、下り勾配反射床である主反射面は所望の時刻
に太陽光を受は入れ得るという条件を満足させる必要か
ら、少なくともその地域の冬至の正午の天頂角より低い
角度の下り勾配になっていなければならない。
In other words, the main reflecting surface, which is a downward-sloping reflecting floor, needs to satisfy the condition that it can receive sunlight at a desired time, so it has a downward slope that is at least lower than the zenith angle at noon on the winter solstice in the region. There must be.

正午を外れた時刻においても、実際には集熱を必要とす
ることと、反射先達の入射率を良い状態にすること、有
効な反射床面積を確保することと、太陽光透過板面の雨
水流下のための必要勾配との関係等から、実際には前記
の勾配角度の2ないし以下というのが望ましい角度とな
る。実施例においては、冬至の正午の太陽光を受は入れ
るに必要な下り勾配角31″の半分以下の12.5°を
採用して良い結果を得ている。
Even at times other than noon, it is actually necessary to collect heat, to maintain a good incidence of reflection destinations, to secure an effective reflective floor area, and to prevent rainwater from forming on the surface of the sunlight transmitting plate. In view of the relationship with the required gradient for flow down, the preferred angle is actually 2 or less of the above-mentioned gradient angle. In the example, a good result was obtained by adopting a downward slope angle of 12.5°, which is less than half of the downward slope angle 31'' required to receive sunlight at noon on the winter solstice.

下り勾配反射床は単一勾配の反射床に限らず、いろいろ
な変形応用が可能である。
Down-sloping reflective floors are not limited to single-slope reflective floors, and can be applied in a variety of ways.

例えば第7図に示すように、反射床2を放物線を導線と
する柱面とすることによって、設計の時期1時刻におい
て反射光S!は集熱面3に良く集中される。しかし、設
計点の時期1時刻から外れてくると追尾式でないため、
状況は全く変わって能率の悪いものになってくる。
For example, as shown in FIG. 7, by making the reflective floor 2 a cylindrical surface with a parabola as a conducting wire, the reflected light S! is well concentrated on the heat collecting surface 3. However, as the design point moves away from the 1st time, the tracking system is no longer available, so
The situation changes completely and becomes less efficient.

とく番こ、このような曲面を採用すると、集熱面の足許
の反射床の勾配をとり難しく、場合によっては図示のよ
うに上り勾配になりかねず、設計点から外れた状態、と
くに天頂角Zの小さい夏期に反射違背の入射率を低下さ
せる。
In particular, if such a curved surface is adopted, it is difficult to maintain the slope of the reflective floor at the foot of the heat collecting surface, and in some cases, it may become upward slope as shown in the figure, and the zenith angle may deviate from the design point. Decrease the incidence of reflex dorsal light in the summer when Z is small.

集熱面に対する反射光の照射は広い面積に対してのもの
であるから光学的厳密さは要求されず、反射床2として
は第8図に示すような反射平面のブロック的寄せ集めで
代用できる。
Since the reflected light irradiates the heat collecting surface over a wide area, optical precision is not required, and the reflective floor 2 can be replaced by a block-like collection of reflective planes as shown in Figure 8. .

また、夏期に太陽の天頂角が小さくなって、そのために
ガラス裏面への反射光の入射角が減り、ガラス裏面から
の反射光が弱くなって期待薄となったときの便宜的手段
として、下り勾配反射床の中間の床面上に傾斜角度を変
え得る可動反射板(図示せず)を変位自在に備えて、該
可動反射板に受けた太陽光を直接の反射違背として集熱
面に有効に送達できるようにすることも可能である。
In addition, as a convenient measure when the sun's zenith angle becomes smaller in the summer and the angle of incidence of reflected light on the back of the glass decreases, the light reflected from the back of the glass becomes weaker and less expected. A movable reflector (not shown) whose inclination angle can be changed is displaceably provided on the floor surface in the middle of the sloped reflective floor, and the sunlight received by the movable reflector is reflected directly and is effectively applied to the heat collecting surface. It is also possible to make the delivery possible.

第1図において、ガラス屋根となる太陽光透光体1はゆ
るい2.5”の勾配角度で雨仕舞を兼ねて南側に傾斜し
て取付けられている。また、下り勾配反射床2は集熱面
3に対して12.5@の下り勾配になっているので、屋
根ガラス面とは15°の開いた広がり角度をもって集熱
面に対向していることになる。
In Figure 1, the solar light transmissive body 1, which forms the glass roof, is installed with a gentle slope of 2.5", slanting to the south to serve as a rain cover. Also, the downward sloping reflective floor 2 is installed to collect heat. Since it has a downward slope of 12.5@ with respect to surface 3, the roof glass surface faces the heat collecting surface with an open spread angle of 15 degrees.

さらに、集熱面3は鉛直垂線から、反射床2の勾配角に
等しい仰角で南側に傾いて取付けられているので、集熱
面3は図示のように勾配反射床2と直角の配置となって
いる。
Furthermore, since the heat collection surface 3 is installed tilted to the south from the vertical perpendicular at an elevation angle equal to the slope angle of the reflective floor 2, the heat collection surface 3 is arranged at right angles to the sloped reflective floor 2 as shown in the figure. ing.

このような下り勾配反射床フレーム型集熱器の集熱性能
を比較検討するために、第9図に示すように下り勾配床
でない水平反射床のフレーム型集熱器の集熱性能を併せ
て検討してみると、太陽高度が最も低くなる(Zが最も
大きくなる)冬至の正午の受光量で比較すると、第9図
に示すように、水平床のものの方が下り勾配床のものの
より、33.7%も多くなる予測ができる。つまり、そ
れだけ多く受光しているのであり、集熱面も全く同じ面
積であるので、集光集熱効率が同じだと仮定すれば、水
平床の方が冬至における正味吸収エネルギー流F mb
sが33.7%は高い筈であるが実際の結果は、この予
測に反して逆の結果となって出てくる。なぜなら、その
理由の一つは、下り勾配反射床用δの存在のために反射
連光、再反射達光再々反射達光等の集熱面に対する入射
率が大幅に向上されるからである。
In order to compare and examine the heat collection performance of such down-sloping reflective floor frame-type heat collectors, we also compared the heat-collecting performance of frame-type heat collectors with horizontal reflective floors that are not down-sloping floors, as shown in Figure 9. When we compare the amount of light received at noon on the winter solstice, when the solar altitude is lowest (Z is largest), as shown in Figure 9, the horizontal floor is better than the downward sloping floor. It is predicted that the number will increase by 33.7%. In other words, more light is received, and the heat collection surface has exactly the same area, so assuming that the light collection efficiency is the same, the horizontal bed will have a higher net absorbed energy flow F mb at the winter solstice.
Although s should be high at 33.7%, the actual result is contrary to this prediction. One of the reasons for this is that due to the presence of the down-sloping reflecting floor δ, the incidence rate of reflected continuous light, re-reflected light, repeat-reflected light, etc. to the heat collecting surface is greatly improved.

例えば、夏至の正午でみると、水平床のF absを1
とすると、下り勾配床のF absは略2に近い値とな
り、大きな逆転差を与えている。
For example, at noon on the summer solstice, F abs on the horizontal floor is 1
If this is the case, F abs of the down-sloping floor has a value close to 2, giving a large reversal difference.

他の一つの理由は、下り勾配床と太陽光透光体であるガ
ラス面が組み合わされた形で、集熱器に対して開いた広
がり角度で対向していることに起因するものである。
Another reason is that the combination of a downwardly sloping floor and a glass surface that transmits sunlight faces the heat collector at an open angle.

再反射光のガラス裏面への入射角は、下り勾配床の勾配
角の2倍の2δ角だけ入射角に加わるので反射率R9が
大幅に向上することになる。
Since the incident angle of the re-reflected light on the back surface of the glass is added to the incident angle by an angle of 2δ, which is twice the slope angle of the downwardly sloped floor, the reflectance R9 is significantly improved.

第10図は2月7日における再反射光の反射率を比較し
たものであるが、正午における値の下り勾配床の反射率
は水平床のそれの2.6倍以上となっている。
Figure 10 compares the reflectance of re-reflected light on February 7th, and the reflectance of the downward slope floor at noon is more than 2.6 times that of the horizontal floor.

即述したように、特に再反射光が参入してくる冬至を挾
む冬期において、この効果が大きい。
As mentioned earlier, this effect is particularly great during the winter period, when the re-reflected light enters the winter solstice.

第11図は周年に亘る集熱流の比較をしたもので、横軸
、に月、縦軸に集熱面の単位面積当たりの正味吸収エネ
ルギー流Febs  (W/rrr)とした。
Figure 11 shows a comparison of the heat collection flow over the years, with the horizontal axis representing months and the vertical axis representing the net absorbed energy flow Febs (W/rrr) per unit area of the heat collection surface.

本発明実施例の集熱器Aのほかに、同形の水平反射床の
集熱器Bと、普通一般に行いられている単独配置の平板
型集熱器Cを冬期集熱に最も適するといわれ、従来から
一般に使用されている傾斜角度、すなわち水平面から5
5°起こした角度のものを比較のために入れた。
In addition to the heat collector A of the embodiment of the present invention, a heat collector B with a horizontal reflective floor of the same shape and a single plate type heat collector C, which is commonly used, are said to be most suitable for collecting heat in winter. The angle of inclination commonly used in the past, i.e. 5 from the horizontal plane.
A 5° raised angle is included for comparison.

この集熱器Cは冬期向けに配置したものであるから、夏
至付近で落ち込みが生ずるのはやむを得ないが冬期にお
いてもF。Sが100OW/n(を超えることは出来な
い。
Since this heat collector C was placed for the winter season, it is unavoidable that there would be a dip around the summer solstice, but the heat collector C is also F even in the winter season. S cannot exceed 100OW/n.

水平床の集熱器Bは、冬期冬至をピークに上昇が見られ
、1500W/nfを超えている期間が月余に亘ってい
る。しかし反面、夏至付近の落ち込みもひどく、単独配
置の55@型の落ち込みより更に落ち込む結果となった
Heat collector B on the horizontal floor shows an increase in power after peaking at the winter solstice, and the period in which the power exceeds 1500 W/nf continues for over a month. However, on the other hand, the drop around the summer solstice was also severe, resulting in an even lower drop than the drop of the 55@ type when placed alone.

これに反し、本発明の実施例の下り勾配法集熱器Aでは
周年に亘って前記二側のいずれよりも高い値を得ている
On the contrary, the downward slope method heat collector A according to the embodiment of the present invention has obtained higher values than either of the above two sides for many years.

時弊秋分から春分にかけての冬期の広い期間(6ケ月)
に亘って1500W/J以上の正味吸収エネルギー流を
確保できている実用的意味は大きい。
Wide period of winter (6 months) from the autumnal equinox to the vernal equinox
The practical significance of being able to secure a net absorbed energy flow of 1500 W/J or more over this period is significant.

そのうちでも注目されるのは、厳冬期に当たる1月下旬
から2月−杯まで正味吸収エネルギー流の取得はピーク
を迎え、はぼ1650W/dに達していることで、冬期
暖房、給湯兼用に適している。
What is noteworthy is that the net absorbed energy flow reaches its peak from late January to mid-February, which is the severe winter season, reaching approximately 1,650 W/d, making it suitable for both winter heating and hot water supply. ing.

なお、得られた曲線について付言すると、冬至での吸収
エネルギー流の内容は直射違背と反射違背が主で90’
以上を占めているのは当然であるが、その時点で水平床
集熱器Bより高いのは反射違背の入射率向上によるため
であり、その差が著しくないのはZが大きいために入射
率改善が際立って出て来ないためである。
An additional note about the obtained curve is that the content of the absorbed energy flow at the winter solstice is mainly composed of direct radiation and reflex radiation, and is approximately 90'
Of course, the reason why it is higher than that of horizontal bed heat collector B at that point is due to the improvement in the incidence rate of the reflective back, and the reason that the difference is not significant is because the incidence rate is higher due to the large Z. This is because the improvement is not noticeable.

従って冬至を翻れてZが次第に小さくなって太陽光受光
量が増えてくると、その差も段々に出て来る。
Therefore, as the winter solstice rolls around and Z gradually becomes smaller and the amount of sunlight received increases, the difference gradually becomes apparent.

それと、同時に再反射違背が既述したように強力に参入
してきて二つの山に割合高く盛り上がってくる訳である
At the same time, as mentioned above, reflexive transgressions have entered the market strongly, and the two peaks have risen at a relatively high rate.

この二つの山に若干の高低差があるのは、2月の寒気の
強い時期に太陽光の大気透過率が良くなる季節的要因に
よるものである。
The slight difference in height between these two mountains is due to seasonal factors, such as the higher atmospheric penetration of sunlight during the colder months of February.

夏至付近では、再反射達、再々反射達、再三反射達5再
四反射達と立て混んでくるが、Zが小さいのでガラス面
での反射率が低く、外部への散逸が大きくて、それらを
合成しても小さい値にとどまる。
Near the summer solstice, there are many re-reflections, re-reflections, re-reflections, and 5-reflections, but since Z is small, the reflectance on the glass surface is low, and the dissipation to the outside is large, so they are Even when combined, the value remains small.

この時期に、最も強力に効いてくるのは集熱面の足許付
近からの反射違背で、下り勾配床であるための入射率改
善が大いに効果を上げる。
At this time, the most powerful effect is the reflection from near the foot of the heat collecting surface, and the improvement of the incidence rate due to the downward slope of the floor is very effective.

これが水平床型の値より描かに高く、単独配置の55″
型をも上回っている主因である。
This is significantly higher than the value for the horizontal floor type, and is 55" for the single arrangement.
This is the main reason why it exceeds its type.

これらのことから太陽の天頂角Zの大きい(太陽高度の
低い)ときに高い集熱能力を発揮出来るので、設置地域
は低緯度地域よりも、むしろ中高緯度地域に適するとい
うことを言い得る。
From these facts, it can be said that high heat collecting ability can be demonstrated when the sun's zenith angle Z is large (solar altitude is low), so it can be said that the installation area is suitable for mid-high latitude areas rather than low latitude areas.

第12図は陸屋根建築物の建屋8に設置した一例である
が、集熱面を有する集熱器覆13と集熱装置の太陽光透
光体1であるガラス屋根が僅かに露呈しているだけで、
配管類は一切外部に露出配管されていない。なお、この
例ではガラス屋根に連接した外部に露出した部分の側壁
もガラス透過体で構成している。
Fig. 12 shows an example of the installation in a building 8 of a flat roof building, where the heat collector cover 13 having a heat collecting surface and the glass roof, which is the sunlight transmitting body 1 of the heat collecting device, are slightly exposed. Just,
No piping is exposed outside. In this example, the side wall of the part exposed to the outside connected to the glass roof is also made of a glass transparent material.

配管類は屋内で小面積の集熱面でたりるので配管長も短
く、かつ蓄熱槽も集熱面から最短距離に置くことが出来
、熱損、コスト保守の各面から有利である。
Since the piping is connected to a small heat collecting surface indoors, the length of the piping is short, and the heat storage tank can be placed at the shortest distance from the heat collecting surface, which is advantageous in terms of heat loss and cost maintenance.

また、太陽光透光体lである屋根ガラスの汚れ清掃も自
体の姿勢が低く、水洗流下しての拭き取り作業も危険で
なく容易であり、さらに屋外に突出、あるいは風当たり
の強い配置とはならないので台風等の風害が少ないし、
屋上の装置の姿勢も低く、建物の美観を古うこともない
In addition, when cleaning dirt from roof glass, which is a solar light transmissive material, the posture of the roof glass itself is low, and wiping after rinsing with water is not dangerous and easy, and it does not protrude outdoors or be placed in a location that is exposed to strong wind. Therefore, there is less wind damage from typhoons, etc.
The equipment on the roof is also low-slung, so the building's aesthetics are not outdated.

万一、屋根ガラス破損して雨水の洩れ流下があっても、
第1図の下り勾配床端部、集熱面の足許に非常用雨水な
どの排水溝7を設けて外部へ導いておけば、下り勾配反
射床2は第2の屋根となって二重安全構造とすることが
出来る。
In the unlikely event that the roof glass breaks and rainwater leaks down,
If an emergency drainage ditch 7 is provided at the end of the down-sloped floor in Figure 1, at the foot of the heat collection surface, and the rainwater is guided to the outside, the down-slope reflective floor 2 will become a second roof for double safety. It can be made into a structure.

C発明の効果〕 本発明では、暖房を必要とする冬期間において、従来の
平板型巣熱器の単独配置のものに比べて格段に高い単位
面積当たりの正味吸収エネルギー流(r、b、 )が得
られるし、反射板の反射率を高く保つことができ、集熱
量を著しく高められると共に、冬期間において薄れてい
る太陽熱エネルギー流を効率良く集光して経済的にも有
効であり、集熱面の保守も簡便で建物との実用的調和に
優れ装置の熱損失も低減することも可能であるなど実用
上の効果がある。
C Effects of the Invention] The present invention has a much higher net absorbed energy flow per unit area (r, b, It is possible to maintain a high reflectance of the reflector plate, significantly increasing the amount of heat collection, and it is also economically effective as it efficiently concentrates the solar thermal energy flow that is fading in the winter. It has practical effects such as easy maintenance of the thermal surface, excellent practical harmony with the building, and ability to reduce heat loss from equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の縦断面図、第2.3図はその
光路図、第4図はガラス面の反射率図、第5図は傾斜集
熱面と光路図、第6図は1lJt角変化と直達エネルギ
ー原図、第7.8図は単一勾配でない反射床例図、第9
.10図は勾配床と水平床の受光1反射率比較図、第1
1図は性能曲線、第12図は建物への組込別図である。 1・・・透光体、2・・・反射床、3・・・集熱面、4
・・・フレー入室、5・・・ポンプ、6,6′・・・ヘ
ングー、7・・・排水溝。
Fig. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, Figs. 2 and 3 are its optical path diagram, Fig. 4 is a reflectance diagram of the glass surface, Fig. 5 is a diagram of the inclined heat collecting surface and optical path, and Fig. 6 is the original diagram of 1lJt angle change and direct energy, Figure 7.8 is an example diagram of a reflective floor that does not have a single slope, and Figure 9
.. Figure 10 is a comparison diagram of light reception 1 reflectance of sloped floor and horizontal floor, 1st
Figure 1 shows the performance curve, and Figure 12 shows how it is installed into a building. 1... Translucent body, 2... Reflective floor, 3... Heat collecting surface, 4
... Frey enters, 5... pump, 6,6'... hengoo, 7... drain.

Claims (2)

【特許請求の範囲】[Claims] (1)太陽光を透過すべき透光板と、該透光板を通過す
る太陽光を受ける集熱面を有する集熱器と、集熱面に反
射光を照射しうる上向きの固定反射床とからなる太陽熱
集熱装置において、前記集熱面を南側に向けて設置し、
かつ集熱面以外の壁面は反射体で構成すると共に、前記
反射床を集熱面に対して少なくとも冬至の正午の太陽高
度角を超えない範囲の角度の下り勾配で配備したことを
特徴とする太陽熱集熱装置。
(1) A light-transmitting plate that transmits sunlight, a heat collector having a heat-collecting surface that receives the sunlight that passes through the light-transmitting plate, and an upward fixed reflective floor that can irradiate the heat-collecting surface with reflected light. A solar heat collection device comprising: installed with the heat collection surface facing south;
The wall surface other than the heat collecting surface is constructed of a reflector, and the reflective floor is arranged at a downward slope with respect to the heat collecting surface at least at an angle not exceeding the solar altitude angle at noon on the winter solstice. Solar heat collector.
(2)前記固定反射床が、前記太陽光透光板とともに集
熱面に対して開いた広がり角度で対向している請求項1
記載の太陽熱集熱装置。
(2) Claim 1, wherein the fixed reflective floor and the solar light transmitting plate face each other at an open spread angle with respect to the heat collecting surface.
The described solar heat collector.
JP2187299A 1990-07-17 1990-07-17 Solar energy concentrator / heat collector Expired - Lifetime JP2527832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187299A JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187299A JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Publications (2)

Publication Number Publication Date
JPH0476355A true JPH0476355A (en) 1992-03-11
JP2527832B2 JP2527832B2 (en) 1996-08-28

Family

ID=16203571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187299A Expired - Lifetime JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Country Status (1)

Country Link
JP (1) JP2527832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375444A (en) * 2019-07-09 2019-10-25 清华大学 A kind of solar energy reflection plate preventing over-heating in summer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880449A (en) * 1981-11-06 1983-05-14 Kohei Shirato Water heating device utilizing solar heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880449A (en) * 1981-11-06 1983-05-14 Kohei Shirato Water heating device utilizing solar heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375444A (en) * 2019-07-09 2019-10-25 清华大学 A kind of solar energy reflection plate preventing over-heating in summer
CN110375444B (en) * 2019-07-09 2024-02-20 清华大学 Solar reflecting plate capable of preventing summer overheat

Also Published As

Publication number Publication date
JP2527832B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
Li et al. Building integrated solar concentrating systems: A review
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
CA1048360A (en) Solar energy heating system
US4020827A (en) Solar energy collecting system
US20100282315A1 (en) Low concentrating photovoltaic thermal solar collector
US20100313933A1 (en) Reflector-solar receiver assembly and solar module
US20070240755A1 (en) Apparatus and method for construction and placement of a non-equatorial photovoltaic module
US20160211793A1 (en) Slat roof
US4370974A (en) Inverted channel focusing solar collector
US5261184A (en) Greenhouse construction and improved method of growing plants
Tripanagnostopoulos New designs of building integrated solar energy systems
WO2014026610A1 (en) Solar energy gathering system
JP2004205062A (en) Light-concentrating solar water heater
JPH0476355A (en) Solar heat collecting device
EP4145699A1 (en) Photovoltaic system for low solar elevation angles
CN2674358Y (en) Solar heat collector
CN209246416U (en) Inversion formula solar energy heat collector
WO2009104495A1 (en) Solar energy reflection plate for suppressing global warming
KR101408316B1 (en) Sunlight reflecting apparatus used for unfreezing
CN102081223B (en) Solar photovoltaic L type condenser
JP5721929B2 (en) Solar heat collector installation structure
JP2010169981A (en) Solar lens and solar light utilizing device
KR100592426B1 (en) Apparatus for collecting of solar light
CN209179687U (en) A kind of fixed daylighting solar protection devices of window
US9169647B2 (en) Skylight having multiple stationary tilted reflectors aimed in different compass directions including inverted pyramidal or wedge geometry