JP2527832B2 - Solar energy concentrator / heat collector - Google Patents

Solar energy concentrator / heat collector

Info

Publication number
JP2527832B2
JP2527832B2 JP2187299A JP18729990A JP2527832B2 JP 2527832 B2 JP2527832 B2 JP 2527832B2 JP 2187299 A JP2187299 A JP 2187299A JP 18729990 A JP18729990 A JP 18729990A JP 2527832 B2 JP2527832 B2 JP 2527832B2
Authority
JP
Japan
Prior art keywords
light
collecting
floor
collector
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2187299A
Other languages
Japanese (ja)
Other versions
JPH0476355A (en
Inventor
三郎 油井
Original Assignee
三郎 油井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三郎 油井 filed Critical 三郎 油井
Priority to JP2187299A priority Critical patent/JP2527832B2/en
Publication of JPH0476355A publication Critical patent/JPH0476355A/en
Application granted granted Critical
Publication of JP2527832B2 publication Critical patent/JP2527832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は太陽の光・熱エネルギーを利用するシステム
において、太陽光を効果的に集光するための太陽エネル
ギー集光・集熱装置に関するものである。
TECHNICAL FIELD The present invention relates to a solar energy collecting / collecting device for effectively collecting sunlight in a system utilizing the light / heat energy of the sun. Is.

(従来の技術) 集光・集熱装置において民生用としては太陽追尾式で
はない固定式が望ましく、簡単には勾配屋根面を反射体
とし反射光を集光・集熱面で直射光に重複させるとか、
集熱面を壁面等に取り付け、構造出張りを少なくするた
めに夏の太陽光反射に合わせた短い奥行き反射底面を持
つフレーム筐体を取り付ける等の工夫がなされていた。
(Prior art) A fixed type that is not a sun-tracking type is desired for consumer use in a light collecting / collecting device, and it is easy to use a sloped roof surface as a reflector and the reflected light is overlapped with the direct light on the collecting / collecting surface. Or let
The heat collecting surface was attached to the wall surface, etc., and in order to reduce the structure protrusion, a device such as a frame housing having a short depth reflection bottom surface in accordance with summer sunlight reflection was attached.

(発明が解決しようとする課題) ところが、例えば集熱器を屋根の棟寄りに置いて南面
させている前者の例では勾配屋根面は太陽光路方向から
見ると上り勾配のため、反射光の集光・集熱面への入射
率は低い値に止まり、また反射板(屋根面)の反射率も
実際上は外気露出のため高く保つことが出来ず、集光性
能において不十分であった。
(Problems to be solved by the invention) However, for example, in the former example in which a heat collector is placed near the roof ridge and is facing south, the sloped roof surface is an upward slope when viewed from the direction of the sunlight path, so the collection of reflected light The incidence rate on the light / heat collecting surface remained low, and the reflectance of the reflector (roof surface) could not be kept high due to the exposure of the outside air, and the light collecting performance was insufficient.

また集光・集熱器を壁面等に直付けして短い反射床の
フレーム型のものでは、夏の高い太陽高度の時はともか
く、冬の低い太陽高度の時は短い反射床のために集光・
集熱面への反射光束量が不足して、これまた集熱性能不
十分であった。
Also, in the frame type with a short reflection floor by directly attaching a light collector / heat collector to the wall surface, etc., it is gathered for a short reflection floor at a high sun altitude in summer, but at a low sun altitude in winter. light·
The amount of light flux reflected on the heat collecting surface was insufficient, and the heat collecting performance was also insufficient.

また、冬期暖房のために高めの集熱温度とすると吸収
エネルギー流密度Fabsが高くないために極端に流量を絞
らざるを得ず、管内流速低下と配管の長いことで配管か
らの熱損失著大し、また外部露出の長配管は暖房を最も
必要とする厳冬期の早朝に凍結破損を惹起することで度
々であった。
In addition, if the heat collection temperature is set high for winter heating, the absorbed energy flow density F abs is not high, so the flow rate must be extremely narrowed, and the decrease in the flow velocity in the pipe and the long pipe lead to a significant heat loss from the pipe. Also, long pipes exposed to the outside were often caused by freezing damage in the early morning of the severe winter when the heating was most needed.

また、太陽高度高くなり暖房不要の夏期には余剰熱の
捨熱装置を必要とする等の経済的・処置的不利を伴わざ
るを得なかった。
In addition, in the summer when the altitude of the sun is high and heating is not required, there is no choice but to be accompanied by economic and procedural disadvantages such as the need for a device to dissipate excess heat.

これらの事から、結局、暖房用は大面積の集熱器等の
負担に耐えられず実用化に至ってないのが実情である。
From these facts, the fact is that the heating system cannot endure the load of a large-area heat collector or the like and has not been put into practical use.

本発明は、これらの従来の欠点を排除しようとするも
ので、集熱量を大幅に高め特に冬期間において薄れてい
る太陽エネルギー流を効率良く簡易に集光して、暖房・
給湯用として経済的・保守的にも成り立ち得るようにし
たものである。
The present invention is intended to eliminate these conventional drawbacks, and significantly enhances the amount of heat collection, particularly efficiently and easily collects the solar energy flow that is fading in the winter period, and
It is designed to be economically and conservatively applicable to hot water supply.

(課題を解決するための手段) 本発明は、太陽光を透過すべき透光板と、該透光板を
透過する太陽光を受ける集熱体を有する集熱器と、集熱
体に反射光を照射し得る上向きの固定反射板床とからな
るフレーム型太陽エネルギー集光・集熱装置において、
該反射床は太陽光の進行方向に冬至近辺正午の太陽高度
角の半分以下の下り勾配角を持ち該反射光が集光・集熱
体を十分照射すると共に、該反射床面と透光板面が開い
た広がり角度で集光・集熱体に対向させることによって
課題を解決している。
(Means for Solving the Problem) The present invention is directed to a light-transmitting plate that transmits sunlight, a heat collector having a heat collector that receives sunlight that passes through the light-transmitting plate, and a reflector that reflects the heat. In a frame type solar energy concentrating and heat collecting device consisting of an upward fixed reflector plate that can emit light,
The reflecting floor has a downward slope angle of half or less of the sun altitude angle at noon near winter in the traveling direction of the sunlight, and the reflected light sufficiently irradiates the light collecting / collecting body, and the reflecting floor surface and the transparent plate. The problem is solved by facing the light collecting / collecting body at a spread angle with an open surface.

本発明は、太陽光を透過すべき透光板と、該透光板を
透過し太陽光を受ける集光・集熱体を有する集光・集熱
器と、該集光・集熱体に反射光を照射し得る上向きの固
定反射床とかなるフレーム型太陽エネルギー集光・集熱
装置において、前記反射床は太陽光の進行方向に冬至近
辺の正午の太陽高度角の半分以下の下り勾配角を持ち、
該反射床の北側端部に南面該集光・集熱体が鉛直面から
反射床下り勾配角の2倍以下の範囲で該面の法線が太陽
指向方向の傾角を持ち、直射光と反射光の両光束の該集
光・集熱体への入射率を略同大に大きく保つようにし、
かつ、該反射床は冬至近辺の正午における該反射床全面
の反射光が前記集光・集熱体を十分照射し得る反射面積
を持つことを特徴とする太陽エネルギー集光・集熱装置
にある。
The present invention relates to a light transmissive plate that transmits sunlight, a light collector / collector having a light collector / heat collector that transmits sunlight through the light transmissive plate, and the light collector / collector. In a frame-type solar energy collector / collector consisting of an upward fixed reflective floor capable of irradiating reflected light, the reflective floor is a downward slope angle of half or less of the solar altitude angle at noon near winter in the traveling direction of sunlight. Have a
At the north end of the reflecting floor, the south surface of the light collecting / collecting body has a tilt angle in the direction of the sun toward the sun within a range of less than twice the downward inclination angle of the reflecting floor from the vertical surface, and direct light and reflection The incidence rates of both light fluxes on the light collecting / collecting body are kept substantially the same,
In addition, there is a solar energy collecting / collecting device in which the reflecting floor has a reflecting area capable of sufficiently irradiating the condensing / collecting body with the reflected light on the entire reflecting floor at noon near winter. .

本発明の更に他の目的とする所は、前記固定反射床
が、前記透光板とともに集光・集熱体に対して開いた広
がり角度で対向しており、太陽高度が高くなり前記透光
板を透過した太陽光束の一部が前記反射床で反射され、
前記透光板裏面で再び反射されてから該集光・集熱体に
入射する再反射光の該透光板裏面への入射角が、該透光
板表面への入射角より前記の開いた広がり角度の2倍だ
けを増えることにより該裏面での反射率が向上され、効
果的な再反射達光の集光・集熱体への入射加算が行われ
得るようにしたことを特徴とする太陽エネルギー集光・
集熱装置を提供するにある。
Still another object of the present invention is that the fixed reflection floor faces the light-transmitting plate and the light-collecting / collecting body at an open spread angle, and the solar altitude becomes high. Part of the solar light flux transmitted through the plate is reflected by the reflective floor,
The incident angle of the re-reflected light, which is reflected on the rear surface of the transparent plate and then enters the light collecting / collecting body, is wider than the incident angle on the rear surface of the transparent plate. It is characterized in that the reflectivity at the back surface is improved by increasing only twice the divergence angle so that effective addition of the re-reflected light to the condenser / collector can be performed. Solar energy collection
To provide a heat collecting device.

(作 用) 本発明の太陽エネルギー集光・集熱装置では、ガラス
等の透光体1を透って太陽光は集光・集熱体3に直射し
て達する直射達分と、これに隣接し、下り勾配反射床で
反射して集光・集熱体に達する反射達分と、さらにこれ
に隣接して、下り勾配反射床で反射したものが透光体の
裏面1´で有効に再反射されて集光・集熱体3に達する
再反射達分等が効果的に合計されて集熱量を大幅に向上
し、経済的に用いられ得るものである。
(Operation) In the solar energy collecting / collecting device of the present invention, direct sunlight reaches through the light transmitting body 1 such as glass and reaches the collecting / collecting body 3 directly. Adjacent to the reflected light reaching the light collecting / collecting body after being reflected by the downward gradient reflecting floor, and further adjacent to this, what is reflected by the downward gradient reflecting floor is effective on the rear surface 1'of the light-transmitting body. The re-reflected components that are re-reflected and reach the light collecting / collecting body 3 are effectively summed, so that the amount of collected heat is significantly improved and can be economically used.

(実施例) 本発明実施例を第1〜12図で説明すると第1図におい
て太陽光を透過する透光板1と、該透光板を透過し太陽
光を受ける集光・集熱体3と、該集光・集熱体に反射光
を照射し得る上向きの固定反射床2と、その北端部に反
射床と直角近く南面した前記集光・集熱体3からなる太
陽エネルギー集光・集熱装置において、前記透光板1が
前記固定反射床および前記集光・集熱体を蔽い、かつ密
閉するように設置されており、前記固定反射床2が前記
透光板1とともに集光・集熱体3に対して開いた広がり
角度で対向しており、また前記反射床は太陽光の進行方
向に冬至近辺の正午の太陽高度角の半分以下の下り勾配
角を持ち、更に設計点の冬至近辺正午における前記反射
床全面と反射光が前記集光・集熱体を十分照射し得る面
積とを合併せ持っている。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. 1 to 12. In FIG. 1, a transparent plate 1 that transmits sunlight and a condenser / heat collector 3 that transmits the transparent plate and receives sunlight. And an upward fixed reflection floor 2 capable of irradiating the light collecting / collecting body with reflected light, and a solar energy collecting body comprising the light collecting / collecting body 3 facing the reflection floor to the north end at the north end thereof. In the heat collecting device, the translucent plate 1 is installed so as to cover and seal the fixed reflective floor and the light collecting / collecting body, and the fixed reflective floor 2 collects together with the translucent plate 1. It faces the light / heat collector 3 with an open spread angle, and the reflective floor has a downward slope angle less than half of the solar altitude angle at noon near winter in the traveling direction of sunlight, and is further designed. Combine the entire surface of the reflective floor at noon near the winter of the point with the area where the reflected light can sufficiently irradiate the light collecting / collecting body. It has not.

この場合、前記固定反射床2は、前記太陽光透光板1
と共に集光・集熱体3に対して開いた広がり角度で対向
していて、集光・集熱体3は鉛直から南方側に、反射床
勾配角度の2倍以内の傾斜角度を持った(集熱面と法線
が太陽指向方向の傾角)構成とするのが有効である。
In this case, the fixed reflection floor 2 is the sunlight transmissive plate 1.
Along with the light collecting / collecting body 3, the light collecting / collecting body 3 has an inclination angle within 2 times the reflection floor inclination angle from the vertical to the south side ( It is effective to make the heat collecting surface and the normal line have a tilt angle in the direction of the sun.

図において4フレーム室、5は給水ポンプ、6,6´は
ヘッダー、7は排水溝、8は建屋である。
In the figure, 4 is a frame chamber, 5 is a water supply pump, 6 and 6'are headers, 7 is a drainage channel, and 8 is a building.

反射達分の光路Sについて見るに、第2図において太
陽の天頂角Z(太陽高度角の余角)のときの反射床面へ
の入射角は、下り勾配反射床角がδであるとすると(Z
+δ)で、反射角も同じだが、鉛直垂線に対しては(Z
+2δ)となる。
Looking at the optical path S of the reflection reaching, it is assumed that the incident angle to the reflecting floor surface at the zenith angle Z of the sun (the complement of the sun altitude angle) in FIG. (Z
+ Δ), the reflection angle is the same, but for the vertical line (Z
+ 2δ).

いま、集光・集熱体が鉛直線からν角だけ南側に傾い
て南面しているとし、反射光の集光・集熱体に対する入
射率μ(光線と面の法線のなす角をθとするとcosθ
で表される)は μ=cosθ=sin(Z+2δ−ν) で、反射床が水平である場合のsin(Z−ν)より2δ
分だけ入射率が向上する。
Now, suppose that the light collecting / collecting body is tilted to the south side by ν angle from the vertical line and is facing south, and the incident rate of reflected light on the collecting / collecting body μ R (the angle between the ray and the normal of the surface is cos θ
Is expressed as μ R = cos θ = sin (Z + 2δ−ν), which is 2δ from sin (Z−ν) when the reflection floor is horizontal.
The incident rate is improved by that much.

また反射床と集光・集熱体が直角の場合はδ=νとな
り、μ=sin(Z+δ) つまり、直射達光の入射率μと等しくなる。
Further, when the reflecting floor and the light collecting / collecting body are at a right angle, δ = ν, and μ R = sin (Z + δ), that is, the incident rate μ S of the direct light reaches.

次に、第3図に示す再反射光の光路S1は、透光ガラス
面の勾配角をψとすると、反射床面で反射された太陽光
のガラス裏面への入射角は(Z+2δ+ψ)となって水
平反射床の場合の(Z+ψ)より2δだけ大きい。
Next, in the optical path S 1 of the re-reflected light shown in FIG. 3, when the inclination angle of the translucent glass surface is ψ, the incident angle of the sunlight reflected on the reflective floor surface to the glass back surface is (Z + 2δ + ψ). Therefore, it is larger than (Z + ψ) in the case of the horizontal reflection floor by 2δ.

また透光ガラス表面への太陽光の入射角は(Z−ψ)
であるので、ガラス裏面への入射角は表面への入射角よ
り常に2(δ+ψ)だけ大きくなる。このために例えば
図4にδ9゜,ψ13゜で1月22日正午のものをとってあ
るが、表面への入射角は42゜で透過率τ=87%と良い透
光体であり、再反射光の裏面への入射角は、2(δ+
ψ)だけプラスされて86゜となり裏面反射率は76%によ
達してくる。
The incident angle of sunlight on the transparent glass surface is (Z-ψ)
Therefore, the incident angle on the rear surface of the glass is always larger than the incident angle on the front surface by 2 (δ + ψ). For this reason, for example, in FIG. 4, δ9 ° and ψ13 ° are taken at noon on January 22. The incident angle to the surface is 42 °, and the transmittance τ = 87%, which is a good translucent material. The incident angle of the reflected light on the back surface is 2 (δ +
ψ) is added to reach 86 °, and the back surface reflectance reaches 76%.

即ちこの時期、蔽い透光ガラス板は外からの太陽光に
対しては良い透光体となり、一旦、フレーム内に入った
再反射光に対しては良い反射体として作用する。
That is, at this time, the shielding translucent glass plate becomes a good translucent body against the sunlight from the outside, and acts as a good reflector against the re-reflected light once entering the frame.

さらに、この事に加えて透光ガラス裏面で反射された
再反射光路は鉛直垂線に対して(Z+2δ+2ψ)の角
度で反射され、傾角νの集光・集熱体への入射率はsin
(Z+2δ+2ψ+ν)と増大してくる。
In addition to this, the re-reflected light path reflected on the back surface of the translucent glass is reflected at an angle of (Z + 2δ + 2ψ) with respect to the vertical perpendicular, and the incidence rate on the light collecting / collecting body with the inclination angle ν is sin
It increases with (Z + 2δ + 2ψ + ν).

このように再反射達光は、下り勾配反射床と透光体で
あるガラス面が集光・集熱体に対し開いた広がり角度で
構成されていることによって、強い再反射達光と入射率
向上の相乗作用が働いて集光・集熱体の吸収エネルギー
流を高めている。
As described above, the re-reflected reflected light and the incident light reflectivity of the re-reflected reflected light and the glass surface, which is the translucent body, are configured to have a wide spread angle with respect to the light collecting / collecting body. The synergistic effect of improvement works to increase the absorbed energy flow of the light collector / collector.

先に述べたように、集光・集熱体が反射床面に直角と
すると、直射達光と反射達光の集光・集熱体への入射率
μはともにsin(Z+δ)であり、透光体の透過率をτ
で、反射床の反射率をRで表すと、冬至正午において反
射床全面の反射光が丁度集光・集熱体に過不足なく入射
するように設計構成されているので、単位面積の面法線
が太陽指向した時の該平面への地表でのエネルギー流密
度をFNとすると、直射達光の反射達光の合計エネルギー
流密度FSRは FSR=〔τ(1+R)sin(Z+δ)〕×FN=Φ×FN〔W/
m2〕 このΦはエネルギー取得係数とも呼ぶべきもので、本フ
レーム内集光・集熱体への直・反射合計入射エネルギー
流が、蔽い透光板なして無集光の同面積平面の法線が太
陽指向しているときの流入エネルギー流の何倍に当たる
かを示す。
As described above, assuming that the light collecting / collecting body is at a right angle to the reflecting floor surface, the incidence rate μ of the direct light and the reflected light to the light collecting / collecting body is both sin (Z + δ), Let τ be the transmittance of the translucent body
When the reflectance of the reflective floor is represented by R, the design method is designed so that the reflected light from the entire surface of the reflective floor is exactly incident on the light collector / collector at winter noon. If the energy flow density on the surface of the plane when the line is oriented toward the sun is F N , the total energy flow density F SR of the reflected light of the direct light is F SR = [τ (1 + R) sin (Z + δ) ] × F N = Φ × F N [W /
m 2 ] This Φ should also be called the energy acquisition coefficient, and the total incident energy flow of direct and reflected light to the condenser / heat collector in this frame is the same area of the same area of non-concentration without the light-transmitting plate. It shows how many times the inflowing energy flow when the normal is directed to the sun.

蔽い透光板1の勾配角ψは、冬至近辺の正午に反射床
2の全面の反射光が集光・集熱体3に過不足なく入射す
るという設計条件からψ=90゜−(Z+2δ)の関係が
成り立つので、地域の冬至近辺の正午の太陽天頂角Zは
既知なことから、下り勾配反射床角度δを与えればψが
算出され、Zとψの関係から透光板1への太陽光の入射
角θ(=Z−ψ)が求まり、第4図のガラス特性曲線
から透過率τが、また反射床面への入射角は(Z+δ)
で同図からその反射率Rが求まる。
The inclination angle ψ of the light-transmitting transparent plate 1 is ψ = 90 °-(Z + 2δ) from the design condition that the reflected light of the entire surface of the reflecting floor 2 is incident on the light collecting / collecting body 3 at noon near winter in no time. ) Is established, the solar zenith angle Z at noon near the winter of the region is known. Therefore, if the downward slope reflection floor angle δ is given, ψ is calculated, and from the relationship between Z and ψ to the translucent plate 1. The incident angle θ I (= Z−ψ) of sunlight is obtained, the transmittance τ is obtained from the glass characteristic curve in FIG. 4, and the incident angle to the reflecting floor surface is (Z + δ).
Then, the reflectance R is obtained from the figure.

もし仮にδを変化させてもこれらτ,Rに変化ないとす
れば(Z+δ)→90゜でΦ即ちFSRは最大になる筈であ
る。しかし実際にはこの状態に近づくと、反射床の全面
の反射光が集光・集熱体を十分に照射するという条件は
維持されているので、反射床は限りなく延び、蔽い透光
板のガラス面は太陽光に平行、その入射角90゜となり、
第4図から透過率τは0で太陽光はフレーム内に入って
来ない。
If it is assumed that τ and R do not change even if δ is changed, Φ, that is, F SR should be maximized at (Z + δ) → 90 °. However, in reality, when this state is approached, the condition that the reflected light from the entire surface of the reflective floor illuminates the light collector / collector sufficiently is maintained, so the reflective floor extends infinitely and The glass surface of is parallel to the sunlight and its incident angle is 90 °,
From FIG. 4, the transmittance τ is 0 and sunlight does not enter the frame.

従って、太陽光の蔽い透光ガラス板等の関係を考慮に
入れ、τ,R等は変化するものとして扱わなければならな
い。東京地域で種々のδに対するΦ値を計算して見ると
冬至近辺の正午で第7図に示すようにδ=9゜,ψ=13
゜で最大値のΦ=1.50が得られる。
Therefore, τ, R, etc. must be treated as changing, taking into consideration the relationship between sunlight-shielding transparent glass plates, etc. Calculating the Φ values for various δ in the Tokyo area, at noon near the winter, as shown in FIG. 7, δ = 9 °, ψ = 13
The maximum value of Φ = 1.50 is obtained at °.

かくて本装置の設置地の緯度から冬至近辺正午の太陽
高度角が求まり、集熱体に入射する直射達光束と反射達
光束の合計エネルギー流を最大にすべきδ、つれてψも
求まり、所望の形態を特定することが出来る。
Thus, from the latitude of the installation location of this device, the solar altitude angle at noon near the winter solstice can be obtained, and the total energy flow of the direct luminous flux and the reflected luminous flux incident on the heat collector should be maximized. A desired form can be specified.

δをこれ以上大きくすると第7図に示すように光学的
効率の低下割合大きく、反射床と蔽い透光ガラス面積等
が無用に延びる設備コスト嵩み不利になってくる。
If δ is further increased, as shown in FIG. 7, the reduction rate of the optical efficiency is large, and the facility cost is disadvantageously increased because the reflective floor and the area of the transparent glass for shielding are unnecessarily extended.

従って、これらのことから下り勾配反射床の勾配角は
設計点の冬至近辺の正午の太陽高度角の半分以下である
ことが望ましいことになる。
Therefore, from these facts, it is desirable that the slope angle of the downward slope reflective floor be less than half the solar altitude angle at noon near the design point in the winter.

Φの最大値を与えるより、δを若干小さくすると光学
的効率は徐々に低下ししてくる一方、設備コストの負担
が軽くなるので実用的折り合い点が見出せる。
When δ is made slightly smaller than the maximum value of Φ, the optical efficiency gradually decreases, but the burden of equipment cost is lightened, and a practical compromise can be found.

年間正午の各直達光のエネルギー流密度を第8図に、
以上の合計を第11図に、取付角55゜の一般平板型集熱器
と下り勾配角の無い同形水平反射床フレーム型の性能を
比較の意味で併せ示してある。図から判るように、下り
勾配反射床2と蔽い透光ガラス板1とが開いた広がり角
度(δ+ψ)で集光・集熱体に対向していることによっ
て、冬至過ぎて厳冬期に当たる期間には再反射光の蔽い
ガラス裏面反射が有効に生きて年間最大のエネルギー流
密度となり、一般平板型等に比べて格段の高エネルギー
流密度が得られる結果、太陽エネルギーにより給湯を含
む暖房の実用化実現が可能視されるようになった。
Figure 8 shows the energy flow density of each direct light at noon of the year.
The above totals are also shown in Fig. 11 for the purpose of comparison, comparing the performance of a general flat plate collector with a mounting angle of 55 ° and the same horizontal reflector floor frame type with no downward slope. As can be seen from the figure, the downward slope reflection floor 2 and the light-shielding transparent glass plate 1 face the light collecting / collecting body at an open spread angle (δ + ψ), which leads to a period during which the winter solstice hits a severe winter season. The glass backside reflection that effectively shields the re-reflected light effectively alives the year's maximum energy flow density, and as a result, a much higher energy flow density can be obtained compared to the general flat plate type. It has come to be seen that it can be put to practical use.

一方、更に太陽高度が高く(Zが小さく)なると、第
1図に示すように再反射達分に隣接し、ガラス裏面に当
たったものが再び反射床で反射してから集光・集熱体に
入射する多重反射達分(再々反射達分)が現れてくる
が、その頃になるとZが小さく、従って入射角が小さく
なるため、ガラス裏面での反射率が低下し、再反射光以
降の光束は殆ど再び大気へ散逸してしまい、また直射・
反射光束の集光・集熱体への入射率も低下するので全体
のエネルギー流密度は第11図のように暖房不要時期には
取得エネルギー流は低下し、負担になる捨熱装置や操作
を必要とせず、実生活の需要曲線に沿ったエネルギー取
得が得られるようになる。
On the other hand, when the sun's altitude becomes higher (Z is smaller), as shown in Fig. 1, the part adjacent to the re-reflected part and hitting the back surface of the glass is again reflected by the reflecting floor before being collected and collected. The amount of multiple reflections (re-reflected reflections) that appears on the surface appears, but at that time, Z is small and therefore the incident angle is small, so the reflectance on the back surface of the glass is reduced and the light flux after the re-reflected light is reduced. Almost dissipated into the atmosphere again,
Since the incident rate of the reflected light flux on the heat collecting / collecting body also decreases, the overall energy flow density decreases as shown in Fig. 11 when the heating is not required. It is possible to obtain energy acquisition along the demand curve of real life without need.

なお、均質な直射光、反射光、再反射光が集光面上で
重ねられるので合成されたものも比較的均質な集光光面
となり各種利用上の都合も良いことになる。
In addition, since the uniform direct light, reflected light, and re-reflected light are superposed on the light collecting surface, the combined light also becomes a relatively uniform light collecting surface, which is convenient for various uses.

以上は集熱体は反射床に直角に取り付けられ、その鉛
直垂線に対する傾角は下り勾配反射床の勾配角δと等し
い場合であるが、これとは別の、例えば第5図のように
取り付け傾角を45゜に増大させると、夏期のZ=15゜の
ように小さいときには図示のように直射達分の入射率は
向上するが、反射光は集熱面に入り得ず、全体としては
正味吸収エネルギー流密度Fabsを減少させるとこにな
る。従って傾角を過大にすることは得策ではない。
The above is the case where the heat collector is attached to the reflecting floor at a right angle, and the inclination angle with respect to the vertical perpendicular is equal to the inclination angle δ of the descending slope reflecting floor, but in addition to this, for example, as shown in FIG. Increasing the angle to 45 ° improves the incidence rate of direct rays as shown in the figure when Z is as small as 15 ° in summer, but the reflected light cannot enter the heat collecting surface and the net absorption is overall. This is the case when the energy flow density F abs is reduced. Therefore, it is not a good idea to make the tilt angle excessive.

集熱体の傾角νをいろいろ変えて、下り勾配反射床角
度δのものに取り付けて調べた結果を第6図に示す。太
陽高度の著しく異なる二つの時期においてさえ、ν=δ
でピーク値が得られ、また図示のように、集熱体傾角ν
は鉛直面のν=0からν=2δの範囲になるのが良く、
本実施例ではν=δとしたが、夏の取得を増やしたい場
合にはν=2δに近く、逆の場合にはν=0に近づける
のが良い。
Fig. 6 shows the results of examinations by mounting the collector on the downward slope reflection floor angle δ by changing the inclination angle ν of the heat collector. Ν = δ even in two periods when the solar altitude is significantly different
The peak value is obtained at, and as shown in the figure, the collector tilt angle ν
Is preferably in the range of ν = 0 to ν = 2δ in the vertical plane,
In this embodiment, ν = δ is set, but if it is desired to increase summer acquisition, it is close to ν = 2δ, and in the opposite case, it is close to ν = 0.

下り勾配反射床そのものは単一勾配の一枚反射床に限
らず、色々な変形応用が可能である。例えば図面省略す
るが、反射床を放物線を導線とする柱面とすることによ
り、設計の時期・時刻において反射光を良く集光・集熱
体に集中し得る。
The down-gradient reflective floor itself is not limited to a single-gradient single reflective floor, and various modifications can be applied. For example, although not shown in the drawing, by forming the reflecting floor as a pillar surface with a parabolic conductor, the reflected light can be well concentrated on the heat collecting / collecting body at the time and time of design.

しかし設計点から外れてくると状況は変わって能率の
悪いものになってくる。
However, when it goes beyond the design point, the situation changes and becomes inefficient.

特に、このような曲面を採用すると費用コストの問題
だけでなく、集熱体の足許の反射床の下り勾配角をとり
難く、場合によっては上り勾配になり兼ねず、夏の天頂
角Zの小さい時期の入射率を低下させる。また集熱体へ
の反射光の照射は広い面積に対してのものであるから光
学的厳密さは要求されず、反射床は異なる反射平面のブ
ロック的寄せ集めでも代用できるが上述の問題は避けら
れない。
In particular, when such a curved surface is adopted, not only the cost and cost problem but also the downward slope angle of the reflecting floor of the heat collector is difficult to be taken, and in some cases the upward slope may occur, and the summer zenith angle Z is small. Reduce the incidence rate of the season. Also, since the irradiation of the reflected light to the heat collector is for a large area, optical rigor is not required, and the reflective floor can be replaced by a block-like collection of different reflective planes, but the above problems are avoided. I can't.

また、夏期に太陽天頂角が小さくなって直・反射光の
入射率減り、再反射光も弱くなって期待薄となったとき
の便宣的手段として、反射床面に単数又は複数の勾配角
度を変え得る可動反射板(図示せず)を変位自在に備え
て、この時期に、反射光を有効に集熱体に送達できるよ
うにすることも可能である。
In addition, as a convenient means when the solar zenith angle decreases in the summer and the incidence rate of direct / reflected light decreases, and re-reflected light also weakens and the expected thinness occurs, one or more slope angles on the reflecting floor surface. It is also possible to displace a movable reflector (not shown) capable of changing the temperature so that the reflected light can be effectively delivered to the heat collector at this time.

次に、本発明のフレーム型集光・集熱機構は屋根埋め
込み型も考えられるが、その場合、蔽い屋根ガラスの不
時の破損等に備え、反射床回りを防水施工して置き、そ
の勾配端部に第1図に示すような排水溝を設け、これを
外部に導いおき、万一の場合には第二の屋根になり得る
ようにしておくことは是非必要である。
Next, the frame-type light collecting / collecting mechanism of the present invention may be a roof-embedded type, but in that case, in order to prevent accidental breakage of the covering roof glass, etc., the reflective floor is waterproofed and placed, and It is absolutely necessary to provide a drainage ditch as shown in FIG. 1 at the end of the slope and guide it to the outside so that it can become a second roof in case of emergency.

なお、第9図に下り勾配反射床勾配角δ=12.5゜のフ
レーム型集光・集熱器と下り勾配でない水平反射床の同
形のフレーム型を比較のため重ねて描いてある、太陽高
度が最も低くなる冬至正午の受光量で比較すると、図示
のように水平床の方が下り勾配反射床のものより33.7%
も多い。つまりそれだけで多く受光しており、集熱面も
全く同じ面積であるので、集光・集熱効率が等しければ
水平床型の方が同じ割合だけ集熱が高い筈であるが、実
際の結果は逆の結果となって現れる。
In Fig. 9, a frame type collector / collector with a downward gradient of a reflective floor and a horizontal reflective floor with a non-downward gradient is drawn for comparison. Comparing the received light intensity at winter midday, which is the lowest, as shown in the figure, the horizontal floor is 33.7% more than that of the downward slope reflective floor.
There are also many. In other words, since it receives much light and the heat collecting surface has the same area, the horizontal floor type should have a higher heat collecting rate by the same proportion if the light collecting and heat collecting efficiencies are equal, but the actual result is Appears with the opposite result.

その理由の一つは、下り勾配反射床角δの存在のため
に反射達光・再反射達光・多重反射達光の集光・集熱体
に対する入射率が大幅に改善されることにある。
One of the reasons is that the incidence of reflected light, re-reflected light, and multi-reflected light on the light collector / collector is significantly improved due to the existence of the downward-gradient reflecting floor angle δ. .

他の一つの理由は、下り勾配反射床と蔽いガラス面と
が組み合わされた形で、集光・集熱体に開いた広がり角
度で対向していることに起因するものである。
Another reason is that the downward-gradient reflecting floor and the shielding glass surface are combined and face each other at the spreading angle open to the light collecting / collecting body.

再反射光の蔽いガラス裏面への入射角は水平型に比べ
2δだけ多く入射角に加わるのでガラス面の反射率は大
幅に向上することになる。
The angle of incidence of the re-reflected light on the back surface of the shielding glass is larger by 2δ than that of the horizontal type, and therefore the reflectance of the glass surface is significantly improved.

第10図にサンプルの意味で2月7日の再反射率を時刻
毎に比較してあるが、これから判るように正午では下り
勾配反射床のものは水平型の2.6倍程になっている。特
に再反射光が参入してくる冬期においての効果が大き
い。
Figure 10 compares the re-reflectance on February 7 for each sample in the sense of a sample. As can be seen, at noon the down-slope reflective floor is about 2.6 times the horizontal type. The effect is particularly great in the winter when re-reflected light enters.

以上を総合し直達光による周年正午のエネルギー流を
比較したのが第11図であり、横軸に月、縦軸に集光・集
熱体の正面単位面積当たりの正味吸収エネルギー流密度
Fabs〔W/m2〕をとってある。
Fig. 11 shows the comparison of the energy flow at noon of the year due to the direct light from the above. The horizontal axis shows the moon, and the vertical axis shows the net absorbed energy flow density per unit area of the front surface of the collector / collector.
It has the F abs [W / m 2 ].

本発明実施例の集光・集熱器Aのほかに、同形の水平
反射床フレーム型集熱器Bと、普通一般に用いられてい
る単独配置の平板型集熱器Cを冬期集熱に適している傾
斜取り付け角度55゜のものを比較のために入れた。
In addition to the light collector / collector A according to the embodiment of the present invention, a horizontal reflective floor frame type collector B of the same shape and a flat plate collector C, which is commonly used and is arranged independently, are suitable for collecting heat in winter. A tilted mounting angle of 55 ° is included for comparison.

この集熱器Cは冬期向けに配置したものであるから、
夏至付近で落ち込みが生ずるのは止むを得ないが、冬期
ピーク時でもFabsは1000W/m2以下に止まる。 水平床の
集熱器Bは、冬至をピークに上昇が見られ、1500W/m2
超えている期間が月余に亙っている。しかし反面、夏至
付近の落ち込みも酷く、55゜平板型の落ち込みより更に
落ち込んでいる。
This heat collector C is arranged for the winter season,
Unavoidable to fall near the summer solstice occurs has, F abs stops below 1000W / m 2 even during winter peak. The horizontal floor collector B has seen its peak at the winter solstice, and it has been over 1500W / m 2 for more than a month. On the other hand, the depression near the summer solstice was also severe, and it is even lower than that of the 55 ° flat plate type.

これに反し、本発明の実施例の下り勾配反射床フレー
ム型集光・集熱器Aでは周年に亙って前記二例のいずれ
よりも高い値となっている。
Contrary to this, in the downward gradient reflective floor frame type light collector / collector A of the embodiment of the present invention, the value is higher than both of the above two examples over the years.

特に、秋分から春分にかけての冬期の広い期間(6ヶ
月)に亙って1500W/m2以上の正味吸収エネルギー流密度
を確保できている実用的意味は大きい。その中で注目さ
れるのは、厳冬期に当たる1月下旬から2月一杯まで正
味吸収エネルギー流密度はピークを迎え、略1650W/m2
達していることで、冬期の暖房・給湯兼用の実用化が出
来ることを裏付けている。
In particular, it is of great practical significance that a net absorbed energy flow density of 1500 W / m 2 or more can be secured over a wide winter period (6 months) from autumn to spring. Of these, the most noticeable is the fact that the net absorbed energy flow density reaches a peak from late January to the end of February, which is the midwinter, reaching approximately 1650 W / m 2 , which makes it useful for both heating and hot water in winter. It supports the fact that it can be transformed.

なお、得られた曲線について付言すると、冬至での吸
収エネルギー流の内容は直射達分と反射達分が殆どであ
るのは当然であるが、その時点で水平床型集熱器Bより
高いのは直・反射達分と入射率向上によるものが大きい
ことによる。
In addition, regarding the obtained curve, it is natural that the content of the absorbed energy flow in the winter solstice is mostly direct and reflected, but at that time, it is higher than that of the horizontal floor collector B. Is largely due to the amount of direct / reflected light and the improvement of the incidence rate.

それと同時に再反射達分が既述したように強力に参入
して来て二つの山に割合高く盛り上がってくる。この二
つの山に若干の高低差があるのは、2月の寒気の強い時
期に太陽光の大気透過率が良くなる季節的要因によるも
のである。
At the same time, the re-reflecting enthusiastically participated strongly as mentioned above, and the excitement in the two mountains increased. The slight difference in elevation between the two mountains is due to the seasonal factors that improve the atmospheric transmittance of sunlight during the cold season in February.

夏至付近では、再反射光・多重反射光の立て込んでく
るが、Zが小さくガラス面での反射率低く、ために外部
への散逸が大きく、直・反射光の入射率も小さいので、
結局これらを合計しても小さい値に止まり、夏期に大量
の捨熱ぜすに済む主理由となる。また、この時期に、最
も強力に効いてくるのは集熱体の足許からの反射達分
で、下り勾配反射床であるための入射率改善が大いに効
果を上げている。これが夏期に水平反射床型の値より高
く、55゜取付け平板型をも上回っている主因である。
Near the summer solstice, re-reflected light and multiple-reflected light come in, but because Z is small and the reflectance on the glass surface is low, the dissipation to the outside is large and the incidence rate of direct and reflected light is also small.
Eventually, the sum of these will be a small value, which is the main reason why a large amount of heat is dissipated in the summer. Also, at this time, the most powerful effect is the amount of reflection from the foot of the heat collector, and the improvement of the incidence rate due to the downward gradient reflecting floor is greatly effective. This is higher than the value of the horizontal reflective floor type in the summer, and is the main reason for surpassing the 55 ° mounting flat type.

なお、集熱用媒体は液体(例えば水)・気体(例えば
空気)のいずれでもよく集熱体から熱媒体への熱伝達に
より熱収集するものとする。
The heat collecting medium may be liquid (for example, water) or gas (for example, air), and heat is collected by heat transfer from the heat collecting body to the heat medium.

また実施例では反射床は完全平面として扱っている
が、実際上は難しく、多少の面の不揃い、反射面の僅か
な凹凸を伴い、反射光に散乱・散開光が生じてくるが、
個々の散開光について見れば太陽の天頂角Zの方位角が
ずれた正規反射光に相当する訳で、それなりに集光され
ていることから多少の凹凸等があっても実用上からは何
ら支障なく、集光・集熱体での均質集光化に若干役立つ
ことすらある。
Although the reflective floor is treated as a completely flat surface in the embodiments, it is difficult in practice, and some unevenness of the surface and slight unevenness of the reflective surface cause scattered / diverged light in the reflected light.
Looking at the individual diffused light, it corresponds to the regular reflected light in which the azimuth angle Z of the sun is deviated, and since it is condensed as it is, even if there are some irregularities etc. However, it may even be a little useful for uniform light collection in the light collector / heat collector.

以上は反射床で反射された光の散乱・散開光について
であるが、太陽周辺からの光群、即ち太陽周辺の雲等に
よって散乱され散乱・拡散達光として地上に届くものに
ついても全く似た現象として説明できる。
The above is the scattering / diffusing light of the light reflected by the reflective floor, but the light group from the sun's periphery, that is, the light scattered and diffused by the clouds around the sun and reaching the ground is completely similar. Can be explained as a phenomenon.

即ち太陽の周辺の、例えば天頂に近いところからの光
は太陽のZが小さくなった時に対応し、太陽より高度の
低いところからの光はZが大きくなった時に対応し、太
陽の左右の(東西)周辺からの光は、太陽の方位角の変
化あった場合に対応するというように、いずれの場合も
それなりに集光されており、従って太陽周辺からの散乱
・拡散達光に対しても集光性をもっていることは当然
で、実験によっても直達光並みに集光性のあることが判
った。太陽が靄、薄雲等によって直達光が凋落しても、
その凋落した分の大方は散乱光として姿を変えているの
で、その散乱・拡散達光を集光出来れば太陽の直達光の
凋落分をかなり補いカバー出来るということを意味す
る。
That is, light from around the sun, for example, near the zenith corresponds to when the Z of the sun becomes smaller, and light from a place at a lower altitude than the sun corresponds to when Z becomes large. The light from around the east and west is collected as it is when the azimuth angle of the sun changes, so it is properly collected in each case. It is natural that it has a light-collecting property, and experiments have shown that it has a light-collecting property comparable to direct light. Even if the direct light falls due to the haze of the sun and thin clouds,
Since most of the fallen light is transformed into scattered light, it means that if the scattered / diffused light can be collected, the fallen amount of the direct light of the sun can be supplemented and covered.

わが国では晴れて太陽を見られる日でも幾分の雲を伴
うことが圧倒的に多く、散乱光の比重の比較的大きい実
情からみて有用な特徴になると言い得る。
In Japan, it is overwhelmingly accompanied by some clouds even on a sunny day, and it can be said that this is a useful feature in view of the fact that the specific gravity of scattered light is relatively large.

第12図は陸屋根建物の建屋8に設置した一例である
が、蔽い透光ガラス板1と集光・集熱器覆い13が露呈し
ているだけで、配管類は一切外部に露出されておらずフ
レーム室内だけの配管で、かつ、集光しているので管長
も短くて済み、配管からの熱損失が極限され収熱に大い
に役立ち、また凍結防止・コスト・保守整備上等実用面
からも有利である。また外観上からも建物の美観を損な
うこともなく、平板型を屋上に並べ立てることによって
懸念されるような台風時等の風害等も最小限に回避出来
る。
Fig. 12 is an example of installation in the building 8 of a flat roof building, but only the light-transmitting glass plate 1 and the condenser / collector cover 13 are exposed, and the pipes are completely exposed to the outside. Since the piping is only in the frame room and the light is condensed, the length of the tube is short, the heat loss from the piping is extremely limited and it is very useful for heat collection, and it is practical from the viewpoint of freeze prevention, cost and maintenance. Is also advantageous. In addition, the appearance of the building is not impaired, and wind damage such as a typhoon that may be a concern when the flat type is lined up on the roof can be minimized.

熱損失軽減に関連する事項として、太陽光の反射床で
の反射損失は熱に変えられる。反射床の反射体裏面が良
く断熱施工されていると、この熱損失はフレーム内空気
に殆ど伝えられ、フレーム内空気は昇温し、集光・集熱
体からの熱散逸を抑制するように働く。この働きは太陽
高度高い夏に特に助長される傾向にある。
As a matter related to the reduction of heat loss, the reflection loss of sunlight on the reflective floor is converted into heat. If the back surface of the reflector of the reflective floor is well insulated, this heat loss is almost transmitted to the air in the frame, the temperature of the air in the frame rises, and heat dissipation from the light collector / collector is suppressed. work. This function tends to be especially promoted in the summer when the sun is high.

(発明の効果) 本発明は、既述したように冬期間において、従来の平
板型集熱器配置のものに比べて格段に高い単位面積当た
りの正味吸収エネルギー流が得られるし、直達光のみな
らず散乱・拡散達光についても良い集光性能が発揮さ
れ、大面積の集光・集熱体に対して簡単で安価な構成で
集光でき夏期の捨熱装置を必要とせず、均質的集光とな
るので、太陽エネルギーの実用的範囲が広く、加えて、
建物との調和もとれ保守維持も容易である等の実用上の
効果が多大である。
(Effects of the Invention) As described above, the present invention provides a significantly higher net absorbed energy flow per unit area in the winter period than in the conventional flat plate collector arrangement, and only direct light is obtained. It also exhibits good light collection performance for scattered and diffused light, and can collect light with a simple and inexpensive structure for large area light collectors and heat collectors, and does not require a heat removal device in summer and is homogeneous. Since it is focused, the practical range of solar energy is wide, and in addition,
It has great practical effects, such as good harmony with the building and easy maintenance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の主要部に各直達光束・光路を
併記してある縦断面図である。 第2図は本発明の装置における反射達光の光路を示す図
である。 第3図は本発明の装置における再反射達光の光路を示す
図である。 第4図は本発明の装置における蔽い透光ガラス板ならび
に反射床の光学的特性の一例を示す図である。 第5図は本発明装置における強い傾斜集熱体と光路を示
す図である。 第6図は本発明の装置において集熱体の傾斜角変化と直
達エネルギー流密度の一例を示す図である。 第7図は本発明の装置において冬至正午の下り勾配反射
床角度δと取得エネルギー係数Φとの関係を示す特性図
である。 第8図は本発明の装置において下り勾配反射床フレーム
型の各月正午の各直達光の入射エネルギー流密度曲線の
一例図である。 第9図は下り本発明の勾配反射床型と従来の同形水平反
射床型の受光例を比較した図である。 第10図は本発明の下り勾配反射床型と従来の同形水平反
射床型の再反射光の反射率比較をした例を示す図であ
る。 第11図は本発明装置の各種型の周年各月の直達光合計の
入射エネルギー流密度曲線の一例を示す図である。 第12図は本発明を陸屋根建築物に設置した外観例図であ
る。 1……透光板 2……反射床 3……集光・集熱体 4……フレーム室 5……ポンプ 6,6……ヘッダー 7……排水溝 8……建屋 13……集光・集熱体蔽い
FIG. 1 is a longitudinal sectional view in which each direct light flux and optical path are shown together in the main part of the embodiment of the present invention. FIG. 2 is a diagram showing an optical path of reflected light in the device of the present invention. FIG. 3 is a diagram showing the optical path of the re-reflected light in the device of the present invention. FIG. 4 is a view showing an example of the optical characteristics of the light-shielding transparent glass plate and the reflecting floor in the device of the present invention. FIG. 5 is a diagram showing a strong inclined collector and an optical path in the device of the present invention. FIG. 6 is a diagram showing an example of changes in the inclination angle of the heat collector and the direct energy flow density in the device of the present invention. FIG. 7 is a characteristic diagram showing the relationship between the downslope reflective floor angle δ and the acquired energy coefficient Φ at winter midday in the device of the present invention. FIG. 8 is an example diagram of an incident energy flow density curve of each direct light at each noon of each moon of a down-gradient reflective floor frame type in the device of the present invention. FIG. 9 is a diagram comparing the light receiving examples of the gradient reflecting floor type of the present invention and the conventional horizontal reflecting floor type of the same shape. FIG. 10 is a diagram showing an example in which the reflectances of re-reflected light of the downward slope reflective floor type of the present invention and the conventional same-shaped horizontal reflective floor type are compared. FIG. 11 is a diagram showing an example of an incident energy flow density curve of total direct light of various types of devices of the present invention for each month of the year. FIG. 12 is an external appearance diagram in which the present invention is installed in a flat roof building. 1 ... Transparent plate 2 ... Reflecting floor 3 ... Concentrating / collecting body 4 ... Frame chamber 5 ... Pump 6,6 ... Header 7 ... Drainage 8 ... Building 13 ... Concentrating / Heat collector cover

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽光を透過すべき透光板と、該透光板を
透過し太陽を受ける集光・集熱体を有する集光・集熱器
と、該集光・集熱体に反射光を照射し得る上向きの固定
反射床とからなるフレーム型太陽エネルギー集光・集熱
装置において、前記反射床は太陽光の進行方向に冬至近
辺の正午の太陽高度角の半分以下の下り勾配角を持ち、
該反射床の北側端部に前記の集光・集熱体が鉛直面から
反射床下り勾配角の2倍以下の範囲で該面の法線が太陽
指向方向の傾角を持ち南面し、直射光と反射光の両光束
の該集光・集熱体への入射率が略同大に大きく保つよう
にされ、かつ、該反射床は冬至近辺正午における該反射
床全面の反射光が前記集光・集熱体を十分照射し得る反
射面積を持つことにより、前記透光板の透過率と、前記
集光・集熱体に入る直射光と反射光の入射率の相乗値の
和に比例する合計エネルギー流密度を大きくすることを
特徴としたエネルギー集光・集熱装置。
1. A light-transmitting plate that transmits sunlight, a light-collecting / collecting body having a light-collecting / collecting body that transmits the light-transmitting plate and receives the sun, and the light-collecting / collecting body. In a frame-type solar energy concentrator / collector consisting of an upward fixed reflective floor that can irradiate reflected light, the reflective floor is a downward slope of half or less of the solar altitude angle at noon near winter in the direction of sunlight. Have horns,
At the north end of the reflecting floor, the light collecting / collecting body faces the south with the normal of the surface having a tilt angle in the direction of the sun in the range of not more than twice the downward inclination angle of the reflecting floor from the vertical surface and direct light. The incident rates of both light fluxes of the reflected light and the reflected light on the light collecting / collecting body are kept to be substantially the same, and the reflected light on the entire surface of the reflecting floor at noon near winter is condensed as described above.・ Having a reflection area that can irradiate the heat collector sufficiently, it is proportional to the sum of the transmittance of the translucent plate and the synergistic value of the incident rates of the direct light and the reflected light entering the light collector / collector. An energy concentrating / heat collecting device characterized by increasing the total energy flow density.
【請求項2】固定反射床が、透光板とともに集光・集熱
体に対して開いた広がり角度で対向しており、太陽高度
が高くなり前記透光板を透過した太陽光束の一部が前記
反射床で反射され、前記透光板裏面で再び反射されてか
ら該集光・集熱体に入射する再反射光の該透光板裏面へ
の入射角が、該透光板表面への入射角より前記の開いた
広がり角度の2倍だけ増えることにより、該裏面での反
射率が向上され、効果的な再反射達光の集光・集熱体へ
の入射加算が行われ得るようにしたことを特徴とする該
透光板と該固定反射床と該集光・集熱体からなるフレー
ム型太陽エネルギー集光・集熱装置。
2. The fixed reflection floor faces the light collecting plate and the heat collecting body together with the light-transmitting plate at an open spread angle, and a part of the solar light flux transmitted through the light-transmitting plate due to an increase in the altitude of the sun. Is reflected by the reflective floor, reflected again by the rear surface of the transparent plate, and then incident on the rear surface of the transparent plate, which is the angle of incidence of re-reflected light that enters the condenser / heat collector. By increasing the angle of incidence by 2 times the open spread angle, the reflectance at the back surface is improved, and effective addition of re-reflected light to the condenser / collector can be performed. A frame type solar energy collecting / collecting device comprising the transparent plate, the fixed reflecting floor, and the collecting / collecting body.
JP2187299A 1990-07-17 1990-07-17 Solar energy concentrator / heat collector Expired - Lifetime JP2527832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187299A JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187299A JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Publications (2)

Publication Number Publication Date
JPH0476355A JPH0476355A (en) 1992-03-11
JP2527832B2 true JP2527832B2 (en) 1996-08-28

Family

ID=16203571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187299A Expired - Lifetime JP2527832B2 (en) 1990-07-17 1990-07-17 Solar energy concentrator / heat collector

Country Status (1)

Country Link
JP (1) JP2527832B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375444B (en) * 2019-07-09 2024-02-20 清华大学 Solar reflecting plate capable of preventing summer overheat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880449A (en) * 1981-11-06 1983-05-14 Kohei Shirato Water heating device utilizing solar heat

Also Published As

Publication number Publication date
JPH0476355A (en) 1992-03-11

Similar Documents

Publication Publication Date Title
Li et al. Building integrated solar concentrating systems: A review
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
US4401103A (en) Solar energy conversion apparatus
Mallick et al. Non-concentrating and asymmetric compound parabolic concentrating building façade integrated photovoltaics: an experimental comparison
US4134392A (en) Solar energy collection
Seitel Collector performance enhancement with flat reflectors
Edmonds et al. Daylighting enhancement with light pipes coupled to laser-cut light-deflecting panels
US20100282315A1 (en) Low concentrating photovoltaic thermal solar collector
US4056094A (en) Solar heat collector
US20110017273A1 (en) Concentrated Solar Heating
Kalogirou Nontracking solar collection technologies for solar heating and cooling systems
US4056090A (en) Solar heat collector
Bollentin et al. Modeling the solar irradiation on flat plate collectors augmented with planar reflectors
JP2527832B2 (en) Solar energy concentrator / heat collector
WO1996024954A1 (en) Non-tracking solar concentrator heat sink and housing system
JP6854096B2 (en) Concentrating solar cell system and power generation method
CN209246416U (en) Inversion formula solar energy heat collector
RU2135909C1 (en) Solar photoelectric module with concentrator
JPS6210341B2 (en)
Seifert A solar design manual for Alaska
Chiam Bi-yearly adjusted V-trough concentrators
CN115603657B (en) Non-tracking low-magnification concentrating solar power generation device and design method
CN112833560B (en) Seasonal light-gathering heat collector for heating in winter
CN207527862U (en) A kind of high energy efficiency solar focusing collection device
JPS5866750A (en) Flat plate type solar heat collector