JP2010169981A - Solar lens and solar light utilizing device - Google Patents

Solar lens and solar light utilizing device Download PDF

Info

Publication number
JP2010169981A
JP2010169981A JP2009013714A JP2009013714A JP2010169981A JP 2010169981 A JP2010169981 A JP 2010169981A JP 2009013714 A JP2009013714 A JP 2009013714A JP 2009013714 A JP2009013714 A JP 2009013714A JP 2010169981 A JP2010169981 A JP 2010169981A
Authority
JP
Japan
Prior art keywords
light
solar
slope
lens
solar lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013714A
Other languages
Japanese (ja)
Other versions
JP4313841B1 (en
Inventor
Motoaki Masuda
元昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Masuda Motoaki
Original Assignee
Masuda Motoaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masuda Motoaki filed Critical Masuda Motoaki
Priority to JP2009013714A priority Critical patent/JP4313841B1/en
Application granted granted Critical
Publication of JP4313841B1 publication Critical patent/JP4313841B1/en
Publication of JP2010169981A publication Critical patent/JP2010169981A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a necessary amount of a constituent material is increased to incur cost increase in a large solar lens due to its thick fundamental shape, a device is necessary for a structure such as a support for supporting the weight and it is difficult to apply a large solar lens to a light condensing device having a wide surface area even though the solar lens condensing incident rays on an light emission surface by total reflection is proposed by forming the solar lens of a reversed trapezoidal shape by using a transparent material as a method for condensing solar rays regardless of solar azimuth and height and to achieve constitution suitable for a large size, cost reduction and lightness in weight. <P>SOLUTION: Instead of the solar lens formed by using the transparent material such as glass and synthetic resin, a solar lens is formed by using a hollow body without using the transparent material and front and rear slopes are formed by using specular reflection plates to condense light by only specular reflection on the slopes. Thereby, cost reduction and lightness in weight are achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高度と方位が常に移動している太陽光線を、静止したレンズで受光面積よりも狭い一定の範囲に集光することを目的とした太陽レンズとその利用装置の改良に関するものである。   TECHNICAL FIELD The present invention relates to an improvement of a solar lens and a device for using the same, which aims to collect sunlight rays whose altitude and azimuth are constantly moving in a fixed range narrower than a light receiving area with a stationary lens. .

太陽の方位や高度に関係なく太陽光線を集光する方法として光の全反射を応用した集光方法が提案されている。
特願2008−309186 太陽レンズ 特開2001−189487 集光器及び集光型太陽電池モジュール
As a method for concentrating sunlight rays regardless of the direction and altitude of the sun, a condensing method using total reflection of light has been proposed.
Japanese Patent Application No. 2008-309186 Solar Lens JP-A-2001-189487 Concentrator and Concentrating Solar Cell Module

前記特許文献1の方法は、逆台形の太陽レンズを透明材料で形成し、入射光線を全反射で出光面に集光する方法の太陽レンズであるが、入光面の辺の長さと前後斜面の辺の長さが大差ないほどに厚いレンズであるために、大型の太陽レンズでは構成素材の必要量がかさんでコスト高になることや、重量を支えるための支柱などの構造物に工夫をする必要があるため大型化できない欠点があった。   The method of Patent Document 1 is a solar lens in which an inverted trapezoidal solar lens is formed of a transparent material and condenses incident light on a light exit surface by total reflection. Because the lens is so thick that the side length is not much different, the large solar lens requires a large amount of constituent material and the cost is high. There is a drawback that it is not possible to increase the size.

また、特許文献2の方法は、反射膜による鏡面反射と全反射の組み合わせで集光する方法であるが、入光面での全反射を利用しているため反射膜で鏡面反射した光線の一部が入光面から透過散逸したり、反対側の反射膜に直接当って反転逆流し入光面から散逸する光線の割合が多い欠点があった。本発明はこれらの欠点を解消し集光性能の高い太陽レンズを提供することが課題である。   The method of Patent Document 2 is a method of collecting light by a combination of specular reflection and total reflection by a reflection film. However, since the total reflection on the light incident surface is used, one of the light beams specularly reflected by the reflection film is used. There is a drawback in that the ratio of the light beam transmitted through and dissipated from the light incident surface, or the ratio of light rays that directly hit the opposite reflection film and reversely flow back and dissipate from the light incident surface. An object of the present invention is to eliminate these drawbacks and provide a solar lens with high light collecting performance.

ガラスや合成樹脂などの透明材料で形成される文献1の太陽レンズや文献2の集光器に対して、透明材料を使わずに中空体で太陽レンズを形成すると共に、前斜面と後斜面を鏡面反射板で形成し、斜面での鏡面反射だけで集光することにより、コストの低減と軽量化をはかり前記課題を解決するものである。   In contrast to the solar lens of Reference 1 and the concentrator of Reference 2 that are made of a transparent material such as glass or synthetic resin, the solar lens is formed of a hollow body without using a transparent material, and the front and rear slopes are formed. By forming the light with a specular reflector and collecting light only by specular reflection on a slope, the above-described problems are solved by reducing cost and weight.

文献1の太陽レンズに比べてレンズ本体を中空にできるため、本体の構成材料が不要であり軽量化とコストダウンが可能となる。また、大型の太陽レンズの製作が容易になり、例えば100平方メートル以上の面積を使っての大規模な太陽光発電設備が可能になる。前斜面と後斜面として鏡面反射板が必要になるが、集光することで例えば太陽光発電の場合、発電パネルの必要面積が半減するから全体として大幅なコスト低減が期待できる。また、複数の太陽レンズを平面的に並べてなる複合型太陽レンズを使用すれば、より広大な面積を使った太陽光利用設備が実現できる可能性があり、太陽エネルギーを利用する全ての装置に応用できるものである。   Since the lens body can be made hollow as compared with the solar lens of Document 1, the constituent material of the body is unnecessary, and the weight can be reduced and the cost can be reduced. Further, it becomes easy to manufacture a large-sized solar lens, and a large-scale solar power generation facility using, for example, an area of 100 square meters or more becomes possible. Although a specular reflector is required as the front and rear slopes, for example, in the case of photovoltaic power generation, the required area of the power generation panel is halved by concentrating, so that significant cost reduction can be expected as a whole. In addition, if a composite solar lens composed of a plurality of solar lenses arranged in a plane is used, there is a possibility that a solar-use facility with a larger area can be realized, and it can be applied to all devices that use solar energy. It can be done.

図1は本発明による太陽レンズの斜視図、図2は棒状で断面が逆台形の中空体からなる太陽レンズ1の断面を示すもので、上面を入光面2、下面を出光面3、入光面の前端に傾斜角α1の鋭角で接する前斜面4と、入光面の後端に傾斜角α2が出光面に近いほど小さくなって内側に湾曲した形状の後斜面5で囲まれた仮想の空間で逆台形の太陽レンズを形成している。また、前斜面と後斜面および両端の台形端面6は金属板などで作られており、前斜面と台形端面の内側は平面として、後斜面の内側は曲面として鏡面反射できるように形成されている。   FIG. 1 is a perspective view of a solar lens according to the present invention, and FIG. 2 shows a cross section of a solar lens 1 made of a hollow body having a rod shape and an inverted trapezoidal cross section. A front slope 4 that is in contact with the front end of the light surface at an acute angle of an inclination angle α1, and a virtual slope surrounded by a rear slope 5 that has a shape in which the inclination angle α2 decreases toward the light exit surface and is curved inward at the rear end of the light entrance surface. An inverted trapezoidal solar lens is formed in this space. Further, the front and rear slopes and the trapezoidal end faces 6 at both ends are made of a metal plate or the like, and the inside of the front slope and the trapezoidal end face is a flat surface, and the inside of the rear slope is formed as a curved surface so that it can be specularly reflected. .

入光面や出光面を傾斜させることで集光倍率を高めたり集光性能を微細に調整することができるが、入光面に対して出光面が並行する逆台形の太陽レンズを基本として説明する。また、太陽光線の採光面となる入光面と、集光した太陽光線を取り出す出光面の傾斜角度は受光装置が求める性能や設置条件で異なるが、図2は入光面も出光面も水平状態の太陽レンズで高度が0度から90度の最大幅の太陽光線を集光する基本的な仕様の太陽レンズを示すものである。なお、以下の説明における斜面の傾斜角度や光線の傾斜角度は、特に断らない限り鉛直面に対する傾斜角度で示している。   By tilting the light incident surface and light exit surface, the light collection magnification can be increased and the light collection performance can be finely adjusted, but the explanation is based on an inverted trapezoidal solar lens whose light exit surface is parallel to the light incident surface. To do. In addition, the inclination angle of the light entrance surface that is the sunlight collecting surface and the light exit surface from which the collected sunlight is extracted differs depending on the performance and installation conditions required by the light receiving device, but FIG. 2 shows that both the light entrance surface and the light exit surface are horizontal. The solar lens of the basic specification which condenses the sunlight beam of the maximum width | variety with an altitude of 0 degree to 90 degree | times with a state solar lens is shown. In the following description, the inclination angle of the slope and the inclination angle of the light beam are indicated by an inclination angle with respect to the vertical plane unless otherwise specified.

入光面から入射する全ての入射光線を集光して出光面に取り出すには、直接出光面に到達する入射光線の他に前斜面や後斜面に当たって鏡面反射する光線の全てを出光面に向かわせるように設定する必要がある。このためには、入光面の前端から入射する最大高度の太陽光線e1が前斜面で鏡面反射して後斜面に到達し、その光線が再び鏡面反射によって出光面に到達するように前斜面の傾斜角度α1を設定すればよい。   In order to condense and extract all incident light rays incident from the light incident surface to the light exit surface, in addition to the incident light rays that directly reach the light exit surface, all light rays that are specularly reflected by the front and rear slopes are directed to the light exit surface. It is necessary to set it so that For this purpose, the maximum height of sunlight e1 incident from the front end of the light entrance surface is specularly reflected by the front slope and reaches the rear slope, and the light beam reaches the light exit surface again by specular reflection. The inclination angle α1 may be set.

具体的には高度0度から90度の太陽光線を集光する場合、最大高度の90度の入射光線を後斜面に向かって水平方向に進行させるために前斜面を45度傾けることで、前斜面のどの位置に入射する最大高度の太陽光線でも、それ以下の高度の太陽光線も鏡面反射で後斜面から出光面に向かって同様に進行させることができる。   Specifically, when concentrating sunlight rays with an altitude of 0 to 90 degrees, the front slope is inclined 45 degrees in order to cause the incident light of the maximum altitude 90 degrees to travel horizontally toward the rear slope. Even at the highest altitude sun rays incident on any position on the slope, the sun rays at altitudes below that can be made to travel in the same way from the rear slope to the light exit surface by specular reflection.

また、後斜面の傾斜角度α2は鏡面反射で前斜面から到達する光線や後斜面に入射する最小高度の太陽光線e2が、後斜面で鏡面反射した後に出光面に到達するように設定すればよい。また、後斜面で鏡面反射する光線が出光面に到達する範囲内で、傾斜角度α2を次第に縮小させて後斜面が内側に湾曲するように設定する。例えば、後斜面の傾斜角度を上端では35度に設定し、次第に傾斜角度が小さくなるように曲面で形成することで、後斜面の入光面に近い側で鏡面反射する入射光線も、出光面に近い側で鏡面反射する入射光線も狭い範囲に集光させることができる。   Further, the inclination angle α2 of the rear slope may be set so that the light beam reaching from the front slope by specular reflection or the minimum altitude sunlight ray e2 incident on the rear slope reaches the light exit surface after being specularly reflected by the rear slope. . Further, the inclination angle α2 is gradually reduced within a range in which the light beam specularly reflected by the rear slope reaches the light exit surface, and the rear slope is set to be curved inward. For example, by setting the inclination angle of the rear slope to 35 degrees at the upper end and forming it with a curved surface so that the inclination angle gradually becomes smaller, incident light rays that are specularly reflected on the side closer to the light entrance surface of the rear slope can also be emitted. Incident light that is specularly reflected on the side close to λ can also be collected in a narrow range.

後斜面の入光面に近い先端に入射する最小高度の光線が鏡面反射で出光面に集光できるように設定されていれば、それ以上の高度の太陽光線も同様に鏡面反射で出光面に集光させることができる。後斜面が曲面ではなく平面の場合、前斜面の入光面に近い側に入射する最大高度の光線でも出光面に近い側に入射する光線でも、同一の傾斜角度で後斜面で鏡面反射することになるから出光面に収束して集光することはできない。   If it is set so that the light beam with the minimum altitude incident on the tip of the rear slope near the light entrance surface can be focused on the light exit surface by specular reflection, the sun rays of higher altitudes will also be reflected on the light output surface by specular reflection. It can be condensed. If the rear slope is a flat surface instead of a curved surface, the maximum slope of the light incident on the side closer to the entrance surface of the front slope and the light incident on the side closer to the exit surface should be specularly reflected on the rear slope at the same tilt angle. Therefore, it cannot converge and converge on the light exit surface.

出光面と入光面との間隔は、後斜面で鏡面反射した光線が再び前斜面に当たらないように設定すればよい。具体的には、後斜面の入光面に近い先端に入射する最小高度の光線が鏡面反射した後で前斜面に到達する位置までが太陽レンズの厚みとなる。それ以上に厚くすると前斜面に到達した光線が鏡面反射で入光面から反転して散逸することになる。   What is necessary is just to set the space | interval of a light emission surface and a light-incidence surface so that the light beam specularly reflected by the back slope may not hit a front slope again. Specifically, the thickness of the solar lens is the position where the light beam having the minimum altitude incident on the tip of the rear slope near the light incident surface is specularly reflected and reaches the front slope. If it is thicker than that, the light beam that has reached the front slope will be dissipated from the light incident surface by mirror reflection.

太陽レンズを使用する地域の緯度と太陽高度の変動範囲、設置方角を考慮することで、太陽レンズに指向性を持たせて太陽光線を効率よく集光することができる。例えば東京の場合、南中高度で最大高度は夏至日の78度、最小高度は冬至日の31度であり、この範囲を超える太陽光線が真南から太陽レンズに射し込むことはない。   By taking into account the latitude of the area where the solar lens is used, the variation range of the solar altitude, and the direction of installation, the solar lens can be made to have directivity and efficiently concentrate sunlight. For example, in the case of Tokyo, the maximum altitude is 78 degrees on the summer solstice and the minimum altitude is 31 degrees on the winter solstice, and sun rays exceeding this range do not enter the solar lens from the south.

太陽レンズの前斜面を南向きに配置した場合、前斜面の方向から入光面に射し込む太陽光線の高度は年間を通して最大で78度、最小で31度の範囲であるから、この範囲の光線を集光できるように太陽レンズを設定することで効率よく集光することができる。高度の変動幅は地球の公道に対する地軸の傾きに関係するので地域や季節に関係なく47度である。   When the front slope of the sun lens is arranged southward, the altitude of the sun rays entering the light entrance surface from the front slope direction is a maximum of 78 degrees and a minimum of 31 degrees throughout the year. It is possible to collect light efficiently by setting the solar lens so that light can be collected. The altitude fluctuation range is 47 degrees regardless of the region or season because it is related to the inclination of the earth axis with respect to the public roads of the earth.

太陽レンズは前斜面を南向きに配置することによって集光できるものであるが、太陽光線の方位を考慮しないで全高度全方角からの太陽光線を対象に集光しようとすると、前斜面と後斜面の傾斜角度が0度となって入光面と出光面の面積が同じになるから集光することはできない。   The sun lens can be focused by placing the front slope southward, but if you try to focus sunlight from all directions at all altitudes without considering the direction of the sun, Since the inclination angle of the slope is 0 degree and the areas of the light incident surface and the light output surface are the same, it cannot be condensed.

このように本発明の太陽レンズは集光できる方向に指向性があって、鋭角で傾斜した前斜面の方向からの光線は集光できるが、後斜面の方向から入射する光線については直接出光面に到達する入射光線以外の光線は殆ど集光することができない。従って集光する太陽光線の範囲を緯度に合わせた最大高度から最小高度の光線に限定することでより実用性の高い集光性能を確保できるものである。   As described above, the solar lens of the present invention has directivity in the direction in which light can be collected, and light rays from the direction of the front slope inclined at an acute angle can be collected. Light rays other than the incident light beam that reaches can hardly be collected. Therefore, by limiting the range of the concentrated sunlight to the light beam with the maximum altitude to the minimum altitude according to the latitude, it is possible to secure more practical light condensing performance.

また、性能が若干低下しても使用できる緯度の範囲に幅を持たせて仕様を設定することで製品の統合をはかることができる。例えば沖縄から北海道までの緯度の違いを考慮して、沖縄の最大高度と北海道の最小高度に対応する太陽レンズであれば日本全土で利用できることになる。   Moreover, even if the performance is slightly reduced, it is possible to integrate products by setting specifications with a range in the latitude range that can be used. For example, considering the difference in latitude from Okinawa to Hokkaido, a solar lens that corresponds to the maximum altitude in Okinawa and the minimum altitude in Hokkaido can be used throughout Japan.

太陽の方位を考慮して太陽レンズを設置した場合、南東からの太陽光など斜め方向から射し込む光線は、太陽レンズの前斜面から南北方向に進行する光線と、東西の軸方向に進行する光線のふたつに分解して考えることができる。   When the sun lens is installed in consideration of the direction of the sun, light rays entering from an oblique direction, such as sunlight from the southeast, are rays of light traveling in the north-south direction from the front slope of the sun lens and rays traveling in the east-west axial direction. It can be considered in two parts.

日出没に近い高度が低い時刻では季節によって東西軸から前後30度範囲の方角から太陽光線が射し込むことになるが、例えば東方向から射し込む夏季の朝日で高度が30度程度の太陽光線の場合、図3に示すように入射光線は前斜面で後斜面方向に方向を曲げて進行し、後斜面と台形端面で鏡面反射をして出光面に到達することになる。しかし、夏至前後の限られた日出没の時刻帯においては太陽レンズに対して東北東または西南西からの逆向きの太陽光線が射し込むことになるから、前斜面の先端に近い部分に入射する逆向きの光線など一部の光線は集光されずに損失すると考えられる。   Sunlight shines from the direction of 30 degrees before and after the east-west axis at a time when the altitude close to sun rises is low, but for example, in the case of sun rays in the summer morning sun shining from the east direction, As shown in FIG. 3, the incident light beam travels with its front slope bent in the direction of the rear slope, and reaches the light exit surface after being specularly reflected by the rear slope and the trapezoidal end face. However, in the limited time zone where the sun appears before and after the summer solstice, the sun rays in the reverse direction from the east-northeast or west-southwest are incident on the solar lens. It is considered that some light beams such as the light beam are lost without being collected.

図4は最大高度が78度、最小高度が31度の太陽光線を集光するために適した太陽レンズの1例を示すものである。前斜面の傾斜角度α1が約51度に設定されているため最大高度の太陽光線は前斜面で鏡面反射してほぼ水平方向に進行し後斜面に到達する。後斜面は傾斜角度が次第に縮小する曲面で形成されているが、最上端の傾斜角度α2が38度に設定されているとすれば進行光線は後斜面での鏡面反射で14度の傾斜角で出光面に到達することになる。図4はその光線経路をも示すもので、m1からm4は最大高度の光線、n1からn3は最小高度の光線を実態に合わせて描いたものである。出光面に対する入光面の割合を光線の集光濃縮倍率とすると、図4の太陽レンズの濃縮倍率は約2,2倍になる。   FIG. 4 shows an example of a solar lens suitable for collecting sunlight rays having a maximum altitude of 78 degrees and a minimum altitude of 31 degrees. Since the inclination angle α1 of the front slope is set to about 51 degrees, the sunlight with the highest altitude is specularly reflected on the front slope and travels in a substantially horizontal direction to reach the rear slope. The rear slope is formed with a curved surface whose inclination angle is gradually reduced. However, if the uppermost inclination angle α2 is set to 38 degrees, the traveling light beam is specularly reflected on the rear slope and has an inclination angle of 14 degrees. It will reach the light exit surface. FIG. 4 also shows the light ray path, in which m1 to m4 are drawn with the highest altitude rays, and n1 to n3 are drawn with the lowest altitude rays according to the actual situation. If the ratio of the light incident surface to the light exit surface is the concentration concentration factor of light rays, the concentration factor of the solar lens in FIG.

出光面には太陽光を利用する太陽電池モジュールや自然光を屋内照明に利用するための光ダクト、太陽熱を利用する受熱装置など、太陽エネルギーを集光して利用する各種の受光装置を配置することができる。なお、以上の説明では前斜面を平面にして後斜面を曲面にした形状で説明したが、前斜面を緩やかに湾曲させることにより更に微細に性能を調整することができるものである。   Various light receiving devices that collect and use solar energy, such as solar cell modules that use sunlight, light ducts that use natural light for indoor lighting, and heat receiving devices that use solar heat, are placed on the light exit surface. Can do. In the above description, the front slope is flat and the rear slope is curved. However, the performance can be adjusted more finely by gently curving the front slope.

図5は棒状の太陽レンズ複数を長手に直角な方向に入光面を並べて連結した複合型の太陽レンズである。それぞれの太陽レンズの出光面に太陽電池モジュールなどの受光装置を配置して太陽光利用装置を構成することができる。複合型の太陽レンズは相互に隣接する前斜面と後斜面を連結して形成することができる。   FIG. 5 shows a composite solar lens in which a plurality of rod-shaped solar lenses are connected with their light incident surfaces arranged in a direction perpendicular to the longitudinal direction. A sunlight utilization device can be configured by arranging a light receiving device such as a solar cell module on the light exit surface of each solar lens. The compound type solar lens can be formed by connecting the front and rear slopes adjacent to each other.

太陽レンズの応用として受光装置が太陽光発電の電池モジュールの場合、前斜面と後斜面をセルの表面電極として兼用する方法も考えられる。また、大型の太陽レンズの場合に前斜面の真下を工場や倉庫、事務所として構築することができる。建物の屋根を前斜面として利用できるので、価格的にも景観的にも有利と考えられる   As an application of the solar lens, when the light receiving device is a photovoltaic power generation battery module, a method in which the front slope and the rear slope are also used as the surface electrode of the cell is conceivable. In the case of a large-sized solar lens, a factory, warehouse, or office can be constructed directly under the front slope. Because the roof of the building can be used as a front slope, it is considered advantageous in terms of price and landscape

また、説明を容易にするために水平に設置し、入光面と出光面が平行する太陽レンズを前提に説明したが、入光面と出光面は平行である必要はない。出光面に取り付けられる受光装置が太陽光発電パネルの場合などでは、雨水でパネル表面の汚れが洗い流されるように傾斜を持たせることが望ましいが、図4において傾斜面3aを出光面にして入光面に対して傾けた形状にしても、ほぼ同じ集光濃縮倍率を確保することができる。   In addition, for the sake of simplicity, the description has been made on the assumption that the solar lens is installed horizontally and the light incident surface and the light exit surface are parallel to each other, but the light incident surface and the light exit surface do not have to be parallel. In the case where the light receiving device attached to the light exit surface is a photovoltaic power generation panel, it is desirable to have an inclination so that the dirt on the panel surface is washed away by rainwater. However, in FIG. Even if the shape is inclined with respect to the surface, substantially the same concentration concentration factor can be secured.

このように本発明の太陽レンズは鏡面反射だけで集光する太陽レンズであるが、緯度と太陽方位、太陽高度を考慮した条件設定で指向性を持たせることにより、極めて単純な形状でありながら効率よく集光でき実用性が高い特徴を有するものである。なお、本発明による太陽レンズは前斜面を南向きに配置することで最大の性能を発揮できるものであるが、例えば、南南東など東西に傾いて設置した場合ても若干の性能低下があるが基本的な機能に変わりがないものである。   As described above, the solar lens of the present invention is a solar lens that collects light only by specular reflection, but it has an extremely simple shape by providing directivity with conditions set in consideration of latitude, solar orientation, and solar altitude. It has a feature that it can efficiently collect light and has high practicality. Although the solar lens according to the present invention can exhibit the maximum performance by arranging the front slope facing south, for example, there is a slight performance degradation even if it is installed tilted east and west such as south-southeast. The function is unchanged.

太陽レンズの斜視図である。It is a perspective view of a solar lens. 太陽レンズの断面図である。It is sectional drawing of a solar lens. 上から見た光線経路の説明図である。It is explanatory drawing of the light ray path seen from the top. 横から見た光線経路の説明図である。It is explanatory drawing of the light ray path seen from the side. 複合型太陽レンズの側面図である。It is a side view of a composite type solar lens.

1、太陽レンズ
2、入光面
3、出光面
4、前斜面
5、後斜面
6、台形端面
1. Sun lens 2, light incident surface 3, light output surface 4, front slope 5, rear slope 6, trapezoidal end face

Claims (3)

棒状で断面が逆台形の中空体からなる太陽レンズの前斜面および後斜面の内側を反射面とし、前斜面の方向から太陽光線を入射させるように配置した場合に、入光面の前端に入射する最大高度の太陽光線が前斜面で鏡面反射して後斜面に到達し、その光線が再び鏡面反射によって出光面に到達するように前斜面の傾斜角度を設定すると共に、後斜面に入射する最小高度の太陽光線が後斜面で鏡面反射によって出光面に到達するように後斜面の傾斜角度を設定し、また、後斜面で鏡面反射する光線が出光面に到達する範囲内で後斜面を内側に湾曲させることで、入光面から入射する光線を鏡面反射で出光面に集光するように構成したことを特徴とする太陽レンズ。   Incidence at the front edge of the light entrance surface when the solar lens is made of a hollow body with a reverse trapezoidal cross-section and the inside of the front and rear slopes of the solar lens is the reflective surface and sunlight is incident from the front slope direction. The angle of inclination of the front slope is set so that the highest altitude sunlight rays are specularly reflected on the front slope and reach the rear slope, and the light rays again reach the light exit surface by specular reflection, and the minimum incident on the rear slope The tilt angle of the rear slope is set so that high-level sunlight rays reach the light exit surface by specular reflection on the rear slope, and the rear slope is set inward within the range where the light beam specularly reflected by the rear slope reaches the light exit surface. A solar lens characterized in that, by bending, a light beam incident from a light incident surface is collected on a light exit surface by specular reflection. 請求項1に記載の太陽レンズ複数を長手に直角な方向に並べて入光面で連結したことを特徴とする複合型の太陽レンズ。   A composite solar lens comprising a plurality of the solar lenses according to claim 1 arranged in a direction perpendicular to the longitudinal direction and connected by a light incident surface. 請求項1に記載の太陽レンズを前斜面がほぼ南向きになるように配置するとともに、出光面に受光装置を配置したことを特徴とする太陽光利用装置。   2. A solar light utilization device, wherein the solar lens according to claim 1 is disposed such that the front slope is substantially southward, and a light receiving device is disposed on a light exit surface.
JP2009013714A 2009-01-24 2009-01-24 Solar lens and solar-powered equipment Expired - Fee Related JP4313841B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013714A JP4313841B1 (en) 2009-01-24 2009-01-24 Solar lens and solar-powered equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013714A JP4313841B1 (en) 2009-01-24 2009-01-24 Solar lens and solar-powered equipment

Publications (2)

Publication Number Publication Date
JP4313841B1 JP4313841B1 (en) 2009-08-12
JP2010169981A true JP2010169981A (en) 2010-08-05

Family

ID=41036721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013714A Expired - Fee Related JP4313841B1 (en) 2009-01-24 2009-01-24 Solar lens and solar-powered equipment

Country Status (1)

Country Link
JP (1) JP4313841B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011613A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Condensing lens array, and solar cell provided with same
US9853175B2 (en) 2014-09-22 2017-12-26 Kabushiki Kaisha Toshiba Solar cell module
JP2021026943A (en) * 2019-08-07 2021-02-22 株式会社 マテリアルハウス Sunlight incidence structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011613A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Condensing lens array, and solar cell provided with same
JP5655146B2 (en) * 2011-07-15 2015-01-14 パナソニックIpマネジメント株式会社 Condensing lens array and solar cell including the same
US8993871B2 (en) 2011-07-15 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Condensing lens array, and solar cell provided with same
US9853175B2 (en) 2014-09-22 2017-12-26 Kabushiki Kaisha Toshiba Solar cell module
JP2021026943A (en) * 2019-08-07 2021-02-22 株式会社 マテリアルハウス Sunlight incidence structure
JP7057570B2 (en) 2019-08-07 2022-04-20 株式会社 マテリアルハウス Solar incident structure

Also Published As

Publication number Publication date
JP4313841B1 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
US7442871B2 (en) Photovoltaic modules for solar concentrator
US10020413B2 (en) Fabrication of a local concentrator system
Su et al. Comparative study on annual solar energy collection of a novel lens-walled compound parabolic concentrator (lens-walled CPC)
TW200941747A (en) Thin and efficient collecting optics for solar system
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
CN109496367B (en) Opto-mechanical system for capturing incident sunlight and transmitting it to at least one solar cell and corresponding method
US20110197968A1 (en) Solar collector panel
JP4313841B1 (en) Solar lens and solar-powered equipment
US20220336688A1 (en) Photovoltaic solar collection system and natural illumination apparatus for building integration
US9941436B2 (en) Dual geometry trough solar concentrator
RU2576752C2 (en) Solar module with concentrator
JPH0637344A (en) Light-condensing type solar cell module
US20100307480A1 (en) Non-tracking solar collectors
CN115552293A (en) Light redirecting prism, redirecting prism wall and solar panel comprising same
RU2338129C1 (en) Solar house (versions)
JP2010199342A (en) Solar cell, module, and photovoltaic power generator
JP4364931B1 (en) Solar lens and solar-powered equipment
US9169647B2 (en) Skylight having multiple stationary tilted reflectors aimed in different compass directions including inverted pyramidal or wedge geometry
CN211959154U (en) Condenser and concentrating photovoltaic module
US20120327523A1 (en) Offset concentrator optic for concentrated photovoltaic systems
RU2355956C1 (en) Solar power photosystem (versions)
JP5989036B2 (en) Solar condensing panel
KR20230116646A (en) Solar power generation device for vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees