JPH0476202B2 - - Google Patents

Info

Publication number
JPH0476202B2
JPH0476202B2 JP17074683A JP17074683A JPH0476202B2 JP H0476202 B2 JPH0476202 B2 JP H0476202B2 JP 17074683 A JP17074683 A JP 17074683A JP 17074683 A JP17074683 A JP 17074683A JP H0476202 B2 JPH0476202 B2 JP H0476202B2
Authority
JP
Japan
Prior art keywords
composition
thickness
mixed crystal
lattice
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17074683A
Other languages
Japanese (ja)
Other versions
JPS6062109A (en
Inventor
Kentaro Onabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17074683A priority Critical patent/JPS6062109A/en
Publication of JPS6062109A publication Critical patent/JPS6062109A/en
Publication of JPH0476202B2 publication Critical patent/JPH0476202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】 本発明は化合物半導体材料に関する。−族
化合物半導体の4元混晶は、その組成比を適当に
設定することにより、ある範囲内で格子定数およ
びエネルギーギヤツプを、それぞれ独立に設定で
きるために、格子整合へテロ接合を形成するため
の材料として利用価値が高い。例えば、InPに格
子整合するIn1-xGaxP1-yAsy(0<x,y<1)は
半導体レーザの活性領域となる材料として利用さ
れる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to compound semiconductor materials. Quaternary mixed crystals of - group compound semiconductors form lattice-matched heterojunctions because the lattice constant and energy gap can be set independently within a certain range by appropriately setting the composition ratio. It has high utility value as a material for For example, In 1-x Ga x P 1-y As y (0<x, y<1), which is lattice-matched to InP, is used as a material for the active region of a semiconductor laser.

一方、半導体単結晶のエピタキシヤル成長方法
として分子線エピタキシー法は、組成変化の急峻
な界面が得られ従つてまた数10Å程度の厚さの超
薄膜の成長が可能な方法として高度の機能を有す
る半導体デバイスを作製するために不可欠であ
る。しかし、上記の4元混晶材料および成長方法
の両者の長所を、ともに生かして利用するには、
従来以下に述べるような技術上の困難があつた。
On the other hand, as a method for epitaxial growth of semiconductor single crystals, molecular beam epitaxy has advanced functionality as a method that allows for the formation of interfaces with steep compositional changes and the growth of ultra-thin films with a thickness of several tens of Å. It is essential for producing semiconductor devices. However, in order to take advantage of the advantages of both the quaternary mixed crystal materials and growth methods described above,
Conventionally, there have been technical difficulties as described below.

すなわち、分子線エピタキシー法においては、
従来P,Asのような蒸気圧の高い分子線源を同
時に2つ以上用いようとする場合には、それぞれ
の分子線強度を独立にモニタする簡便な方法が存
在せず、従つてそのような分子線を同時に用いて
作製する混晶組成の精密制御が不可能であつた。
That is, in the molecular beam epitaxy method,
Conventionally, when trying to use two or more molecular beam sources with high vapor pressure such as P and As at the same time, there is no simple method to independently monitor the molecular beam intensity of each, and therefore such It has been impossible to precisely control the composition of mixed crystals produced by simultaneously using molecular beams.

本発明の目的は、以上述べた従来の欠点を除去
し、4元混晶と同等の物性を3元以下の混晶また
は2元化合物の薄膜超格子より成る系により実現
しようとすることにある。
The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks and to realize physical properties equivalent to quaternary mixed crystals using a system consisting of a thin film superlattice of ternary or less mixed crystals or binary compounds. .

本発明によれば、、各々の格子定数が等しい2
種以上の2元化合物もしくは3元化合物半導体単
結晶薄膜を交互に多数回積層し、かつ、この繰り
返し周期が、半導体内電子のド・ブロイ波長以下
となるように設定し、かつ多層にわたつての平均
的組成が一定の4元混晶の組成に等しくなるよう
に各薄膜層の厚さを設定することにより、本来4
元混晶を用いることによつてしか得られなかつた
物性を実現することができる。
According to the present invention, 2 with equal lattice constants
Two or more binary compound or ternary compound semiconductor single crystal thin films are alternately laminated many times, and the repetition period is set to be equal to or less than the de Broglie wavelength of electrons in the semiconductor, and over multiple layers. By setting the thickness of each thin film layer so that the average composition of
Physical properties that could only be obtained by using original mixed crystals can be achieved.

ここでいう半導体内電子のド・ブロイ波長以下
とは約30オングストローム以下を指す。
Here, below the de Broglie wavelength of electrons in a semiconductor refers to about 30 angstroms or below.

以下本発明について実施例を参照しながら詳細
に説明する。第1図は−族4元混晶の一例で
ある。In1-xGaxP1-yAsyの組成(x,y)と物性
定数との関係を表現する図である。図中の実線
は、InPに格子整合する4元組成を示している。
The present invention will be described in detail below with reference to Examples. FIG. 1 shows an example of a − group quaternary mixed crystal. FIG. 2 is a diagram expressing the relationship between the composition (x, y) of In 1-x Ga x P 1-y As y and physical property constants. The solid line in the figure indicates a quaternary composition lattice-matched to InP.

図中のA点はInPに格子整合する1つの4元組
成であり、例えばx0.25,y0.56においてエ
ネルギーギヤツプEGは0.9eVとなり波長約1.3μm
の発光材料となる。図中のB点はInP2元化合物、
C点はInPに格子整合するIn1-x′Gax′As(x′=0.45)
を示す。今、図中のA点の組成の4元混晶のエピ
タキシヤル膜を作成する代わりに、InPの薄膜と
In1-x′Gax′As(x′=0.45)の薄膜とを交互に、しか
もその平均的組成が、ほぼA点の組成に一致する
ような厚さ比で作成する。今の場合、InP層の厚
さをdB,In1-x′Gax′As(x′=0.45)層の厚さをdC
したとき x=x′dC/dB+dC ……(1) であるから、 dC/dB=x/x′−x ……(2) となるように層厚比を選べばよい。それぞれの層
厚は十分薄い必要があり、例えばdB=20Å,dC
25Å程度にすればよい。この程度の厚さ制御およ
び組成の急峻な切り換えは従来の分子線エピタキ
シー技術で十分可能である。以上のような薄膜を
交互に、例えば第2図に示したように200周期積
層すれば、A点の組成の4元混晶を900Å堆積し
たのと、ほぼ同等の物性が期待できる。実際には
超格子にしたことによる物性定数のわずかなずれ
が、ありうるが、これはそれに応じて厚さ比を微
調整することで、十分克服できる。以上述べた方
法では、蒸気圧の高いAsとPは、それぞれ別の
薄膜成長に用いられ、同時に両者の分子線強度を
独立にモニタする必要がないので、先に述べた精
密組成制御上の問題がないことは明らかである。
Point A in the figure is a four-component composition that lattice matches to InP. For example, at x0.25, y0.56, the energy gap E G is 0.9 eV, and the wavelength is approximately 1.3 μm.
It becomes a luminescent material. Point B in the figure is an InP binary compound,
Point C is In 1-x ′Ga x ′As (x′=0.45), which is lattice matched to InP.
shows. Now, instead of creating a quaternary mixed crystal epitaxial film with the composition at point A in the figure, we will create an InP thin film and
Thin films of In 1-x ′Ga x ′As (x′=0.45) are alternately formed at a thickness ratio such that their average composition approximately matches the composition at point A. In this case, when the thickness of the InP layer is d B and the thickness of the In 1-x ′Ga x ′As (x′=0.45) layer is d C , then x=x′d C /d B +d C … ...(1) Therefore, the layer thickness ratio should be selected so that d C /d B =x/x'-x ...(2). The thickness of each layer must be sufficiently thin, for example, d B = 20 Å, d C =
The thickness should be about 25 Å. This level of thickness control and rapid composition switching is fully possible using conventional molecular beam epitaxy technology. If the above-mentioned thin films are alternately stacked, for example, 200 cycles as shown in FIG. 2, physical properties can be expected to be almost the same as those obtained by depositing 900 Å of a quaternary mixed crystal having the composition at point A. In reality, there may be a slight deviation in the physical property constants due to the superlattice, but this can be overcome by finely adjusting the thickness ratio accordingly. In the method described above, As and P, which have high vapor pressures, are used for separate thin film growth, and there is no need to independently monitor the molecular beam intensities of both at the same time, so there is the problem of precise composition control mentioned above. It is clear that there is no.

また、本発明は第1図中の点線で示したような
いわゆるミシビリテイ・ギヤツプが存在して本来
4元混晶が熱力学的に安定に成長し得ないような
低温においても、ミシビリテイ・ギヤツプの外に
属する組成の3元ないし2元化合物を用いること
により、その4元混晶と同等の物性を有する材料
の作成が可能であるので、非常に利用価値が高
い。
Furthermore, the present invention can eliminate the miscibility gap even at low temperatures where a so-called miscibility gap exists as shown by the dotted line in FIG. By using a ternary or binary compound having a composition belonging to the outside, it is possible to create a material having physical properties equivalent to that of the quaternary mixed crystal, and therefore it has very high utility value.

以上の実施例ではIn1-xGaxP1-yAsy4元混晶に
代わる材料作成の例を示したが、同様の方法で極
めて多数の多元混晶半導体の性質を薄膜超格子に
よつて代えることができることは明らかである。
In the above example, an example of creating a material to replace the In 1-x Ga x P 1-y As y quaternary mixed crystal was shown, but the properties of an extremely large number of multi-component mixed crystal semiconductors can be applied to a thin film superlattice using a similar method. Obviously, it can be substituted.

例えばGaAsとInGaP(Ga組成約53%)との組
み合わせではGaAs基板に格子整合する4元混晶
が得られる。
For example, a combination of GaAs and InGaP (Ga composition approximately 53%) produces a quaternary mixed crystal that is lattice-matched to the GaAs substrate.

以上説明したように、各々の格子定数が等し
い。2種以上の2元化合物もしくは3元化合物半
導体単結晶薄膜を交互に多数回積層し、かつ繰り
返し波長が半導体内電子のド・ブロイ波長以下と
なるように設定し、かつ多層にわたつて平均的組
成が一定の4元混晶の組成に等しくなるように各
薄膜層の厚さを設定することにより、本来4元混
晶を用いることによつてしか得られなかつた物性
を実現することができる。
As explained above, each lattice constant is equal. Two or more types of binary compound or ternary compound semiconductor single crystal thin films are alternately laminated many times, the repetition wavelength is set to be less than the de Broglie wavelength of electrons in the semiconductor, and the average value is By setting the thickness of each thin film layer so that the composition is equal to that of a quaternary mixed crystal, it is possible to achieve physical properties that could originally only be obtained by using a quaternary mixed crystal. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はIn1-xGaxP1-yAsy4元混晶における組
成と物性定数の関係を表わす図、第2図は本発明
の実施例における薄膜超格子の組成および構造を
表わす図である。
Figure 1 is a diagram showing the relationship between the composition and physical property constants in the In 1-x Ga x P 1-y As y quaternary mixed crystal, and Figure 2 is a diagram showing the composition and structure of the thin film superlattice in an example of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 格子定数の等しい2種以上の2元もしくは3
元化合物半導体単結晶薄膜を交互に多数回積層
し、かつ繰り返し周期が、半導体内電子のド・ブ
ロイ波長以下であるように設定し、かつ厚さの比
を平均的組成が一定の4元混晶の組成になるよう
に設定することを特徴とする化合物半導体材料。
1 Two or more binary or ternary elements with the same lattice constant
The original compound semiconductor single crystal thin films are alternately stacked many times, the repetition period is set to be less than the de Broglie wavelength of the electrons in the semiconductor, and the thickness ratio is set to a four-component mixture with a constant average composition. A compound semiconductor material characterized by being set to have a crystalline composition.
JP17074683A 1983-09-16 1983-09-16 Compound semiconductor material Granted JPS6062109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17074683A JPS6062109A (en) 1983-09-16 1983-09-16 Compound semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17074683A JPS6062109A (en) 1983-09-16 1983-09-16 Compound semiconductor material

Publications (2)

Publication Number Publication Date
JPS6062109A JPS6062109A (en) 1985-04-10
JPH0476202B2 true JPH0476202B2 (en) 1992-12-03

Family

ID=15910618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17074683A Granted JPS6062109A (en) 1983-09-16 1983-09-16 Compound semiconductor material

Country Status (1)

Country Link
JP (1) JPS6062109A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418796Y2 (en) * 1985-04-25 1992-04-27
JP2013187309A (en) * 2012-03-07 2013-09-19 Fujitsu Ltd Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JPS6062109A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
US4833101A (en) Method of growing quaternary or pentanary alloy semiconductor lattice-matched to substrate by MBE
DE60217927T2 (en) METHOD FOR PRODUCING AN OXIDE LAYER ON A GAAS-BASED SEMICONDUCTOR STRUCTURE
EP0532104A1 (en) II-VI Compound semiconductor epitaxial layers having low defects, method for producing and devices utilizing same
US4603340A (en) Semiconductor device having superlattice structure
Munekata et al. Carrier densities in InAs–Ga (Al) Sb (As) quantum wells
JPH0476202B2 (en)
JPH0554279B2 (en)
JPH0315334B2 (en)
Wang et al. Atomspheric pressure organometallic vapor‐phase epitaxial growth and characterization of Ga0. 4In0. 6P/(Al0. 4Ga0. 6) 0.5 In0. 5P strained quantum wells
JP2001237413A (en) Method of forming quantum dot
EP0186336B1 (en) Semiconductor device comprising a superlattice structure
US5246878A (en) Capping layer preventing deleterious effects of As--P exchange
JPS5974618A (en) Super-lattice crystal
JPS61189619A (en) Compound semiconductor device
JP2676075B2 (en) Semiconductor layer formation method
JPH01296673A (en) Iii-v compound semiconductor device
JP2563530B2 (en) Superlattice structure element
JPH0231417A (en) Semiconductor laminated structure
JPS60164317A (en) Compound semiconductor material
JPS63179513A (en) Manufacture of quaternary mixed crystal of immiscible compound semiconductor
JP2687843B2 (en) Quantum well box manufacturing method
JP2970103B2 (en) Semiconductor superlattice structure
RU2064541C1 (en) Method of preparing heterostructures on the basis of semiconducting compounds a*991*991*991b*99v
Watanabe et al. Formation of InSb nanocrystals on Se-terminated GaAs (001)
JPH0391284A (en) Semiconductor laser element