JPS5974618A - Super-lattice crystal - Google Patents
Super-lattice crystalInfo
- Publication number
- JPS5974618A JPS5974618A JP57183694A JP18369482A JPS5974618A JP S5974618 A JPS5974618 A JP S5974618A JP 57183694 A JP57183694 A JP 57183694A JP 18369482 A JP18369482 A JP 18369482A JP S5974618 A JPS5974618 A JP S5974618A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- lattice
- thin film
- super
- lattice constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 79
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010408 film Substances 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02463—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
- H01L21/02507—Alternating layers, e.g. superlattice
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野〕
本発明は、化合物半導体の極薄膜を多層に積層した超格
子結晶に関するもので、特に基板結晶と規な超格子結晶
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a superlattice crystal in which extremely thin films of compound semiconductors are laminated in multiple layers, and particularly to a substrate crystal and a regular superlattice crystal.
化合物半導体による超格子結晶の代表的な材料の組合わ
せとして、従来、Ga As/GaM Asがよく知を
持っていることなどから種々の素子に応用され、よい特
性か得られている。Conventionally, GaAs/GaM As is well known as a typical combination of materials for superlattice crystals made of compound semiconductors, and has been applied to various devices with good properties.
しかし、高速電子素子への応用の点て% GaASに比
べより優れた性能が期待される材料や、GaAS /G
aAffAsの組合わせてカバーできない波長領域の発
光・受光素子用の材料などとしての超格子結晶はこれま
で一部研究が行われているもの\、まだ際立って優れた
性能をもつものは得られていない現状である。However, in terms of application to high-speed electronic devices, there are materials that are expected to have better performance than GaAS, and GaAS/G.
Although some research has been conducted on superlattice crystals as materials for light-emitting and light-receiving elements in the wavelength range that cannot be covered by the combination of aAffAs, no material with outstanding performance has yet been obtained. The current situation is that there is no such thing.
例えば、GaASよりも高速で動作する電子素子への応
用の点て注目される利用としてはA仁王nAS /In
QaAsなど、また/、/〜/乙、um帯域の発光・受
光素子に適した材料としてはInGaAs/he In
GaA、sまたはけ基板結晶との格子整合は満足される
が酸化による悪影響を受けやすいAMと精製が比較釣線
しいInの両者を同時に含んでいるために高純度でかつ
点欠陥などの少ない良質の薄膜結晶を成長させることが
容易でない。また、InGaA、srにおいては同じく
格子整合は満足されるもの\蒸気圧が高いA、sおよび
Pの2種類のV族元素を含んでいるため結晶成長の制御
特に組成およびストイキオメトl)の制御に困錘かある
。さらにInAs/GaSbにおいては基板結晶にI
nAsまたはGarbのいずれを用いてもかなりの格子
不整合を避けることかできず、期待されるような特異な
物性を充分に発揮させることか困難であるなど、どの組
合わせにおいても、格子不整合あるいは結晶成長制御の
上で鍵点が見られるの〔発明の構成〕
本発明は以上のような問題点を解決し、結晶成2長の制
御か容易であり、かつ格子整合の点で融通性が高いとい
う利点を持つ、新しい利用の組合わせによる超格子結晶
を提供するものであって、格子定数4.なる基板結晶上
に、格子定数が46+△G△ρ、・Σd7−Δ勺−Zx
、なる関係を満足することをその特徴としている。For example, one of the uses that is attracting attention in terms of application to electronic devices that operate faster than GaAS is A
Materials suitable for light emitting and receiving elements in the um band include QaAs, InGaAs, and InGaAs/he In.
Because it contains both AM, which satisfies the lattice matching with GaA, S, or substrate crystal but is susceptible to adverse effects from oxidation, and In, which is relatively difficult to purify, it has high purity and high quality with few point defects. It is not easy to grow thin film crystals. In addition, although lattice matching is similarly satisfied in InGaA and sr, since they contain two types of group V elements, A, s, and P, which have high vapor pressures, they are useful for controlling crystal growth, especially composition and stoichiometries. There are some difficulties. Furthermore, in InAs/GaSb, I
Regardless of whether nAs or Garb is used, considerable lattice mismatch cannot be avoided, and it is difficult to fully exhibit the unique physical properties expected. Or is there a key point in crystal growth control? [Structure of the Invention] The present invention solves the above problems, makes it easy to control crystal growth, and provides flexibility in terms of lattice matching. The present invention provides a superlattice crystal with a new combination of uses, which has the advantage of a high lattice constant of 4. On the substrate crystal, the lattice constant is 46+△G△ρ,・Σd7−Δ勺−Zx
Its characteristic is that it satisfies the relationship .
上記の超格子結晶において、基板結晶、第1の薄膜結晶
および第2の薄膜結晶をそれぞれInP 。In the above superlattice crystal, the substrate crystal, first thin film crystal, and second thin film crystal are each made of InP.
In、 Ga7−、As r InyQa7−ンAS
(たKし、0≦X≦053゜Oj3≦y≦/)とするこ
とができる。In, Ga7-, As r InyQa7- AS
(and 0≦X≦053°Oj3≦y≦/).
本発明を実施例に基づさ図面を用いて詳細に説明する。 The present invention will be explained in detail based on embodiments using drawings.
第1図は本発明の超格子結晶の一例の断面を模式的に示
したものである。FIG. 1 schematically shows a cross section of an example of the superlattice crystal of the present invention.
第1図においてInP基板結晶1の上に第1の薄膜結晶
であるI 117 G” 7− x A−32と第!の
薄膜結晶である。Tll、 Ga、−y A s 3と
か交JTに積層され超格子結晶4を形成している。各層
の格子定数は第2図に示したようにInP基板基板結晶
上対し、第1の簿膜結晶2ではa。十△a、 I第2の
簿膜結晶ろてはら−△aよとなっている。また各層の厚
さに関しては、第1の薄膜結晶の厚さdの総和はfd、
、第2の薄膜結晶の厚さd2の総和はz4となっており
、△77、 、 ’/この超格子結晶において、」二記
の関係式が満足される結果、各層の格子定数は基板結晶
1のそれと一致しないが、超格子結晶4全体の平均格子
定数は基板結晶1の格子定数に等しくなる。各層が厚さ
O,/ 、77 m以下の薄膜であること\、上記平均
格子定数が基板結晶の格子定数に一致していることの結
果、薄jJ@結晶の各層において格子不整合による転位
(ミスフィント転位)の発生かほとんどなく、良質の超
格子結晶4か実現される。In Fig. 1, the first thin film crystal I 117 G'' 7- x A-32 and the !th thin film crystal are placed on the InP substrate crystal 1. They are laminated to form a superlattice crystal 4.As shown in FIG. As for the thickness of each layer, the total thickness d of the first thin film crystal is fd,
, the sum of the thicknesses d2 of the second thin film crystal is z4, △77, , '/In this superlattice crystal, the following two relational expressions are satisfied, and the lattice constant of each layer is the same as that of the substrate crystal. The average lattice constant of the entire superlattice crystal 4 is equal to the lattice constant of the substrate crystal 1, although it does not match that of the substrate crystal 1. As a result of each layer being a thin film with a thickness of O,/, 77 m or less, and the above average lattice constant matching the lattice constant of the substrate crystal, dislocations due to lattice mismatch in each layer of the thin jJ@crystal ( There is almost no occurrence of misfind dislocations, and a high-quality superlattice crystal 4 is achieved.
この超格子結晶のハンド・ギャップ、エネルギ](gは
第3図に示すようになっている。こ\てEg。The hand gap, energy] (g of this superlattice crystal is as shown in Fig. 3. Here, Eg.
Eg7 、bg、はそれぞれ基板結晶1.第1の薄膜結
晶結晶2.第2の薄膜結晶ろの7・メト・ギャップ・エ
ネルギーである。Eg7 and bg are respectively substrate crystals 1. First thin film crystal 2. This is the 7 met gap energy of the second thin film crystal filter.
Eg とEg、の違いか薄膜結晶中の電子またはホ−
ルに対するポテンシャル障壁を形成しており、この超格
子結晶におりるヘテロ接合の性質を利用して、高速電子
素子、高性能光素子などを実現することかできる。The difference between Eg and Eg is the electron or hole in the thin film crystal.
The properties of the heterojunction in this superlattice crystal can be used to realize high-speed electronic devices, high-performance optical devices, etc.
第1図〜第3図に示した実施例では、超格子結しており
、超高速電子素子用の材料として有用なものである。ま
たInGaAsはバンド・ギャップ・工4ルギーの点か
ら、73〜/、乙5μm帯における長波長光通信用の高
性能の光素子の利料として好適のものである。The examples shown in FIGS. 1 to 3 have superlattice bonds and are useful as materials for ultrahigh-speed electronic devices. In addition, from the viewpoint of band gap and energy consumption, InGaAs is suitable as a material for high-performance optical devices for long wavelength optical communication in the 73 to 5 μm band.
結晶成長技術の面から見れば、本実施例の超格子結晶は
ずべてJnQaAsて構成されていることから、Aeを
含んだ結晶に比べて酸化の影響を受けにくいため、微小
点欠陥などの少ない良質の結晶を成長させることか容易
であり、またInGaAsPなどのようにAsおよびP
の2種類の蒸気圧の高い元素を含んだ結晶に比べて、結
晶成長の制御が容易であるという大きな利点をもってい
る。From the perspective of crystal growth technology, since the superlattice crystal of this example is entirely composed of JnQaAs, it is less susceptible to oxidation than crystals containing Ae, and has fewer micropoint defects. It is easy to grow high-quality crystals, and it is easy to grow crystals of good quality, and it is also possible to grow crystals of high quality.
It has the great advantage that crystal growth can be easily controlled compared to crystals containing two types of high vapor pressure elements.
以」二詳細に説明した通り、本発明は格子定数の不一致
が存在する薄膜多層結晶において、その平均格子定数を
基板結晶の格子定数に一致させるという全く新しい考え
方によって、これまで形成できなかった新規な材料の組
合わせによる超格子結晶を実現させるものであり、その
効果は実施例に示したInGaAsの−みからなる超格
子結晶に見られる通りである。As explained in detail below, the present invention uses a completely new concept of matching the average lattice constant of a thin film multilayer crystal with the lattice constant of the substrate crystal in which there is a mismatch in lattice constants, thereby creating a novel method that could not be formed up to now. This method realizes a superlattice crystal by combining various materials, and its effects are as seen in the superlattice crystal made of InGaAs shown in the embodiment.
なお、実施例においてはI nGaAs/ I nPの
場合のみを示したが、その他にも式(1)の関係全満足
する多もので、第1図は超格子結晶の断面模式図、第2
図および第3図はそれぞれ」二記超格子結晶の格子定数
およびバンド・ギャップ・エネルギーを示すグラフであ
る。In the examples, only the case of InGaAs/InP is shown, but there are many other cases that satisfy the relationship of formula (1).
Figures 3 and 3 are graphs showing the lattice constant and band gap energy of a superlattice crystal, respectively.
1・・・InP基板結晶
2・・・第1の薄膜結晶I nXGa 、イAsろ・・
・第2の薄膜結晶l+1y Ga 、−y As4・・
超格子結晶1... InP substrate crystal 2... First thin film crystal I nXGa, Asro...
・Second thin film crystal l+1y Ga, -y As4...
superlattice crystal
Claims (1)
、なる第1の簿膜結晶と格子定数がゐ〜△42なる第2
の薄膜結晶とを交互に積層させた超格子結晶において、
第1の薄膜結晶の厚さの総和を”id、、第!の薄膜結
晶の厚さの総和をXJd、とじたとき、△久1.Σd、
−△a。 ・Σdなる関係を満足することを特徴とする超格子結晶
。 2、特許請求の範囲第1項記載の超格子結晶において、
基板結晶、第1の薄膜結晶、および第2の薄膜結晶がそ
れぞれI n P HI nXGa t−、x As
+I n> Ga、−jAs (0≦X≦θ!;3 、
0.!;3≦y≦/)であることを特徴とする超格子結
晶。[Claims] Soil: On a substrate crystal with a lattice constant of 4, the lattice constant is a+△a
, and the second film crystal has a lattice constant of ≦42.
In a superlattice crystal in which thin film crystals and thin film crystals are alternately stacked,
When the sum of the thicknesses of the first thin film crystals is "id", and the sum of the thicknesses of the !th thin film crystals is XJd, △ku1.Σd,
−△a. - A superlattice crystal characterized by satisfying the relationship Σd. 2. In the superlattice crystal according to claim 1,
The substrate crystal, the first thin film crystal, and the second thin film crystal are respectively I n P HI nX Ga t-, x As
+In> Ga, -jAs (0≦X≦θ!;3,
0. ! ;3≦y≦/).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183694A JPS5974618A (en) | 1982-10-21 | 1982-10-21 | Super-lattice crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183694A JPS5974618A (en) | 1982-10-21 | 1982-10-21 | Super-lattice crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5974618A true JPS5974618A (en) | 1984-04-27 |
Family
ID=16140302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57183694A Pending JPS5974618A (en) | 1982-10-21 | 1982-10-21 | Super-lattice crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5974618A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS617670A (en) * | 1984-06-22 | 1986-01-14 | Ricoh Co Ltd | Photoelectric conversion film |
JPS62281479A (en) * | 1986-05-30 | 1987-12-07 | Nec Corp | Semiconductor photodetector |
JPS6344774A (en) * | 1986-04-05 | 1988-02-25 | Sumitomo Electric Ind Ltd | Compound semiconductor device |
JPS649668A (en) * | 1987-07-02 | 1989-01-12 | Kokusai Denshin Denwa Co Ltd | Infrared ray emitting element |
JPH0294573A (en) * | 1988-09-30 | 1990-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Photodetector |
JPH05315637A (en) * | 1992-05-08 | 1993-11-26 | Hikari Gijutsu Kenkyu Kaihatsu Kk | Ultra lattice light-receiving element |
-
1982
- 1982-10-21 JP JP57183694A patent/JPS5974618A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS617670A (en) * | 1984-06-22 | 1986-01-14 | Ricoh Co Ltd | Photoelectric conversion film |
JPS6344774A (en) * | 1986-04-05 | 1988-02-25 | Sumitomo Electric Ind Ltd | Compound semiconductor device |
JPS62281479A (en) * | 1986-05-30 | 1987-12-07 | Nec Corp | Semiconductor photodetector |
JPS649668A (en) * | 1987-07-02 | 1989-01-12 | Kokusai Denshin Denwa Co Ltd | Infrared ray emitting element |
JPH0294573A (en) * | 1988-09-30 | 1990-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Photodetector |
JPH05315637A (en) * | 1992-05-08 | 1993-11-26 | Hikari Gijutsu Kenkyu Kaihatsu Kk | Ultra lattice light-receiving element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6447938B1 (en) | Gallium nitride collector grid solar cell | |
JPH0422185A (en) | Semiconductor optical element | |
KR100319300B1 (en) | Semiconductor Device with Quantum dot buffer in heterojunction structures | |
CN1221520A (en) | InP-based laser with reduced blue shifts | |
KR940022934A (en) | Semiconductor light emitting device and method for manufacturing same | |
US4789421A (en) | Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal | |
JPS5974618A (en) | Super-lattice crystal | |
US5742089A (en) | Growth of low dislocation density HGCDTE detector structures | |
JP3334598B2 (en) | II-VI compound semiconductor thin film on InP substrate | |
JPS62291184A (en) | Semiconductor light-receiving device | |
JPH0292899A (en) | Production of compound semiconductor film | |
JPH01296673A (en) | Iii-v compound semiconductor device | |
JPS6062109A (en) | Compound semiconductor material | |
JPH01130584A (en) | Semiconductor light emitting device | |
KR100692604B1 (en) | The growing method of new cuau phase of i iii vi2 single crystal thin films | |
KR20030001290A (en) | ZINC BLENDE TYPE CrSb COMPOUND, METHOD FOR FABRICATING THE SAME, AND MULTILAYERED STRUCTURE | |
JP2970103B2 (en) | Semiconductor superlattice structure | |
JP2756501B2 (en) | Dilute magnetic semiconductor thin film | |
JPS6394230A (en) | Semiconductor device | |
JPH0799370A (en) | Semiconductor optical waveguide | |
JPH03244117A (en) | Compound semiconductor substrate | |
JP2004363265A (en) | Compound-semiconductor laminated structure and its manufacturing method | |
JPS62291191A (en) | Semiconductor light-emitting device | |
JPH07263750A (en) | Semiconductor light emitting element and manufacture of it | |
JPH0410527A (en) | Semiconductor superlattice |