JP3334598B2 - II-VI compound semiconductor thin film on InP substrate - Google Patents

II-VI compound semiconductor thin film on InP substrate

Info

Publication number
JP3334598B2
JP3334598B2 JP7775798A JP7775798A JP3334598B2 JP 3334598 B2 JP3334598 B2 JP 3334598B2 JP 7775798 A JP7775798 A JP 7775798A JP 7775798 A JP7775798 A JP 7775798A JP 3334598 B2 JP3334598 B2 JP 3334598B2
Authority
JP
Japan
Prior art keywords
mixed crystal
layer
compound semiconductor
thin film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7775798A
Other languages
Japanese (ja)
Other versions
JPH11274565A (en
Inventor
宏一 難波江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7775798A priority Critical patent/JP3334598B2/en
Publication of JPH11274565A publication Critical patent/JPH11274565A/en
Application granted granted Critical
Publication of JP3334598B2 publication Critical patent/JP3334598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、InP基板上のII
−VI族化合物半導体薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a group VI compound semiconductor thin film.

【0002】[0002]

【従来の技術】Al、Ga、In等のIII族元素と、A
s、P、Sb等のV族元素とからなるIII−V族化合物半
導体により、赤外から赤色領域までの波長の半導体レー
ザや、黄緑領域までの発光ダイオード等が実用化されて
いる。しかし、これ以上短い波長で発光させるには、よ
り広い禁制帯幅が必要であり、上記III−V族化合物半導
体では実現が困難である。
2. Description of the Related Art A group III element such as Al, Ga, In or the like, and A
Semiconductor lasers having wavelengths in the infrared to red region, light emitting diodes in the yellow-green region, and the like have been put to practical use by III-V compound semiconductors composed of group V elements such as s, P, and Sb. However, in order to emit light at a shorter wavelength than this, a wider band gap is required, and it is difficult to realize the above-mentioned III-V group compound semiconductor.

【0003】これに対し、Be、Mg、Mn、Zn、C
d、Hg等のII族元素と、S、Se、Te等のVI族元素
とからなるII−VI族化合物半導体は、比較的大きな禁制
帯幅を持ち、可視域のほぼ全ての波長での発光が可能で
ある。そのため、II−VI族化合物半導体は、特に緑色域
から紫外域での発光デバイス材料として期待され、現在
盛んに研究開発が行われている。
On the other hand, Be, Mg, Mn, Zn, C
II-VI compound semiconductors comprising a group II element such as d and Hg and a group VI element such as S, Se and Te have a relatively large band gap and emit light at almost all wavelengths in the visible region. Is possible. For this reason, II-VI group compound semiconductors are expected as light emitting device materials particularly in the green to ultraviolet regions, and are being actively researched and developed at present.

【0004】上記II-VI族化合物半導体薄膜の作製にお
いては、良質なII-VI族バルク基板結晶の入手が困難で
あるため、一般的には高品質で入手が容易なIII-V族バ
ルク基板結晶を基板として用いている。該III−V族基板
としてInPを用いた場合、ZnCdSe、ZnSeT
e、MgZnCdSe、MgZnSeTeといった混晶
を用いれば、格子整合条件下でダブルヘテロ構造が作製
でき、これらを用いた発光素子が報告されている(例え
ば、第58回応用物理学会学術講演会講演予稿集,N
o.1,277頁,2a−V−1,1997年)。
In the production of the above-mentioned II-VI compound semiconductor thin film, it is difficult to obtain a high-quality II-VI bulk substrate crystal. A crystal is used as a substrate. When InP is used as the III-V group substrate, ZnCdSe, ZnSeT
e, MgZnCdSe and MgZnSeTe can be used to produce double heterostructures under lattice matching conditions, and light emitting devices using these have been reported (for example, Proceedings of the 58th JSAP Scientific Lecture Meeting) , N
o. 1, 277, 2a-V-1, 1997).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、分子線
エピタキシャル成長法(MBE法)によりInP基板上
に例えばMgZnSeTeを成長させる場合、TeとS
eとが均一に混ざり合いにくく、混晶中で組成変動や相
分離が生じ易い。このような組成変動や相分離は発光素
子への応用上望ましくなく、素子抵抗の増大や発光効率
の低下の原因となっていた。
However, when, for example, MgZnSeTe is grown on an InP substrate by molecular beam epitaxy (MBE), Te and S
e are hardly uniformly mixed with each other, and composition fluctuations and phase separation are likely to occur in mixed crystals. Such a composition fluctuation and phase separation are not desirable in application to a light emitting device, and cause an increase in device resistance and a decrease in luminous efficiency.

【0006】MBE法でInP基板上に成長させた従来
のII−VI族化合物半導体薄膜の層構造を図4に示す。I
nP基板1上にMBE法でII−VI族化合物半導体薄膜を
成長させる場合、まず初めに、真空搬送機構を介してII
−VI族化合物半導体成長室と接続されたIII−V族化合物
半導体成長室内において、InP基板表面の自然酸化膜
をP又はAs分子線下で除去する。次いで、該基板表面
の平坦性を回復させるために、InP又はGaInAs
又はGaInAsP等からなるIII−V族バッファ層2を
成長させる。次に、III−V族バッファ層2を成長させた
該基板をII−VI族化合物半導体成長室に搬送し、基板温
度を280℃程度に安定させた後、MgZnSeTe層
10を成長させていた(例えば、青色レーザ及び発光ダ
イオード国際シンポジウム(千葉大)予稿集,86頁,
1996年)。
FIG. 4 shows a layer structure of a conventional II-VI compound semiconductor thin film grown on an InP substrate by MBE. I
When growing a II-VI compound semiconductor thin film on the nP substrate 1 by the MBE method, first, the II
In the group III-V compound semiconductor growth chamber connected to the group VI compound semiconductor growth chamber, the natural oxide film on the surface of the InP substrate is removed under the P or As molecular beam. Next, InP or GaInAs is used to restore the flatness of the substrate surface.
Alternatively, a III-V group buffer layer 2 made of GaInAsP or the like is grown. Next, the substrate on which the III-V group buffer layer 2 was grown was transported to a II-VI group compound semiconductor growth chamber, and after the substrate temperature was stabilized at about 280 ° C., the MgZnSeTe layer 10 was grown ( For example, Blue Laser and Light Emitting Diode International Symposium (Chiba Univ.)
1996).

【0007】しかし、MgZnSeTeの場合、特にS
e組成が大きくなるにつれて混晶中で相分離が起きる傾
向が強まり、例えばフォトルミネッセンス(PL)で測
定されるバンドギャップエネルギーが光反射で測定され
るバンドギャップエネルギーよりも大幅に小さくなる等
の現象が観測され、発光素子へ応用した場合、素子抵抗
の増大や発光効率の低下の原因となっていた。さらに、
特にMgZnSeTeはII族元素、VI族元素ともに2つ
ずつで構成される混晶であるため、組成制御が難しく、
組成制御の再現性に問題があるなど、発光素子の製造上
の障害となっていた。
However, in the case of MgZnSeTe, in particular, S
As the e composition increases, the tendency for phase separation to occur in a mixed crystal increases, for example, a phenomenon in which the band gap energy measured by photoluminescence (PL) becomes significantly smaller than the band gap energy measured by light reflection. Was observed, and when applied to a light-emitting device, this caused an increase in device resistance and a decrease in luminous efficiency. further,
In particular, MgZnSeTe is a mixed crystal composed of two group II elements and two group VI elements, so that it is difficult to control the composition.
For example, there is a problem in reproducibility of composition control, which has been an obstacle in manufacturing a light emitting device.

【0008】また、InP基板上にMgZnCdSe混
晶を成長させる場合も、InP基板と格子整合させるた
めにはMg組成と同時にZn及びCdの組成も制御する
必要があるため、発光素子作製に要する労力を増大させ
ていた。MgZnCdSe4元混晶の代わりに、MgS
eとZnCdSeとの超格子を用いて擬似的にMgZn
CdSe4元混晶と同等の性質を持たせようとした報告
例もある(第58回応用物理学会学術講演会講演予稿
集,No.1,337頁,3a−V−6,1997
年)。この方法であれば、ZnCdSeの3元混晶の組
成制御だけで、あとはMgSe及びZnCdSeの層厚
の比率を変化させることでバンドギャップを制御できる
ため、組成制御にかかる労力の大幅な低減が期待され
た。
Also, when growing a MgZnCdSe mixed crystal on an InP substrate, it is necessary to control the composition of Zn and Cd simultaneously with the Mg composition in order to lattice-match with the InP substrate. Was increasing. Instead of MgZnCdSe quaternary mixed crystal, MgS
MgZn using a superlattice of ZnCdSe
There are also reports of attempts to provide properties equivalent to CdSe quaternary mixed crystals (The 58th Annual Meeting of the Japan Society of Applied Physics, Proc. Of No. 1, 337, 3a-V-6, 1997).
Year). According to this method, the band gap can be controlled only by controlling the composition of the ternary mixed crystal of ZnCdSe, and by changing the ratio of the layer thicknesses of MgSe and ZnCdSe, so that the labor required for controlling the composition can be greatly reduced. Was expected.

【0009】しかしながら、本発明者の実験結果では、
MgSeはInP基板との間に約0.6%の格子不整合
があり、MgSe/ZnCdSe超格子では格子歪によ
る結晶欠陥を生じやすいことが分かった。さらに、Mg
Seは反応性が高く、成長中に不純物と反応して欠陥を
形成したり、空気中で酸化して閉まったりするため、M
gSe/ZnCdSe超格子は、MgZnCdSe4元
混晶に比べて結晶品質が劣っていた。
However, according to the experimental results of the present inventors,
It has been found that MgSe has a lattice mismatch of about 0.6% with the InP substrate, and that the MgSe / ZnCdSe superlattice easily causes crystal defects due to lattice strain. Furthermore, Mg
Se is highly reactive, reacts with impurities during growth to form defects, or is oxidized in air to close.
The crystal quality of the gSe / ZnCdSe superlattice was inferior to that of the MgZnCdSe quaternary mixed crystal.

【0010】そこで、本発明の目的は、InP基板上
に、組成変動や相分離の無い均一で高品質なII−VI族化
合物半導体薄膜を、制御性良く容易に作製することであ
る。また、InP基板上に、長寿命で高出力な光デバイ
スの作製が可能な均一で高品質なII−VI族化合物半導体
薄膜を、再現性良く作製することである。
Therefore, an object of the present invention is to easily produce a uniform and high-quality II-VI compound semiconductor thin film without composition fluctuation or phase separation on an InP substrate with good controllability. Another object of the present invention is to produce a uniform and high quality II-VI group compound semiconductor thin film capable of producing a long-life, high-output optical device on an InP substrate with good reproducibility.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記の目的
を達成するために種々の検討を重ねた結果、下記(1)
〜(7)の発明を完成した。 (1)InP基板上に2種類のII−VI族3元混晶層A及
びBを交互に積層してなることを特徴とするInP基板
上II−VI族化合物半導体薄膜。 (2)II−VI族3元混晶層A及びBの各層厚がそれぞれ
臨界膜厚以下である(1)のInP基板上II−VI族化合
物半導体薄膜。 (3)II−VI族3元混晶層A及びBの各層厚がそれぞれ
臨界膜厚以下であり、かつII−VI族3元混晶層A及びB
からなるII−VI族混晶薄膜全体の厚さが臨界膜厚以下で
ある(1)のInP基板上II−VI族化合物半導体薄膜。 (4)II−VI族3元混晶層A及びBがInP基板と格子
整合している(1)〜(3)のInP基板上II−VI族化
合物半導体薄膜。
The present inventor has made various studies to achieve the above object, and as a result, the following (1)
To (7) have been completed. (1) A II-VI compound semiconductor thin film on an InP substrate, wherein two types of II-VI ternary mixed crystal layers A and B are alternately laminated on the InP substrate. (2) The II-VI compound semiconductor thin film on an InP substrate according to (1), wherein each layer thickness of the II-VI ternary mixed crystal layers A and B is equal to or less than the critical thickness. (3) The thickness of each of the II-VI ternary mixed crystal layers A and B is less than or equal to the critical thickness, and the II-VI ternary mixed crystal layers A and B are each
The II-VI compound semiconductor thin film on an InP substrate according to (1), wherein the total thickness of the II-VI mixed crystal thin film made of the following is not more than the critical thickness. (4) The II-VI compound semiconductor thin film on an InP substrate according to (1) to (3), wherein the II-VI ternary mixed crystal layers A and B are lattice-matched with the InP substrate.

【0012】(5)II−VI族3元混晶層A及びBが、Z
nCdSe、MgZnSe、ZnSeTe、ZnST
e、MgSSe、MgSTe、CdSSe、CdST
e、BeZnTe、BeCdTe、BeCdSe、Be
MgTe、BeMgSe、BeMnSe、BeMnT
e、BeHgSe、BeHgTe、ZnMnSe、Mn
SSe、MnSTe、ZnHgSe、HgSTe及びH
gSSeから選ばれる2つの3元混晶である(1)〜
(4)のInP基板上II−VI族化合物半導体薄膜。
(5) The II-VI group ternary mixed crystal layers A and B are
nCdSe, MgZnSe, ZnSeTe, ZnST
e, MgSSe, MgSTe, CdSSe, CdST
e, BeZnTe, BeCdTe, BeCdSe, Be
MgTe, BeMgSe, BeMnSe, BeMnT
e, BeHgSe, BeHgTe, ZnMnSe, Mn
SSe, MnSTe, ZnHgSe, HgSTe and H
Two ternary mixed crystals selected from gSSe (1)-
(4) A group II-VI compound semiconductor thin film on an InP substrate.

【0013】(6)II−VI族3元混晶層AがMgZnS
e層であり、II−VI族3元混晶層BがZnSeTe層で
ある(1)〜(5)のInP基板上II−VI族化合物半導
体薄膜。 (7)II−VI族3元混晶層AがMgZnSe層であり、
II−VI族3元混晶層BがZnCdSe層である(1)〜
(5)のInP基板上II−VI族化合物半導体薄膜。
(6) The II-VI group ternary mixed crystal layer A is made of MgZnS
The II-VI compound semiconductor thin film on an InP substrate according to any one of (1) to (5), wherein the e-layer is a II-VI ternary mixed crystal layer B is a ZnSeTe layer. (7) The II-VI ternary mixed crystal layer A is a MgZnSe layer,
Group II-VI ternary mixed crystal layer B is a ZnCdSe layer (1)-
(5) Group II-VI compound semiconductor thin film on InP substrate.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。 [実施形態1]図1に、本発明におけるInP基板上II
−VI族化合物半導体薄膜の基本的な層構造を示す。本実
施形態の半導体薄膜は、III−V族化合物半導体成長室に
おいてInP基板1上に、III−V族バッファ層2を堆積
させ、これを真空搬送機構を介してII−VI族化合物半導
体成長室に移送し、II−VI族3元混晶A層3及びB層4
を交互に積層することにより得られる。
Embodiments of the present invention will be described below in detail with reference to the drawings. [Embodiment 1] FIG. 1 shows an InP substrate II according to the present invention.
1 shows a basic layer structure of a group VI compound semiconductor thin film. In the semiconductor thin film of the present embodiment, a III-V group buffer layer 2 is deposited on an InP substrate 1 in a III-V group compound semiconductor growth chamber, and this is deposited via a vacuum transfer mechanism. And the II-VI ternary mixed crystal A layer 3 and B layer 4
Are alternately laminated.

【0015】上記II-VI族3元混晶A層3及びB層4に
3元混晶を用いているため、2元化合物に比べて格子定
数をInP基板1に近づけることができ、欠陥が入りに
くくなり、酸化などの変質が起こりにくくなる。また、
上記構成とすることにより、InP基板1上に上記II−
VI族3元混晶A及びBの成分を全て含む4元、5元又は
6元混晶を成長させる場合に比べ、組成の変動や相分離
等が起こりにくく、また組成制御性も著しく向上するた
め作業が容易となり、再現性良く高品質なII−VI族化合
物半導体薄膜が得られる。
Since a ternary mixed crystal is used for the II-VI ternary mixed crystal A layer 3 and the B layer 4, the lattice constant can be made closer to that of the InP substrate 1 as compared with the binary compound, and defects can be reduced. It becomes difficult to enter, and deterioration such as oxidation hardly occurs. Also,
With the above configuration, the II-
Compared with the case of growing a quaternary, quinary or hexagonal mixed crystal containing all the components of the group VI ternary mixed crystal A and B, composition fluctuation and phase separation are less likely to occur, and composition controllability is significantly improved. Therefore, the work becomes easy, and a high-quality II-VI compound semiconductor thin film with good reproducibility can be obtained.

【0016】[実施形態2]図2に、本発明のさらに具
体的なInP基板上II−VI族化合物半導体薄膜の層構造
を示す。まず、III−V族化合物半導体成長室においてP
分子線照射下でInP基板1表面の自然酸化膜を除去
し、続いてInPバッファ層5を成長させた。この基板
を真空搬送機構を介してII−VI族化合物半導体成長室に
移送し、厚さ約10nmのZnCdSeバッファ層6を
堆積させてから、ZnSeTe層7とMgZnSe層8
を交互に500周期積層した。
[Embodiment 2] FIG. 2 shows a more specific layer structure of a II-VI compound semiconductor thin film on an InP substrate of the present invention. First, in a III-V compound semiconductor growth chamber, P
The natural oxide film on the surface of the InP substrate 1 was removed under irradiation with a molecular beam, and then an InP buffer layer 5 was grown. This substrate is transferred to a group II-VI compound semiconductor growth chamber via a vacuum transfer mechanism, and a ZnCdSe buffer layer 6 having a thickness of about 10 nm is deposited, and then a ZnSeTe layer 7 and a MgZnSe layer 8 are deposited.
Were alternately laminated for 500 periods.

【0017】InP基板1上にTeを含む混晶を成長さ
せる場合、InとTeとが結合して3次元核を形成しや
すいため、平坦性の良い膜を得るためにはZnCdSe
バッファ層6が有効である。また、InP基板にMgを
含む混晶を成長させる場合も、Mgは表面の残留不純物
等と反応し易いため、ZnCdSeバッファ層6は平坦
性の良い膜を得る上で有効である。このZnCdSeバ
ッファ層6の層厚は、その上に積層するII−VI族化合物
半導体層の結晶品質を考えると、InP基板に対する格
子不整合量で決まる臨界膜厚以下にすることが望まし
い。また、ZnCdSeバッファ層6の組成は、InP
基板と格子整合する組成Zn0.48Cd0.52Se
とすることが最も望ましい。
When growing a mixed crystal containing Te on the InP substrate 1, In and Te are easily combined to form a three-dimensional nucleus. Therefore, in order to obtain a film with good flatness, ZnCdSe is required.
The buffer layer 6 is effective. Also, when growing a mixed crystal containing Mg on the InP substrate, Mg easily reacts with residual impurities on the surface and the like, so that the ZnCdSe buffer layer 6 is effective in obtaining a film with good flatness. Considering the crystal quality of the II-VI compound semiconductor layer laminated thereon, the thickness of the ZnCdSe buffer layer 6 is desirably not more than the critical thickness determined by the amount of lattice mismatch with the InP substrate. The composition of the ZnCdSe buffer layer 6 is InP
Composition Zn0.48Cd0.52Se lattice-matched to substrate
Is most desirable.

【0018】MgZnSe層7及びZnSeTe層8の
膜厚は、InP基板1との間の格子不整合による結晶欠
陥が発生しないように臨界膜厚以下とした。具体的に
は、MgZnSe層7の組成はMg0.7Zn0.3S
eでInP基板との間には約−0.57%の格子不整合
があるため、MgZnSe層7の層厚はこの場合の臨界
膜厚である40nm以下の1nmとした。また、ZnS
eTe層8の組成はZnSe0.4Te0.6でInP
基板との間には約+1.0%の格子不整合があるため、
ZnSeTe層8の層厚はこの場合の臨界膜厚である2
0nm以下の1nmとした。なお、ZnCdSe、Mg
ZnSe及びZnSeTeの臨界膜厚は、InP基板と
の間の格子不整合の大きさにより変化し、例えばMatthe
wsとBlakesleeにより検討されたジャーナル・オブ・ク
リスタル・グロウス(J.Cryst.Growth,27巻,118
ページ,1974年)に掲載の力学的平衡理論により計
算できる。
The thicknesses of the MgZnSe layer 7 and the ZnSeTe layer 8 are set to be equal to or less than the critical thickness so that crystal defects due to lattice mismatch with the InP substrate 1 do not occur. Specifically, the composition of the MgZnSe layer 7 is Mg0.7Zn0.3S
e, there is about -0.57% lattice mismatch with the InP substrate. Therefore, the layer thickness of the MgZnSe layer 7 was set to 1 nm, which is 40 nm or less, which is the critical thickness in this case. Also, ZnS
The composition of the eTe layer 8 is ZnSe0.4Te0.6 and InP
Since there is about + 1.0% lattice mismatch with the substrate,
The thickness of the ZnSeTe layer 8 is the critical thickness in this case, 2
The thickness was set to 1 nm which is equal to or less than 0 nm. Note that ZnCdSe, Mg
The critical film thickness of ZnSe and ZnSeTe changes depending on the magnitude of lattice mismatch with the InP substrate.
J. Cryst. Growth, 27, 118, reviewed by ws and Blakeslee
Page, 1974).

【0019】このようにして作製した該擬似4元混晶Z
nSe0.4Te0.6/Mg0.7Zn0.3Se、
及び、該擬似4元混晶と等価的に同じ組成をもつ4元混
晶Mg0.35Zn0.65Se0.7Te0.3の光
反射測定を行ったところ、反射スペクトルのファブリペ
ロー干渉の振動が始まる両者の波長はほぼ一致し、両者
のバンドギャップエネルギーはほぼ等しいことが確かめ
られた。PL測定では、該ZnSeTe/MgZnSe
擬似4元混晶のピークエネルギーは、光反射測定で見積
もられたバンドギャップエネルギーにほぼ等しく、4元
混晶MgZnSeTeで見られたような相分離や組成変
動の無い均一なII−VI族化合物半導体薄膜が得られてい
ることが確かめられた。以上のことは、従来のInP基
板上II−VI族発光素子中に用いられていた4元混晶Mg
ZnSeTeの代わりに、該擬似4元混晶ZnSeTe
/MgZnSeを用いることができることを意味する。
The pseudo-quaternary mixed crystal Z thus produced
nSe0.4Te0.6 / Mg0.7Zn0.3Se,
When the light reflection measurement of the quaternary mixed crystal Mg0.35Zn0.65Se0.7Te0.3 having the same composition as the pseudo-quaternary mixed crystal was performed, the oscillation of the Fabry-Perot interference of the reflection spectrum was started. It was confirmed that the wavelengths were almost the same, and the band gap energies of both were almost the same. In the PL measurement, the ZnSeTe / MgZnSe
The peak energy of the quasi-quaternary mixed crystal is almost equal to the band gap energy estimated by light reflection measurement, and a uniform II-VI compound without phase separation and composition fluctuation as seen in the quaternary mixed crystal MgZnSeTe It was confirmed that a semiconductor thin film was obtained. The above is because the quaternary mixed crystal Mg used in the conventional II-VI group light emitting device on the InP substrate was used.
Instead of ZnSeTe, the pseudo-quaternary mixed crystal ZnSeTe
/ MgZnSe can be used.

【0020】[実施形態3]本実施形態では、前記擬似
4元混晶層ZnSeTe/MgZnSe全体の層厚が臨
界膜厚以下になるように、実施形態2におけるMgZn
Se層7を、InP基板に対して約−1.0%の格子不
整合のある組成Mg0.6Zn0.4Seに変更した。
これにより、擬似4元混晶全体でInP基板に対して格
子整合することとなり、格子不整合による結晶欠陥の発
生が抑制され、高品質なII−VI族化合物半導体薄膜が得
られた。
[Embodiment 3] In the present embodiment, the MgZn in Embodiment 2 is set so that the total thickness of the pseudo-quaternary mixed crystal layer ZnSeTe / MgZnSe is equal to or less than the critical thickness.
The Se layer 7 was changed to a composition Mg0.6Zn0.4Se having a lattice mismatch of about -1.0% with respect to the InP substrate.
As a result, the entire pseudo-quaternary mixed crystal was lattice-matched to the InP substrate, the generation of crystal defects due to the lattice mismatch was suppressed, and a high-quality II-VI compound semiconductor thin film was obtained.

【0021】[実施形態4]本実施形態では、実施形態
2におけるZnSeTe層8の組成をInP基板と格子
整合する組成ZnSe0.54Te0.46に変更し、
実施形態2におけるMgZnSe層7の組成をInP基
板と格子整合する組成Mg0.84Zn0.16Seに
変更した。これにより、格子不整合による結晶欠陥の発
生が全く無くなり、高品質なII−VI族化合物半導体薄膜
が得られた。
[Embodiment 4] In the present embodiment, the composition of the ZnSeTe layer 8 in Embodiment 2 is changed to a composition ZnSe0.54Te0.46 which lattice-matches with the InP substrate.
The composition of the MgZnSe layer 7 in the second embodiment was changed to the composition Mg0.84Zn0.16Se that lattice-matches with the InP substrate. Thereby, generation of crystal defects due to lattice mismatch was completely eliminated, and a high-quality II-VI compound semiconductor thin film was obtained.

【0022】[実施形態5]本実施形態では、MgZn
Se層とZnCdSe層とを交互に積層させた擬似4元
混晶について説明する。図3に、本発明の具体的なIn
P基板上II−VI族化合物半導体薄膜の層構造を示す。ま
ず、III−V族化合物半導体成長室においてP分子線照射
下でInP基板1表面の自然酸化膜を除去し、続いてI
nPバッファ層5を成長させた。この基板を真空搬送機
構を介してII−VI族化合物半導体成長室に移送し、厚さ
約10nmのZnCdSeバッファ層6を堆積させてか
ら、MgZnSe層7とZnCdSe層9とを交互に5
00周期積層した。
[Embodiment 5] In this embodiment, MgZn
A pseudo quaternary mixed crystal in which Se layers and ZnCdSe layers are alternately stacked will be described. FIG. 3 shows the specific In of the present invention.
1 shows a layer structure of a II-VI compound semiconductor thin film on a P substrate. First, the natural oxide film on the surface of the InP substrate 1 is removed under P molecular beam irradiation in a III-V compound semiconductor growth chamber.
An nP buffer layer 5 was grown. The substrate is transferred to a group II-VI compound semiconductor growth chamber via a vacuum transfer mechanism, and a ZnCdSe buffer layer 6 having a thickness of about 10 nm is deposited. Then, a MgZnSe layer 7 and a ZnCdSe layer 9 are alternately formed.
00 cycles were stacked.

【0023】InP基板上にMgを含む混晶を成長させ
る場合、Mgは表面の残留不純物等と反応し易いため、
ZnCdSeバッファ層6は平坦性の良い膜を得る上で
有効である。このZnCdSeバッファ層6の層厚は、
その上に積層するII−VI族化合物半導体層の結晶品質を
考えると、InP基板に対する格子不整合量で決まる臨
界膜厚以下にすることが望ましい。また、ZnCdSe
バッファ層6の組成は、InP基板と格子整合する組成
Zn0.48Cd0.52Seとすることが最も望まし
い。
When a mixed crystal containing Mg is grown on an InP substrate, Mg easily reacts with residual impurities on the surface.
The ZnCdSe buffer layer 6 is effective in obtaining a film with good flatness. The thickness of the ZnCdSe buffer layer 6 is:
Considering the crystal quality of the II-VI compound semiconductor layer laminated thereon, it is desirable that the thickness be equal to or less than the critical thickness determined by the amount of lattice mismatch with the InP substrate. Also, ZnCdSe
Most preferably, the composition of the buffer layer 6 is a composition Zn0.48Cd0.52Se that lattice-matches with the InP substrate.

【0024】MgZnSe層7及びZnCdSe層9の
膜厚は、InP基板1との間の格子不整合による結晶欠
陥が発生しないように臨界膜厚以下とした。具体的に
は、MgZnSe層7の組成はMg0.7Zn0.3S
eでInP基板との間には約−0.57%の格子不整合
があるため、MgZnSe層7の層厚はこの場合の臨界
膜厚である40nm以下の1nmとした。また、ZnC
dSe層9の組成はZn0.63Cd0.37SeでI
nP基板との間には約+1.0%の格子不整合があるた
め、ZnCdSe層9の層厚はこの場合の臨界膜厚であ
る20nm以下の1nmとした。
The thicknesses of the MgZnSe layer 7 and the ZnCdSe layer 9 are set to be equal to or less than the critical thickness so that crystal defects due to lattice mismatch with the InP substrate 1 do not occur. Specifically, the composition of the MgZnSe layer 7 is Mg0.7Zn0.3S
e, there is about -0.57% lattice mismatch with the InP substrate. Therefore, the layer thickness of the MgZnSe layer 7 was set to 1 nm, which is 40 nm or less, which is the critical thickness in this case. Also, ZnC
The composition of the dSe layer 9 is Zn0.63Cd0.37Se and I
Since there is about + 1.0% lattice mismatch with the nP substrate, the layer thickness of the ZnCdSe layer 9 was set to 1 nm, which is 20 nm or less, which is the critical thickness in this case.

【0025】このようにして作製した該擬似4元混晶Z
n0.63Cd0.37Se/Mg0.7Zn0.3S
e、及び、該擬似4元混晶と等価的に同じ組成をもつ4
元混晶Mg0.35Zn0.465Cd0.185Se
の光反射測定を行ったところ、反射スペクトルのファブ
リペロー干渉の振動が始まる両者の波長はほぼ一致し、
両者のバンドギャップエネルギーはほぼ等しいことが確
かめられた。また、PL測定でも、該ZnCdSe/M
gZnSe擬似4元混晶のピークエネルギーは、光反射
測定で見積もられたバンドギャップエネルギーにほぼ等
しく、相分離や組成変動の無い均一なII−VI族化合物半
導体薄膜が得られていることが確かめられた。以上の結
果は、従来のInP基板上II−VI族発光素子中に用いら
れていた4元混晶MgZnCdSeの代わりに、該擬似
4元混晶ZnCdSe/MgZnSeを用いることがで
きることを意味する。
The pseudo quaternary mixed crystal Z thus produced
n0.63Cd0.37Se / Mg0.7Zn0.3S
e and 4 having the same composition as the pseudo quaternary mixed crystal
Original mixed crystal Mg0.35Zn0.465Cd0.185Se
When the light reflection measurement was performed, the two wavelengths at which the oscillation of the Fabry-Perot interference of the reflection spectrum started almost matched,
It was confirmed that the band gap energies of both were almost equal. Also, in the PL measurement, the ZnCdSe / M
The peak energy of the gZnSe pseudo quaternary mixed crystal is almost equal to the band gap energy estimated by light reflection measurement, and it is confirmed that a uniform II-VI compound semiconductor thin film without phase separation or composition fluctuation is obtained. Was done. The above results indicate that the quaternary mixed crystal ZnCdSe / MgZnSe can be used instead of the quaternary mixed crystal MgZnCdSe used in the conventional II-VI group light emitting device on the InP substrate.

【0026】[実施形態6]本実施形態では、実施形態
5における擬似4元混晶層ZnSeTe/MgZnSe
全体の層厚が臨界膜厚以下になるように、実施形態5に
おけるMgZnSe層7を、InP基板1に対して約−
1.0%の格子不整合のある組成Mg0.6Zn0.4
Seに変更した。これにより、擬似4元混晶全体でIn
P基板に対して格子整合することとなり、格子不整合に
よる結晶欠陥の発生が抑制され、高品質なII−VI族化合
物半導体薄膜が得られた。
[Embodiment 6] In the present embodiment, the pseudo quaternary mixed crystal layer ZnSeTe / MgZnSe of Embodiment 5 is used.
The MgZnSe layer 7 according to the fifth embodiment is applied to the InP substrate 1 by about-
Composition with lattice mismatch of 1.0% Mg0.6Zn0.4
Changed to Se. As a result, In the pseudo quaternary mixed crystal as a whole
Lattice matching was achieved with the P substrate, and generation of crystal defects due to lattice mismatch was suppressed, and a high-quality II-VI compound semiconductor thin film was obtained.

【0027】[実施形態7]本実施形態では、実施形態
5におけるZnCdSe層9の組成をInP基板1と格
子整合する組成ZnSe0.54Te0.46に変更
し、実施形態5におけるMgZnSe層7の組成をIn
P基板と格子整合する組成Mg0.84Zn0.16S
eに変更した。これにより、格子不整合による結晶欠陥
の発生が全く無くなり、高品質なII−VI族化合物半導体
薄膜が得られた。
[Embodiment 7] In the present embodiment, the composition of the ZnCdSe layer 9 in the fifth embodiment is changed to a composition ZnSe0.54Te0.46 that lattice-matches with the InP substrate 1, and the composition of the MgZnSe layer 7 in the fifth embodiment is changed. In
Composition Mg0.84Zn0.16S lattice-matched with P substrate
e. Thereby, generation of crystal defects due to lattice mismatch was completely eliminated, and a high-quality II-VI compound semiconductor thin film was obtained.

【0028】上記実施形態2〜7においては、擬似4元
混晶を構成する3元混晶層の各層厚をそれぞれ1nmず
つとしたが、各層厚の比率を変化させることにより、任
意の組成の擬似4元混晶を実現することが可能である。
その場合、擬似4元混晶を構成する3元混晶層の層厚
は、基板との格子不整合量で決まる臨界膜厚以下にする
ことが望ましく、基板と格子整合していることが最も望
ましい。また、同等の組成をもつ4元混晶に近いバンド
ギャップを有する擬似4元混晶を得るためには、擬似4
元混晶を構成する3元混晶層の各層厚は、およそ5nm
以下程度にすることが望ましい。
In Embodiments 2 to 7, the thickness of each of the ternary mixed crystal layers constituting the pseudo quaternary mixed crystal is set to 1 nm, but by changing the ratio of the respective layer thicknesses, an arbitrary composition can be obtained. It is possible to realize a pseudo quaternary mixed crystal.
In this case, the thickness of the ternary mixed crystal layer constituting the pseudo quaternary mixed crystal is desirably equal to or less than the critical thickness determined by the amount of lattice mismatch with the substrate, and most preferably lattice matched with the substrate. desirable. In order to obtain a pseudo quaternary mixed crystal having a band gap close to that of a quaternary mixed crystal having an equivalent composition, it is necessary to use a pseudo quaternary mixed crystal.
Each layer thickness of the ternary mixed crystal layer constituting the ternary mixed crystal is about 5 nm.
It is desirable to make it below.

【0029】また、MgSeは反応性が強く結晶欠陥を
発生しやすいのに対し、上記実施形態中で用いたMgZ
nSe層は、MgSeにZnが混ざることによって結晶
の安定性が増し、結晶欠陥の少ない混晶層が容易に得ら
れる。
Also, MgSe is highly reactive and easily generates crystal defects, whereas MgZe used in the above embodiment is used.
In the nSe layer, crystal stability is increased by mixing Zn with MgSe, and a mixed crystal layer with few crystal defects can be easily obtained.

【0030】なお、以上の実施形態では、InP基板上
のZnSeTeとMgZnSeを用いた擬似4元混晶、
及び、ZnCdSeとMgZnSeを用いた擬似4元混
晶について説明したが、本発明は、ZnCdSe、Mg
ZnSe、ZnSeTe、ZnSTe、MgSSe、M
gSTe、CdSSe、CdSTe、BeZnTe、B
eCdTe、BeCdSe、BeMgTe、BeMgS
e、BeMnSe、BeMnTe、BeHgSe、Be
HgTe、ZnMnSe、MnSSe、MnSTe、Z
nHgSe、HgSTe、HgSSeの3元混晶のうち
の任意の二つの組み合わせで構成させる擬似4元、擬似
5元又は擬似6元混晶の作製に全て適用可能であり、こ
れらのII−VI族化合物半導体層の伝導型や添加不純物の
種類によらず効果がある。
In the above embodiment, a pseudo-quaternary mixed crystal using ZnSeTe and MgZnSe on an InP substrate,
Also, a pseudo quaternary mixed crystal using ZnCdSe and MgZnSe has been described.
ZnSe, ZnSeTe, ZnSTe, MgSSe, M
gSTe, CdSSe, CdSTe, BeZnTe, B
eCdTe, BeCdSe, BeMgTe, BeMgS
e, BeMnSe, BeMnTe, BeHgSe, Be
HgTe, ZnMnSe, MnSSe, MnSTe, Z
The present invention can be applied to the production of pseudoquaternary, pseudoquinary or pseudoquaternary mixed crystals composed of any two of the ternary mixed crystals of nHgSe, HgSTe, and HgSSe. The effect is obtained irrespective of the conductivity type of the semiconductor layer and the type of the added impurity.

【0031】また、上記実施例中で用いたInP基板上
のIII−V族化合物半導体バッファ層としては、InPの
他に、GaInAs、GaInAsP、AlInAs、
AlGaInP及びこれらを組み合わせたバッファ層な
どが考えられ、これらは自然酸化膜除去後のInP基板
表面の平坦性を回復させ、その上に積層させるII−VI族
化合物半導体薄膜の品質を向上させるのに有効である
が、これらのIII−V族バッファ層が無くても本発明は効
果がある。
As the III-V compound semiconductor buffer layer on the InP substrate used in the above embodiment, in addition to InP, GaInAs, GaInAsP, AlInAs,
AlGaInP and a buffer layer obtained by combining them are conceivable. These are used for restoring the flatness of the surface of the InP substrate after removing the native oxide film and improving the quality of the II-VI compound semiconductor thin film laminated thereon. Although effective, the present invention is effective even without these III-V group buffer layers.

【0032】InP以外のIII−V族バッファ層を用いる
場合、III−V族バッファ層の層厚は、その上に積層する
II−VI族化合物半導体層の結晶品質を考えると、InP
基板に対する格子不整合量で決まる臨界膜厚以下の厚さ
にすることが望ましく、またInP基板と格子整合する
ことが最も望ましい。ZnCdSeバッファ層も、同様
にその上に積層させるII−VI族化合物半導体薄膜の品質
を向上させるのに有効であるが、ZnCdSeバッファ
層が無くても本発明は効果がある。さらに、ZnCdS
eバッファ層の代わりに他のII−VI族化合物半導体をバ
ッファ層として用いた場合も、本発明は効果がある。そ
の場合、II−VI族化合物半導体バッファ層の層厚は、そ
の上に積層するII−VI族化合物半導体層の結晶品質を考
えると、InP基板に対する格子不整合量で決まる臨界
膜厚以下の厚さにすることが望ましく、またInP基板
と格子整合することが最も望ましい。なお、前記実施形
態例においては、MBE法によるII−VI族化合物半導体
薄膜の製造方法について説明したが、有機金属気相成長
法(MOVPE法、MOCVD法)や他の結晶成長法を
用いてもよい。
When a group III-V buffer layer other than InP is used, the layer thickness of the group III-V buffer layer is laminated on the buffer layer.
Considering the crystal quality of the II-VI compound semiconductor layer, InP
It is desirable that the thickness be equal to or less than the critical thickness determined by the amount of lattice mismatch with the substrate, and it is most desirable that the lattice match with the InP substrate be made. The ZnCdSe buffer layer is also effective for improving the quality of the II-VI compound semiconductor thin film laminated thereon, but the present invention is effective even without the ZnCdSe buffer layer. Further, ZnCdS
The present invention is also effective when another II-VI compound semiconductor is used as the buffer layer instead of the e-buffer layer. In this case, considering the crystal quality of the II-VI compound semiconductor layer laminated thereon, the layer thickness of the II-VI compound semiconductor buffer layer is equal to or less than the critical thickness determined by the amount of lattice mismatch with the InP substrate. And lattice matching with the InP substrate is most desirable. In the above embodiment, the method of manufacturing a II-VI group compound semiconductor thin film by the MBE method has been described. However, a metal organic chemical vapor deposition method (MOVPE method, MOCVD method) or another crystal growth method may be used. Good.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
のように、InP基板上、又はInP基板上のIII−V族
化合物半導体バッファ層上に、2種類のII−VI族3元混
晶層を交互に積層して、4元以上のII−VI族擬似混晶を
作製することによって、相分離や組成変動の無い均一で
かつ高品質なII−VI族化合物半導体薄膜が得られる。ま
た、組み合わせる2種類の3元混晶の層厚を変化させる
だけで、任意の組成の4元以上の混晶が得られるため、
組成制御性が格段に改善される。そのため、この半導体
薄膜を用いることによって、長寿命で高出力な光デバイ
スを容易に作製することが可能である。
As is apparent from the above description, according to the present invention, two types of II-VI ternary mixed layers are formed on an InP substrate or a III-V compound semiconductor buffer layer on an InP substrate. By alternately stacking crystal layers to produce a quaternary II-VI group pseudo-mixed crystal, a uniform and high-quality II-VI compound semiconductor thin film without phase separation or composition fluctuation can be obtained. In addition, a quaternary mixed crystal having an arbitrary composition can be obtained only by changing the layer thickness of the two types of ternary mixed crystals to be combined.
Composition controllability is significantly improved. Therefore, by using this semiconductor thin film, an optical device having a long life and high output can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るII−VI族化合物半導体薄膜の層構
造の一例を示す図である。
FIG. 1 is a diagram showing an example of a layer structure of a II-VI compound semiconductor thin film according to the present invention.

【図2】本発明に係るII−VI族化合物半導体薄膜の層構
造の一例を示す図である。
FIG. 2 is a diagram showing an example of a layer structure of a II-VI compound semiconductor thin film according to the present invention.

【図3】本発明に係るII−VI族化合物半導体薄膜の層構
造の一例を示す図である。
FIG. 3 is a diagram showing an example of a layer structure of a II-VI compound semiconductor thin film according to the present invention.

【図4】従来のII−VI族化合物半導体薄膜の層構造の一
例を示す図である。
FIG. 4 is a diagram showing an example of a layer structure of a conventional II-VI group compound semiconductor thin film.

【符号の説明】[Explanation of symbols]

1 InP基板 2 III−V族バッファ層 3 II−VI族3元混晶A層 4 II−VI族3元混晶B層 5 InPバッファ層 6 ZnCdSeバッファ層 7 MgZnSe層 8 ZnSeTe層 9 ZnCdSe層 10 MgZnSeTe層 Reference Signs List 1 InP substrate 2 III-V group buffer layer 3 II-VI group ternary mixed crystal A layer 4 II-VI group ternary mixed crystal B layer 5 InP buffer layer 6 ZnCdSe buffer layer 7 MgZnSe layer 8 ZnSeTe layer 9 ZnCdSe layer 10 MgZnSeTe layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/20 - 21/208 H01L 21/36 - 21/368 H01S 5/00 - 5/50 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 33/00 H01L 21/20-21/208 H01L 21/36-21/368 H01S 5/00-5 / 50

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 InP基板上に2種類のII−VI族3元混
晶層A及びBを交互に積層し、4元以上の疑似多元II−
VI族混晶を形成してなることを特徴とするInP基板上
II−VI族化合物半導体薄膜。
1. A quasi- multi - element II-VI ternary mixed crystal layer having two or more II-VI ternary mixed crystal layers A and B alternately laminated on an InP substrate.
On an InP substrate characterized by forming a group VI mixed crystal
II-VI compound semiconductor thin film.
【請求項2】 前記II−VI族3元混晶層A及びBの各層
厚がそれぞれ臨界膜厚以下である請求項1に記載のIn
P基板上II−VI族化合物半導体薄膜。
2. The In according to claim 1, wherein each of the II-VI ternary mixed crystal layers A and B has a thickness less than a critical thickness.
II-VI compound semiconductor thin film on P substrate.
【請求項3】 前記II−VI族3元混晶層A及びBの各層
厚がそれぞれ臨界膜厚以下であり、かつ前記II−VI族3
元混晶層A及びBからなる4元以上の疑似多元II−VI族
混晶薄膜全体の厚さが臨界膜厚以下である請求項1に記
載のInP基板上II−VI族化合物半導体薄膜。
3. The II-VI ternary mixed crystal layers A and B each have a thickness less than or equal to a critical thickness, and
Based mixed crystal layer A and quaternary or pseudo multiple group II-VI InP substrate II-VI compound semiconductor thin film according to claim 1 the total thickness of the mixed crystal thin film is equal to or less than the critical thickness consisting of B.
【請求項4】 前記II−VI族3元混晶層A及びBがIn
P基板と格子整合している請求項1、2又は3に記載の
InP基板上II−VI族化合物半導体薄膜。
4. The II-VI group ternary mixed crystal layers A and B are In
4. The group II-VI compound semiconductor thin film on an InP substrate according to claim 1, which is lattice-matched with a P substrate.
【請求項5】 前記II−VI族3元混晶層A及びBが、Z
nCdSe、MgZnSe、ZnSeTe、ZnST
e、MgSSe、MgSTe、CdSSe、CdST
e、BeZnTe、BeCdTe、BeCdSe、Be
MgTe、BeMgSe、BeMnSe、BeMnT
e、BeHgSe、BeHgTe、ZnMnSe、Mn
SSe、MnSTe、ZnHgSe、HgSTe及びH
gSSeから選ばれる2つの3元混晶である請求項1〜
4のいずれか1項に記載のInP基板上II−VI族化合物
半導体薄膜。
5. The ternary II-VI mixed crystal layer A and B
nCdSe, MgZnSe, ZnSeTe, ZnST
e, MgSSe, MgSTe, CdSSe, CdST
e, BeZnTe, BeCdTe, BeCdSe, Be
MgTe, BeMgSe, BeMnSe, BeMnT
e, BeHgSe, BeHgTe, ZnMnSe, Mn
SSe, MnSTe, ZnHgSe, HgSTe and H
2. A ternary mixed crystal selected from gSSe.
5. A II-VI compound semiconductor thin film on an InP substrate according to any one of 4.
【請求項6】 II−VI族3元混晶層AがMgZnSe層
であり、II−VI族3元混晶層BがZnSeTe層である
請求項1〜5のいずれか1項に記載のInP基板上II−
VI族化合物半導体薄膜。
6. The InP according to claim 1, wherein the II-VI ternary mixed crystal layer A is a MgZnSe layer, and the II-VI ternary mixed crystal layer B is a ZnSeTe layer. On board II-
Group VI compound semiconductor thin film.
【請求項7】 II−VI族3元混晶層AがMgZnSe層
であり、II−VI族3元混晶層BがZnCdSe層である
請求項1〜5のいずれか1項に記載のInP基板上II−
VI族化合物半導体薄膜。
7. The InP according to claim 1, wherein the II-VI ternary mixed crystal layer A is a MgZnSe layer, and the II-VI ternary mixed crystal layer B is a ZnCdSe layer. On board II-
Group VI compound semiconductor thin film.
JP7775798A 1998-03-25 1998-03-25 II-VI compound semiconductor thin film on InP substrate Expired - Fee Related JP3334598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7775798A JP3334598B2 (en) 1998-03-25 1998-03-25 II-VI compound semiconductor thin film on InP substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7775798A JP3334598B2 (en) 1998-03-25 1998-03-25 II-VI compound semiconductor thin film on InP substrate

Publications (2)

Publication Number Publication Date
JPH11274565A JPH11274565A (en) 1999-10-08
JP3334598B2 true JP3334598B2 (en) 2002-10-15

Family

ID=13642810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7775798A Expired - Fee Related JP3334598B2 (en) 1998-03-25 1998-03-25 II-VI compound semiconductor thin film on InP substrate

Country Status (1)

Country Link
JP (1) JP3334598B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126160B2 (en) * 2004-06-18 2006-10-24 3M Innovative Properties Company II-VI/III-V layered construction on InP substrate
US7119377B2 (en) * 2004-06-18 2006-10-10 3M Innovative Properties Company II-VI/III-V layered construction on InP substrate
JP5117114B2 (en) * 2007-06-04 2013-01-09 ソニー株式会社 Semiconductor element
JP5028177B2 (en) * 2007-07-25 2012-09-19 ソニー株式会社 Semiconductor element
JP2011507273A (en) * 2007-12-10 2011-03-03 スリーエム イノベイティブ プロパティズ カンパニー Semiconductor light emitting device and manufacturing method thereof
US8385380B2 (en) 2008-09-04 2013-02-26 3M Innovative Properties Company Monochromatic light source
EP2332223A1 (en) 2008-09-04 2011-06-15 3M Innovative Properties Company I i-vi mqw vcsel on a heat sink optically pumped by a gan ld

Also Published As

Publication number Publication date
JPH11274565A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
US5341001A (en) Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode
US5081632A (en) Semiconductor emitting device
US7772586B2 (en) Optical semiconductor devices on InP substrate
JPH0652807B2 (en) Quaternary II-VI group materials for photon devices
US20090321781A1 (en) Quantum dot device and method of making the same
JP2564024B2 (en) Compound semiconductor light emitting device
JPH04199752A (en) Compound semiconductor light-emitting element and manufacture thereof
JP2685377B2 (en) Compound semiconductor light emitting device
KR100274521B1 (en) Single Quantum Well II-VI Laser Diode Without Cladding Layer
US5268918A (en) Semiconductor laser
JP3334598B2 (en) II-VI compound semiconductor thin film on InP substrate
US5299217A (en) Semiconductor light-emitting device with cadmium zinc selenide layer
JP2803722B2 (en) Semiconductor device and manufacturing method thereof
JP3192560B2 (en) Semiconductor light emitting device
US6072202A (en) II-VI compound semiconductor device with III-V buffer layer
JP2000261037A (en) Semiconductor light emitting device
JP2653901B2 (en) Compound semiconductor light emitting device
JP2653904B2 (en) Compound semiconductor light emitting device
JPH09129920A (en) Iii-v compound semiconductor for light emitting device and light emitting device
JPH0410669A (en) Semiconductor device
Dylewicz et al. Applications of GaN-based materials in modern optoelectronics
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
Schetzina Photoassisted MBE growth of II–VI films and superlattices
JP3405552B2 (en) Optical semiconductor device
JP2540229B2 (en) Compound semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees