JPH0475875B2 - - Google Patents

Info

Publication number
JPH0475875B2
JPH0475875B2 JP17051887A JP17051887A JPH0475875B2 JP H0475875 B2 JPH0475875 B2 JP H0475875B2 JP 17051887 A JP17051887 A JP 17051887A JP 17051887 A JP17051887 A JP 17051887A JP H0475875 B2 JPH0475875 B2 JP H0475875B2
Authority
JP
Japan
Prior art keywords
carbon
hard carbon
gas
cemented carbide
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17051887A
Other languages
Japanese (ja)
Other versions
JPS6414185A (en
Inventor
Toshimichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP17051887A priority Critical patent/JPS6414185A/en
Publication of JPS6414185A publication Critical patent/JPS6414185A/en
Publication of JPH0475875B2 publication Critical patent/JPH0475875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は超硬工具用材料に関し、さらに詳し
く言うと、たとえばチツプ、テープカツター、引
き抜きダイス、ドリル、パンチ等の各種超硬工具
に広く利用することができる超硬工具用材料に関
する。 [従来の技術およびその問題点] 従来、超硬工具用材料としては、炭化タングス
テン−コバルト系合金(WC−Co)が主に用いら
れている。 しかしながら、この炭化タングステン−コバル
ト系合金は、コバルトを含有していることから、
耐熱性が低く、磁気特性を有するという問題を有
しており、たとえば、スーパーアロイ切削用チツ
プやテープカツターなどには、必ずしも好適な材
料ではない。 この問題を解決するものとしてセラミツクス製
の超硬工具材料の研究が進められているが、一般
にセラミツクスは靭性に劣るという欠点を有して
いる。 一方、炭化タングステン−コバルト系合金のよ
うな超硬合金の硬度および耐摩耗性の向上を図つ
たものとして、超硬合金の表面に硬質炭素、すな
わちダイヤモンドまたはダイヤモンド状炭素の被
膜を形成してなる超硬工具用材料も知られてい
る。 しかしながら、超硬合金に硬質炭素膜を被覆し
てなる超硬工具用材料においては、超硬合金と硬
質炭素膜との密着性が十分とは言い難く、硬質炭
素膜が剥離し易いという問題を有している。 [発明の目的] この発明の目的は、前記問題を解消し、従来の
超硬工具材料のような、融点や磁気特性の問題が
なく、しかも高い破壊靭性値を示すとともに基体
と硬質炭素膜との密着性に優れた超硬工具材料を
提供することである。 [前記目的を達成するための手段] 前記目的を達成するために、この発明者が鋭意
検討を重ねた結果、特定のセラミツクスからなる
基体に硬質炭素膜を被覆してなる材料は、融点や
磁気特性の問題がなく、高い破壊靭性値を示すと
ともに基体と硬質炭素膜とを密着性に優れ、超硬
工具材料として好適に利用することができること
を見い出してこの発明に到達した。 すなわち、この発明の概要は、繊維強化フアイ
ンセラミツクスからなる基体に、硬質炭素被膜を
形成してなる超硬工具用材料である。 前記繊維強化フアインセラミツクス(以下、
「FRC」と言うことがある。)は、フアインセラ
ミツクスをマトリクスとし、このマトリクス中に
無機繊維を配合してなる。前記フアインセラミツ
クスとしては、酸化アルミニウム(Al2O3)、ジ
ルコニア(ZrO2)、酸化イツトリウム(Y2O3)、
酸化マグネシウム(MgO)、酸化カルシウム
(CaO)、酸化セリウム(CeO2)、酸化チタン
(TiO2)、酸化クロム(Cr2O3)、二酸化ケイ素
(SiO2)、ムライト、アパタイト、フエライト、
スピネルなどの酸化物系フアインセラミツクス、
および、炭化ケイ素、窒化ケイ素(Si3N4)、窒
化ホウ素(BN)、炭化ホウ素(B4C)、窒化アル
ミニウム(AlN)、窒化クロム、(CrN)、サイア
ロンなどの非酸化物系フアインセラミツクスが挙
げられる。前記フアインセラミツクスの中でも、
酸化物系フアインセラミツクスが好ましく、特
に、アルミナ、およびアルミナとイツトリア含有
ジルコニアとの組合せが好ましい。 前記無機繊維としては、長繊維状、短繊維状あ
るいはウイスカー状の無機物質であれば特に制限
がなく、たとえば、前記フアインセラミツクスの
ウイスカー、具体的には炭化ケイ素ウイスカー、
窒化ケイ素ウイスカー、あるいは、ガラス繊維、
炭素繊維、カーボンウイスカーなどを挙げること
ができる。これらの中でも好ましいのは、炭化ケ
イ素ウイスカーである。炭化ケイ素ウイスカー
は、基体の機械的強度の向上および基体表面に対
する硬質炭素被膜の密着性の向上に、特に著しい
効果を奏するからである。 さらに、好ましいマトリクスと無機繊維との組
合せを示すとすれば、アルミナ(マトリクス)と
炭化ケイ素ウイスカー(無機繊維)である。 前記FRCを得るにあたつて、マトリクス成分
は、その平均粒径が、通常、3.0μm以下である。
無機繊維については、フイラメント径0.1〜1.0μ
mφ、長さ5.0〜100μm、アスペクト比20〜200の
ものを好適に使用することができる。 前記FRCは、これらの各成分を、たとえばボ
ールミル、バンバリーミキサーなどの混練機を使
用して十分に混練して得られる混合物を、所定の
型内に充填した後、温度1200〜2000℃の条件下に
焼結して得ることができる。 この混合物における各成分の配合割合は、マト
リクス成分100重量部に対して、無機繊維5〜40
重量部である。具体的な例として、アルミナ100
重量部に対して、炭化ケイ素ウイスカーが5〜40
重量部、ジルコニアが5〜40重量部である。 この発明においては、前記FRCを基体とし、
この基体の表面に硬質炭素被膜、すなわちダイヤ
モンド被膜またはダイヤモンド状炭素被膜を形成
する。 前記硬質炭素被膜は、たとえば炭素源ガスを励
起して得られるガスを、前記基体に接触させるこ
とにより形成することができる。 前記炭素源ガスとしては、たとえば、メタン、
エタン、プロパン、ブタン、ペンタン、ヘキサン
などのアルカン類、エチレン、プロピレン、ブテ
ン、ペンテン、ブタジエンなどのアルケン類、ア
セチレンなどのアルキン類、ベンゼン、トルエ
ン、キシレン、インデン、ナフタリン、フエナン
トレンなどの芳香族炭化水素類、シクロプロパ
ン、シクロヘキサンなどのシクロパラフイン類、
シクロペンテン、シクロヘキセンなどのシクロオ
レフイン類などが挙げられる。 また、炭素源ガスとして、一酸化炭素、二酸化
炭素、メチルアルコール、エチルアルコール、ア
セトン、ベンゾフエノンなどの含酸素炭素化合
物、トリメチルアミン、メチルアミン、エチルア
ミン、アニリンなどの含窒素炭素化合物なども使
用することができる。 これらは、1種単独で用いることもできるし、
2種以上を併用することもできる。 これらの中でも、好ましいのは、メタン、エタ
ン、プロパン等のパラフイン系炭化水素、アセト
ン、ベンゾフエノン等のケトン類および一酸化炭
素、メチルアルコール等の含酸素炭素化合物であ
る。 前記硬質炭素被膜の形成にあたつては、前記炭
素源ガスとともに希釈用ガスを用いることもでき
る。この希釈用ガスとしては、水素ガス;ヘリウ
ムガス、アルゴンガス、ネオンガス、キセノンガ
ス、窒素ガスなどの不活性ガスが挙げられる。 これらは、1種単独で用いてもよいし、2種以
上を組合わせて用いてもよい。 これらの中でも、水素ガスを用いた場合には、
プラズマCVD法においては高周波またはマイク
ロ波の照射によつてプラズマを形成し、CVD法
においては熱または放電により原子状水素を形成
する。 この原子状水素は、ダイヤモンドまたはダイヤ
モンド状炭素の析出と同時に析出する黒鉛構造の
炭素を除去する作用を有する。 前記不活性ガスは、特に、スパツタリング法、
イオン化蒸着法、イオンビーム蒸着法を採用する
場合に前記パラフイン系炭化水素化合物、前記含
酸素有機化合物および/または含窒素有機化合物
からなる炭素源ガスと混合して用いるものであ
り、アーク放電空間中でイオン化することにより
炭素原子をたたき出して炭素をイオン化する作用
を有する。 前記希釈用ガスを使用する場合、前記炭素源ガ
スとの混合比は、炭素源ガス/希釈用ガスのモル
比で、通常、0.1/100以上である。この混合比が
0.1/100未満の場合には、硬質炭素の析出速度が
遅くなつたり、硬質炭素が析出しなくなつたりす
る。 前記炭素源ガスを励起する手段としては、たと
えば高周波プラズマCVD法、直流プラズマCVD
法、マイクロ波プラズマCVD法、熱フイラメン
ト法、化学輸送法、イオンビーム法などの従来よ
り公知の方法を用いることができる。 前記硬質炭素被膜の形成において、前記基体の
表面の温度は、前記炭素源ガスの励起手段によつ
て異なるので、一概に決定することはできない
が、たとえばマイクロ法プラズマCVD法を用い
る場合には、通常、常温〜1000℃、好ましくは常
温〜950℃である。基体表面の温度が1000℃を超
えると、非ダイヤモンド状炭素であるグラフアイ
トの発生量が多くなる。 前記硬質炭素被膜の形成における反応圧力は、
通常、10-8〜103torr、好ましくは10-6〜800torr
である。反応圧力が10-8torrよりも低い場合に
は、硬質炭素の析出速度が遅くなつたり、硬質炭
素が析出しなくなつたりする。一方、103torrよ
り高い場合にはグラフアイトの発生量が多くな
る。 この発明の超硬工具用材料は、たとえばチツ
プ、テープカツター、引き抜きダイス、ドリル、
パンチ等の各種超硬工具に好適に利用することが
できる。 [発明の効果] この発明によると、 (1) それ自体が高い破壊靭性値を示す繊維強化セ
ラミツクスからなる基体に、硬質炭素を被覆し
てなるので、耐熱性、耐摩耗性および破壊靭性
に優れるとともに磁気特性の問題がなく、 (2) しかも、基体と硬質炭素被膜との密着性が良
好であるので、初期の特性が急激に変化するこ
とがなく安定した特性を示す、 等の効果を奏する超硬工具材料を提供することが
できる。 [実施例] 次いで、この発明の実施例および比較例を示
し、この発明についてさらに具体的に説明する。 実施例 1 アルミナ粉末(平均粒径0.5μm)100g、炭化
ケイ素ウイスカー(フイラメント径0.1〜1.0μm
φ、長さ20〜100μm、アスペクト比50〜200)25
gを、ボールミルを使用して48時間混練し、混合
物とした。 得られた混合物を、チツプ成形型内に充填した
後、ホツトプレス法により温度1500℃の条件下に
焼結させて、FRCを得た。 次いで、このFRCを基体として、基体温度900
℃、圧力40torrの条件下に周波数2.45GHzのマイ
クロ波電源の出力を600wに設定した。 続いて、この反応室内に一酸化炭素を流量
10sccm、水素ガスを流量90sccmで導入して、マ
イクロ波プラズマCVD法によりダイヤモンドの
合成を0.5時間行つて、厚み3μmの被覆を有する
超硬工具材料を得た。 ここで、得られた被膜について、ラマン分光分
析を行なつたところ、ラマン散乱スペクトルの
1333cm-1付近にダイヤモンドに起因するピークが
見られ、不純物のないダイヤモンドであることを
確認した。 この超硬工具材料からなるチツプについて、次
の条件下に連続切削試験を行なつて、被削材の表
面粗さ(Rnax)および切刃の逃げ面摩耗幅につ
いて評価した。 被削材;アルミニウム(A2017BE−T4) 切削速度;500m/分 切り込み量;t=0.15mm 送り量;f=0.15mm/回転 切削時間;50分間 結果を第1表に示す。 実施例 2 前記実施例1において、アルミナ粉末および炭
化ケイ素ウイスカーに加えて、イツトリア含有ジ
ルコニア粉末(平均粒径0.01μm)10gを用いた
ほかは、前記実施例1と同様にして実施した。 結果を第1表に示す。 比較例 1 前記実施例1において、基体に硬質炭素被膜を
形成しなかつたほかは、前記実施例1と同様にし
て超硬工具材料を調製し、得られた超硬工具材料
からなるチツプについて前記実施例1と同様の条
件下に連続切削試験を行なつた。 結果を第1表に示す。 第1表から明らかなように、この比較例のチツ
プは、被削材の表面粗さおよび切刃の逃げ面摩耗
幅のいずれもが前記実施例1に比較して劣つてい
た。 比較例 2 WC−Co(Co量5%)からなるチツプについて
前記実施例1と同様の条件下に連続切削試験を行
なつた。 結果を第1表に示す。 第1表から明らかなように、この比較例のチツ
プは、被削材の表面粗さおよび切刃の逃げ面摩耗
幅のいずれもが前記実施例1に比較して劣つてい
た。 【表】
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a material for carbide tools, and more specifically, it is widely used in various carbide tools such as chips, tape cutters, drawing dies, drills, punches, etc. The present invention relates to materials for cemented carbide tools that can be used. [Prior Art and its Problems] Conventionally, tungsten carbide-cobalt alloy (WC-Co) has been mainly used as a material for cemented carbide tools. However, since this tungsten carbide-cobalt alloy contains cobalt,
It has problems of low heat resistance and magnetic properties, and is not necessarily a suitable material for, for example, superalloy cutting tips and tape cutters. Research into cemented carbide tool materials made of ceramics is underway as a solution to this problem, but ceramics generally have the disadvantage of poor toughness. On the other hand, in order to improve the hardness and wear resistance of cemented carbide such as tungsten carbide-cobalt alloy, a coating of hard carbon, that is, diamond or diamond-like carbon, is formed on the surface of the cemented carbide. Carbide tool materials are also known. However, in materials for cemented carbide tools made by coating a hard carbon film on a cemented carbide, it is difficult to say that the adhesion between the cemented carbide and the hard carbon film is sufficient, resulting in the problem that the hard carbon film easily peels off. have. [Objective of the Invention] The object of the present invention is to solve the above-mentioned problems, to avoid the problems of melting point and magnetic properties unlike conventional cemented carbide tool materials, to exhibit a high fracture toughness value, and to have a bond between the base material and the hard carbon film. An object of the present invention is to provide a carbide tool material with excellent adhesion. [Means for achieving the above object] In order to achieve the above object, the inventor has made extensive studies and found that a material made by coating a hard carbon film on a substrate made of specific ceramics has a low melting point and magnetic The inventors have arrived at this invention by discovering that there are no problems with properties, exhibiting high fracture toughness values, and excellent adhesion between the substrate and the hard carbon film, so that it can be suitably used as a cemented carbide tool material. That is, the outline of the present invention is a cemented carbide tool material formed by forming a hard carbon coating on a base made of fiber-reinforced fine ceramics. The fiber-reinforced fine ceramics (hereinafter referred to as
It is sometimes called "FRC". ) is made by using fine ceramics as a matrix and blending inorganic fibers into this matrix. The fine ceramics include aluminum oxide (Al 2 O 3 ), zirconia (ZrO 2 ), yttrium oxide (Y 2 O 3 ),
Magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO 2 ), titanium oxide (TiO 2 ) , chromium oxide (Cr 2 O 3 ), silicon dioxide (SiO 2 ), mullite, apatite, ferrite,
Oxide-based fine ceramics such as spinel,
and non-oxide fins such as silicon carbide, silicon nitride (Si 3 N 4 ), boron nitride (BN), boron carbide (B 4 C), aluminum nitride (AlN), chromium nitride, (CrN), and sialon. Examples include ceramics. Among the fine ceramics,
Oxide-based fine ceramics are preferred, and alumina and a combination of alumina and itria-containing zirconia are particularly preferred. The inorganic fibers are not particularly limited as long as they are inorganic substances in the form of long fibers, short fibers, or whiskers; for example, the fine ceramic whiskers, specifically silicon carbide whiskers,
silicon nitride whiskers or glass fibers,
Examples include carbon fiber and carbon whiskers. Among these, silicon carbide whiskers are preferred. This is because silicon carbide whiskers are particularly effective in improving the mechanical strength of the substrate and the adhesion of the hard carbon coating to the surface of the substrate. Furthermore, a preferred combination of matrix and inorganic fiber is alumina (matrix) and silicon carbide whiskers (inorganic fiber). In obtaining the FRC, the average particle size of the matrix component is usually 3.0 μm or less.
For inorganic fibers, filament diameter 0.1~1.0μ
A material having mφ, a length of 5.0 to 100 μm, and an aspect ratio of 20 to 200 can be suitably used. The above-mentioned FRC is produced by thoroughly kneading each of these components using a kneading machine such as a ball mill or a Banbury mixer, filling the resulting mixture into a predetermined mold, and then heating the mixture at a temperature of 1200 to 2000°C. It can be obtained by sintering. The blending ratio of each component in this mixture is 5 to 40 parts by weight of inorganic fiber per 100 parts by weight of matrix component.
Parts by weight. As a specific example, alumina 100
5 to 40 parts by weight of silicon carbide whiskers
The amount of zirconia is 5 to 40 parts by weight. In this invention, the FRC is used as a base,
A hard carbon coating, ie, a diamond coating or a diamond-like carbon coating, is formed on the surface of this substrate. The hard carbon film can be formed, for example, by bringing a gas obtained by exciting a carbon source gas into contact with the substrate. Examples of the carbon source gas include methane,
Alkanes such as ethane, propane, butane, pentane, hexane, alkenes such as ethylene, propylene, butene, pentene, butadiene, alkynes such as acetylene, aromatic carbonization such as benzene, toluene, xylene, indene, naphthalene, phenanthrene, etc. Hydrogens, cycloparaffins such as cyclopropane and cyclohexane,
Examples include cycloolefins such as cyclopentene and cyclohexene. In addition, oxygen-containing carbon compounds such as carbon monoxide, carbon dioxide, methyl alcohol, ethyl alcohol, acetone, and benzophenone, and nitrogen-containing carbon compounds such as trimethylamine, methylamine, ethylamine, and aniline can also be used as carbon source gases. can. These can be used alone or
Two or more types can also be used in combination. Among these, preferred are paraffinic hydrocarbons such as methane, ethane and propane, ketones such as acetone and benzophenone, and oxygen-containing carbon compounds such as carbon monoxide and methyl alcohol. In forming the hard carbon film, a diluting gas can be used together with the carbon source gas. Examples of the diluting gas include hydrogen gas; inert gases such as helium gas, argon gas, neon gas, xenon gas, and nitrogen gas. These may be used alone or in combination of two or more. Among these, when hydrogen gas is used,
In the plasma CVD method, plasma is formed by high frequency or microwave irradiation, and in the CVD method, atomic hydrogen is formed by heat or electric discharge. This atomic hydrogen has the effect of removing graphite-structured carbon that precipitates simultaneously with the precipitation of diamond or diamond-like carbon. The inert gas can be used, in particular, by a sputtering method,
When an ionization vapor deposition method or an ion beam vapor deposition method is employed, it is used in combination with a carbon source gas consisting of the paraffinic hydrocarbon compound, the oxygen-containing organic compound, and/or the nitrogen-containing organic compound, and is used in the arc discharge space. It has the effect of ionizing carbon by knocking out carbon atoms. When using the diluent gas, the mixing ratio with the carbon source gas is a molar ratio of carbon source gas/diluent gas, which is usually 0.1/100 or more. This mixing ratio
When it is less than 0.1/100, the precipitation rate of hard carbon becomes slow or hard carbon does not precipitate. As a means for exciting the carbon source gas, for example, high frequency plasma CVD method, direct current plasma CVD method, etc.
Conventionally known methods such as a method, a microwave plasma CVD method, a thermal filament method, a chemical transport method, an ion beam method, etc. can be used. In the formation of the hard carbon film, the temperature of the surface of the substrate varies depending on the excitation means for the carbon source gas, so it cannot be determined unconditionally, but for example, when using the micro plasma CVD method, Usually, the temperature is from normal temperature to 1000°C, preferably from normal temperature to 950°C. When the temperature of the substrate surface exceeds 1000°C, the amount of graphite, which is non-diamond-like carbon, increases. The reaction pressure in forming the hard carbon film is:
Usually 10 -8 to 10 3 torr, preferably 10 -6 to 800 torr
It is. When the reaction pressure is lower than 10 -8 torr, the precipitation rate of hard carbon becomes slow or hard carbon does not precipitate. On the other hand, when the temperature is higher than 10 3 torr, the amount of graphite generated increases. The carbide tool material of the present invention can be used, for example, in chips, tape cutters, drawing dies, drills, etc.
It can be suitably used for various carbide tools such as punches. [Effects of the Invention] According to the present invention, (1) The substrate is made of fiber-reinforced ceramics, which itself exhibits a high fracture toughness value, and is coated with hard carbon, so it has excellent heat resistance, abrasion resistance, and fracture toughness. (2) Moreover, since the adhesion between the substrate and the hard carbon coating is good, the initial characteristics do not change suddenly and exhibit stable characteristics. Cemented carbide tool materials can be provided. [Example] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention. Example 1 100 g of alumina powder (average particle size 0.5 μm), silicon carbide whiskers (filament diameter 0.1 to 1.0 μm)
φ, length 20~100μm, aspect ratio 50~200) 25
g was kneaded for 48 hours using a ball mill to form a mixture. The resulting mixture was filled into a chip mold and sintered at a temperature of 1500° C. using a hot press method to obtain FRC. Next, using this FRC as a base, the base temperature was 900°C.
The output of a microwave power source with a frequency of 2.45 GHz was set to 600 W under the conditions of temperature and pressure of 40 torr. Subsequently, a flow of carbon monoxide is introduced into this reaction chamber.
Hydrogen gas was introduced at a flow rate of 10 sccm and hydrogen gas was introduced at a flow rate of 90 sccm, and diamond was synthesized by microwave plasma CVD for 0.5 hours to obtain a cemented carbide tool material having a coating with a thickness of 3 μm. Here, when we performed Raman spectroscopic analysis on the obtained film, we found that the Raman scattering spectrum was
A peak attributed to diamond was observed near 1333 cm -1 , confirming that the diamond was free of impurities. Continuous cutting tests were conducted on chips made of this carbide tool material under the following conditions to evaluate the surface roughness (R nax ) of the workpiece and the flank wear width of the cutting edge. Work material: Aluminum (A2017BE-T4) Cutting speed: 500 m/min Depth of cut: t = 0.15 mm Feed amount: f = 0.15 mm/rotation Cutting time: 50 minutes The results are shown in Table 1. Example 2 The same procedure as in Example 1 was carried out, except that 10 g of ittria-containing zirconia powder (average particle size: 0.01 μm) was used in addition to the alumina powder and silicon carbide whiskers. The results are shown in Table 1. Comparative Example 1 A cemented carbide tool material was prepared in the same manner as in Example 1, except that no hard carbon coating was formed on the substrate, and the chips made of the obtained carbide tool material were subjected to the same procedure as described above. A continuous cutting test was conducted under the same conditions as in Example 1. The results are shown in Table 1. As is clear from Table 1, the chips of this comparative example were inferior to those of Example 1 in both the surface roughness of the workpiece and the flank wear width of the cutting edge. Comparative Example 2 A continuous cutting test was conducted on a chip made of WC-Co (5% Co content) under the same conditions as in Example 1 above. The results are shown in Table 1. As is clear from Table 1, the chips of this comparative example were inferior to those of Example 1 in both the surface roughness of the workpiece and the flank wear width of the cutting edge. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化フインセラミツクスからなる基体
に、硬質炭素被膜を形成してなる超硬工具用材
料。
1. A cemented carbide tool material formed by forming a hard carbon coating on a base made of fiber-reinforced fin ceramics.
JP17051887A 1987-07-08 1987-07-08 Material for cemented carbide tool Granted JPS6414185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17051887A JPS6414185A (en) 1987-07-08 1987-07-08 Material for cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17051887A JPS6414185A (en) 1987-07-08 1987-07-08 Material for cemented carbide tool

Publications (2)

Publication Number Publication Date
JPS6414185A JPS6414185A (en) 1989-01-18
JPH0475875B2 true JPH0475875B2 (en) 1992-12-02

Family

ID=15906424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17051887A Granted JPS6414185A (en) 1987-07-08 1987-07-08 Material for cemented carbide tool

Country Status (1)

Country Link
JP (1) JPS6414185A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310705A (en) * 1989-06-08 1991-01-18 Idemitsu Petrochem Co Ltd Manufacture of diamond coated tool
US5318836A (en) * 1989-06-15 1994-06-07 Ngk Spark Plug Company Limited Diamond-coated body
JPH03237036A (en) * 1989-08-24 1991-10-22 Nippon Electric Glass Co Ltd Thin plate type borosilicate glass for alumina package
JP2017024923A (en) * 2015-07-16 2017-02-02 イビデン株式会社 Ceramic composite material

Also Published As

Publication number Publication date
JPS6414185A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
EP0413834B1 (en) Diamond-covered member and process for producing the same
US4990403A (en) Diamond coated sintered body
KR0145062B1 (en) Diamond-coated member
JPH03197677A (en) Diamond-coated tool and its production
JP3214891B2 (en) Diamond coated members
JPH0475875B2 (en)
US5445887A (en) Diamond coated microcomposite sintered body
EP0549801A1 (en) Diamond-covered member and production thereof
JPS61109628A (en) Diamond coated tool
EP0435272B1 (en) Diamond-coated bodies and process for preparation thereof
JP3397849B2 (en) Diamond coated cemented carbide tool
JPH0328373A (en) Diamond-coated member and its production
JPH02232106A (en) Polycrystal diamond for tool
JPH02167875A (en) Production of modified zirconia ceramic
JPH04263074A (en) Diamond or diamondlike carbon-coated hard material
JPH04280974A (en) Boron nitride coated hard material
JPH0517231A (en) Composite sintered body, cutting tool and diamond coated member using same
JP2620971B2 (en) Diamond coated sintered body with excellent adhesion and method for producing the same
JPS5925970A (en) Coated sintered hard alloy
JPS61201778A (en) Coated sintered hard alloy
JPH04261703A (en) Polycrystal diamond cutting tool
JP2781041B2 (en) Diamond coated members
JPH0353069A (en) Diamond kind coated member
JPH03290383A (en) Part material covered with diamonds and production thereof
JPH01259171A (en) Cutting tool member coated with hard film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees