JPH0475763A - Surface treated fiber reinforced metal and manufacture thereof - Google Patents

Surface treated fiber reinforced metal and manufacture thereof

Info

Publication number
JPH0475763A
JPH0475763A JP18841390A JP18841390A JPH0475763A JP H0475763 A JPH0475763 A JP H0475763A JP 18841390 A JP18841390 A JP 18841390A JP 18841390 A JP18841390 A JP 18841390A JP H0475763 A JPH0475763 A JP H0475763A
Authority
JP
Japan
Prior art keywords
film
frm
fiber
etching
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18841390A
Other languages
Japanese (ja)
Inventor
Yasuo Kogo
保雄 向後
Mitsuhiro Okumura
奥村 光弘
Makoto Utsunomiya
真 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18841390A priority Critical patent/JPH0475763A/en
Publication of JPH0475763A publication Critical patent/JPH0475763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain highly reliable fiber reinforced metal with no detachment of film by forming metallic matrix, reinforcing fibers embedded in this metallic matrix and projecting a part thereof on the matrix surface and the film on the matrix surface so as to embed the fibers. CONSTITUTION:This surface treated FRM 1 is produced by etching the surface over one or more layers as fiber layer form the surface in the range that the reinforcing fiber 2 on the FRM surface is not detached, in the etching process, and after that, in the film forming process, forming the film 4 with plating, etc., and embedding the projecting reinforcing fiber in there. In the surface treated FRM 6 manufactured in such way the film replaces the metallic matrix on the surface layer of FRM, i.e., the FRM 6 is formed integrally in a mechanically engaging condition that the film with the fiber by embedding the projecting reinforcing fiber in the film. Therefore, the joined strength of film becomes sum of stuck strength between the film and the metallic matrix and mechanical engagement force between the film and the reinforcing fiber, and even to heat cycle and heat impact, the detachment of film is not developed and the high reliability can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、繊維強化金属(以下、FRMと称す)の表
面に皮膜を形成した表面処理繊維強化金属およびその製
造方法に関するものであり、特りこ航空、宇宙、エレン
1−ロニクス関連部品用材料として信頼性に優れた表面
処理繊維強化金属およびその製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a surface-treated fiber-reinforced metal (hereinafter referred to as FRM) in which a film is formed on the surface thereof, and a method for producing the same. The present invention relates to a surface-treated fiber-reinforced metal that is highly reliable as a material for parts related to aircraft, space, and electronics, and a method for producing the same.

〔従来の技術〕[Conventional technology]

FRMは炭素繊維または炭化珪素、窒化珪素、アルミナ
などのセラミックス系繊維のうち1種類または2種類以
上からなる強化繊維で金属母相を強化したものであり、
従来の金属部体に比較して、軽量でかつ強度、剛性に優
れ、航空、宇宙、工1/クトロニクス分野での使用が大
きく期待されている。エレクトロニクス分野で使用され
る材料のうち、電餐、伝導性、耐食性、接合性などの信
頼性が要求されるものは、通常材料表面に表面処理を行
っており、他の分野でFRMを使用する場合も同様に表
面処理が必要である。しかし、FRMに適した表面処理
は開発されておらず、例えば「めっき技術便覧」(日刊
工業新聞社)P143−p149に示されるような、従
来から使用されてきた金属、合金用の表面処理がそのま
ま施されているのが一般的である。
FRM is a metal matrix reinforced with reinforcing fibers made of one or more types of carbon fibers or ceramic fibers such as silicon carbide, silicon nitride, and alumina.
Compared to conventional metal parts, it is lighter and has superior strength and rigidity, and is highly expected to be used in the fields of aviation, space, and engineering/ctronics. Among the materials used in the electronics field, those that require reliability in terms of electrical conductivity, conductivity, corrosion resistance, bondability, etc. usually undergo surface treatment on the material surface, and FRM is used in other fields. In this case, surface treatment is also required. However, no surface treatment suitable for FRM has been developed; for example, surface treatments for metals and alloys that have been used in the past, as shown in "Plating Technology Handbook" (Nikkan Kogyo Shimbun), pages 143-149, have not been developed. It is generally left as is.

第4図および第5図はそれぞれ従来の表面処理FRMを
模式的に示す断面図である。図において、(1)はFR
Mで、炭素繊維j=たはセラミックス系繊維からなる強
化繊維(2)が、単体金属または合金母材からなる金属
マI−リックス(3)中に埋込まれて一体化l、5てい
る6(4)は皮膜としてのめっき層であり、第4図では
FRM(1)の表面に直接形成され、第5図ではFRM
(1)の表面に形成されたマトリックス単独層(5)上
に形成されている。(6)はこれらによって形成される
表面処理FRMである。
FIGS. 4 and 5 are cross-sectional views schematically showing conventional surface-treated FRMs, respectively. In the figure, (1) is FR
In M, reinforcing fibers (2) made of carbon fibers or ceramic fibers are embedded and integrated into a metal matrix (3) made of a single metal or alloy matrix. 6 (4) is a plating layer as a film, which is formed directly on the surface of FRM (1) in Fig. 4, and is formed directly on the surface of FRM (1) in Fig. 5.
It is formed on the matrix single layer (5) formed on the surface of (1). (6) is a surface treated FRM formed by these.

めっき層(4)の形成は、■研磨、■脱脂、■エツチン
グ、■活性化、■下地めっき、0本めっきなどの工程か
らなる従来の表面処理方法により行われ、一般に、第4
図に示すように、  FRHの表面に直接形成するのが
通例である。このようなめっき層(4)は、炭素繊維や
セラミックス系繊維からなる強化繊維(2)との接合強
度が低い。そのため熱サイクルや熱衝撃によりめっき層
(4)とFRM(1)の間で剥離を生じる。
The formation of the plating layer (4) is performed by a conventional surface treatment method consisting of steps such as ■polishing, ■degreasing, ■etching, ■activation, ■base plating, and zero-line plating.
As shown in the figure, it is usually formed directly on the surface of the FRH. Such a plating layer (4) has a low bonding strength with the reinforcing fiber (2) made of carbon fiber or ceramic fiber. Therefore, peeling occurs between the plating layer (4) and the FRM (1) due to thermal cycles and thermal shock.

また、第5図4r−示すように、FRM製造段N12.
−おいて、表面に71へリックス単独層(5)を形成し
、その表面にめっき層(4)を形成した場合においては
、比較的簡単な形状の部品に対しては効果があるものの
、複雑形状のFRM(1)を成形する場合は二次加工が
避けら犯、ず、結果的に強化繊維(2)が露出してしま
い、その表面にめっき層(4)が形成されることになる
。従ってこのような部分では、上記と同様に、めっき層
(4)とFRM(1)間で剥離を生じる。
Further, as shown in FIG. 5 4r, FRM manufacturing stage N12.
- When a single 71 helix layer (5) is formed on the surface and a plating layer (4) is formed on the surface, it is effective for parts with relatively simple shapes, but it is effective for parts with relatively simple shapes. When molding a shaped FRM (1), secondary processing is unavoidable, and as a result, the reinforcing fibers (2) are exposed and a plating layer (4) is formed on its surface. . Therefore, in such a portion, peeling occurs between the plating layer (4) and the FRM (1), as described above.

このように従来の表面処理FRMは、表面処理によりF
RHに形成しためっき層(4)などの皮膜の信頼性に欠
けるという問題点があった。
In this way, conventional surface-treated FRM
There was a problem in that the film formed on the RH, such as the plating layer (4), lacked reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記のような問題点を解決するためになされた
もので、表面処理により形成される皮膜とFRHの接合
強度が大きく、熱サイクルや熱衝撃に対しても皮膜が剥
離することなく、高い信頼性を有する表面処理繊維強化
金属およびその製造方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and the bonding strength between the film formed by surface treatment and the FRH is high, and the film does not peel off even when subjected to thermal cycles or thermal shock. The object of the present invention is to provide a highly reliable surface-treated fiber-reinforced metal and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は次の表面処理繊維強化金属およびその製造方
法である。
The present invention is the following surface-treated fiber-reinforced metal and its manufacturing method.

(1)金属マトリックスと、この金属マトリックス中に
埋込まれ、かつ金属マl−リックス表面に一部が突出す
る強化繊維と、突出する強化繊維を埋込むように金属7
トリツクスの表面に形成された皮膜とを備えた表面処理
繊維強化金属、(2)金属マトリックス中に強化繊維が
埋込まれた繊維強化金属の表面に強化繊維が突出するよ
うに5強化繊維の直径の1゜5〜6倍のエツチング深さ
で金属マトリックスをエツチングするエッチングエ程と
、突出した強化繊維を埋込むように、繊維強化金属の表
面に皮膜を形成する皮膜形成工程とからなる表面処理繊
維強化金属の製造方法、この発明において、金属マトリ
ックスとしては、アルミニウム、アルミニウム合金、マ
グネシウム、マグネシウム合金、チタン、チタン合金な
と、単体金属および、:れらの合金などがあげられ、る
(1) A metal matrix, reinforcing fibers embedded in the metal matrix and partially protruding from the surface of the metal matrix, and a metal 7 such that the protruding reinforcing fibers are embedded.
(2) the diameter of the reinforcing fibers so that the reinforcing fibers protrude from the surface of the fiber-reinforced metal in which the reinforcing fibers are embedded in the metal matrix; A surface treatment consisting of an etching process in which the metal matrix is etched to an etching depth of 1.5 to 6 times the etching depth, and a film forming process in which a film is formed on the surface of the fiber-reinforced metal so as to embed the protruding reinforcing fibers. In the method for producing fiber-reinforced metal of the present invention, examples of the metal matrix include aluminum, aluminum alloys, magnesium, magnesium alloys, titanium, titanium alloys, single metals, and alloys thereof.

強化繊維としては、炭素繊維のほか、炭化珪素、窒化珪
素、アルミナなどのセラミックス系繊維が好ましいが、
他の繊維であってもよい。
In addition to carbon fibers, ceramic fibers such as silicon carbide, silicon nitride, and alumina are preferable as reinforcing fibers.
Other fibers may also be used.

また皮膜としては、金属マトリックスとの接合性の良好
なものであればよく、めっき層が一般的であるが、メタ
ライジング層その他の皮膜であってもよい。
The film may be any film that has good bonding properties with the metal matrix, and is generally a plating layer, but may also be a metallizing layer or other film.

本発明の表面処理FRMは、−」−記金属マトリックス
中に強化繊維を一部が表面に突出するように埋込んだF
RHの表面に、突出する強化繊維を皮膜中に埋込むよう
に皮膜を形成したものである8本発明の製造方法におい
て、FRMのエッチングエ程には、FRMの種類に応じ
て種々の方法や条件が採用できるが、このエッチングエ
程はFRM表面から強化繊維が突出するように行う。そ
の際従来のエツチングに比べ1強化繊維が脱落しない程
度にエツチング量が多くなるような処理を行う。
The surface-treated FRM of the present invention is an FRM in which reinforcing fibers are embedded in a metal matrix so that some of them protrude from the surface.
A film is formed on the surface of the RH so that the protruding reinforcing fibers are embedded in the film.8 In the manufacturing method of the present invention, various methods and techniques are used in the etching process of the FRM depending on the type of FRM. Although conditions can be adopted, this etching process is performed so that the reinforcing fibers protrude from the FRM surface. At this time, processing is performed such that the amount of etching is increased to the extent that one reinforcing fiber does not fall off compared to conventional etching.

その方法としては、従来の金属単体に対する場合よりエ
ツチング時間を長くする方法や、エツチング液の濃度を
変化させる方法、エツチング溶油の湿度を従来に比べ高
くする方法、および二ハ。
Methods for this include increasing the etching time compared to the conventional etching time for single metals, changing the concentration of the etching solution, increasing the humidity of the etching oil compared to the conventional method, and (2).

らを組合せた方法などが採用できる。このときFRMの
表面からのエツチング深さが5強化繊維の直径の1.5
−6倍の範囲になるよう1.:金属マトリックスをエツ
チングする。
A method that combines these methods can be adopted. At this time, the etching depth from the surface of the FRM is 1.5 of the diameter of the 5 reinforcing fibers.
1. So that the range is -6 times. : Etching the metal matrix.

ここでエツチング深さが強化繊維の直径の1.5倍未満
の場合には1、従来の表面処理方法と同様AJ、熱衝撃
により強化繊維と皮膜間で剥離を生ずる。
If the etching depth is less than 1.5 times the diameter of the reinforcing fibers, peeling will occur between the reinforcing fibers and the film due to AJ and thermal shock, similar to conventional surface treatment methods.

また、エツチング深さが6倍を越えると、熱衝撃による
剥離は観察さ扛ないものの、表面処理時に強化繊維が脱
落したり、FRM表面の強化繊維番二乱れが生ずる。
Furthermore, when the etching depth exceeds 6 times, although no peeling due to thermal shock is observed, reinforcing fibers fall off during surface treatment and reinforcing fiber numbers on the FRM surface become disordered.

本発明では、上記のようなエッチングエ程を行った後、
FRHこ皮膜を形成するが、この皮膜形成工程ではエツ
チングにより除去された金属マトリックスと置換するよ
うに皮膜を形成し、突出した強化繊維を皮膜中に埋込む
ようにするにの皮膜形成工程としては、めっきその他の
方法が採用できる。
In the present invention, after performing the above etching process,
In this film forming process, a film is formed to replace the metal matrix removed by etching, and the protruding reinforcing fibers are embedded in the film. , plating and other methods can be employed.

例えばアルミニウムまたはアルミニウム合金を金属マト
リックスどするFRMにめっき髪施こず場合には、亜鉛
置換に行い、ニッケル下地をめっきすることができる(
ジンケート法)。またこのジンケート法ばかりではなく
、例えばボンダル法、陽極酸化法、亜鉛めっき法などの
エッチングエ程を含む表面処理も適用できる、 本発明では必要に応じて、エッチングエ程の前に、研磨
や脱脂などの前処理を施こすことができる。また皮膜形
成工程の前にも9表面の活性化処理、密着性向上処理、
下地めっきなどの前処理を施こすことができる。
For example, when plating is not applied to FRM that uses aluminum or aluminum alloy as a metal matrix, zinc substitution can be performed and a nickel base plated (
zincate method). In addition to this zincate method, surface treatments including etching steps such as bondal method, anodizing method, and galvanizing method can also be applied. Pre-treatments such as these can be performed. In addition, before the film formation process, 9 surface activation treatments, adhesion improvement treatments,
Pretreatment such as base plating can be applied.

〔作 用〕[For production]

この発明におLプる表面処理FRMは、エッチングエ程
において、FRM表面の強化繊維が脱落しない範囲で、
表面から繊維層として1層以上のエツチングを行い、そ
の後皮膜形成工程において、めっき等により皮膜を形成
し、突出する強化繊維をその中に埋込んで製造される。
The surface-treated FRM according to the present invention has the following characteristics: in the etching process, the reinforcing fibers on the FRM surface do not fall off;
One or more fiber layers are etched from the surface, and then in a film forming step, a film is formed by plating or the like, and the protruding reinforcing fibers are embedded in the film.

こうして製造された表面処理FRMは、皮膜がFRHの
表層部の金属マI−リックスと置換した形、すなわち皮
膜が突出する強化紀維を埋込んで機械的に係合した状態
で一体化している。このため皮膜の接合強度は、皮膜と
金属マトリックスの接薯強度、ならびに皮膜と強化繊細
の機械的係合力の和になり、従来のものよりはるかに大
きくなる。
The surface-treated FRM manufactured in this way has a form in which the film replaces the metal matrix on the surface layer of the FRH, that is, the film embeds the protruding reinforcing fibers and is integrated in a mechanically engaged state. . Therefore, the bonding strength of the coating is the sum of the bonding strength between the coating and the metal matrix, as well as the mechanical engagement force between the coating and the reinforcing material, and is much greater than that of the conventional method.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第]−図は実施例の表面処理FRMを模式的に示す断面
図であり2図において、第4図および第5図と同一符号
は同一または相当部分を示す、表面処理FRM (6)
は、強化繊維(2)が金属マトリックス(3)中に埋込
まれて形成されたFRM(1)と、 FRM(1)の表
面から突出する強化繊維(2a)を埋込むように形成さ
tI7だ皮膜としてのめっき層(4)とから形成されて
いる。
Figure 2 is a cross-sectional view schematically showing the surface-treated FRM of the example. In Figure 2, the same reference numerals as in Figures 4 and 5 indicate the same or equivalent parts.
The FRM (1) is formed by reinforcing fibers (2) embedded in a metal matrix (3), and the FRM (1) is formed so as to embed reinforcing fibers (2a) protruding from the surface of the FRM (1). It is formed from a plating layer (4) as a coating.

第2図は実施例のジングーl−法による製造方法を示す
工程図である。
FIG. 2 is a process diagram showing the manufacturing method according to the Jingu l-method of the example.

表面処理FRM(6)の製造方法は、FRM(1)の表
面の研磨工程(11)、水洗工程(12)、、研磨後の
FRM(1)の脱脂工程(13)、水洗工程(14)、
エッチングエ程(15)、水洗工程(16)、表面の活
性化工程(17)、水洗工程(18)、活性化後のFR
M(1)の亜鉛置換工程(19)、および皮膜形成工程
としてのめっき工程(20)により表面処理FRM (
6)が製造される。
The manufacturing method of the surface-treated FRM (6) includes a polishing step (11) of the surface of the FRM (1), a water washing step (12), a degreasing step (13) of the FRM (1) after polishing, and a water washing step (14). ,
Etching process (15), water washing process (16), surface activation process (17), water washing process (18), FR after activation
Surface treatment FRM (
6) is manufactured.

次にこの発明の製造例について説明する1強化繊維(2
)として炭素繊維(東しく株)製、M406商品名)、
金属マトリックス(3)として工業用純アルミニウムを
用いて、高圧鋳造法(溶湯鍛造法)によりFRM(1)
ヲ成形t、t=、m維体積率(Vf)は60%であった
、 このFRMを用いて第2図に示すジンケート法によ
りニッケルメッキを行って、めっき層(4)を形成し、
第1図の表面処理FRM (6)を製造した。
Next, 1 reinforcing fiber (2
) as carbon fiber (manufactured by Toshiku Co., Ltd., M406 product name),
FRM (1) is made by high pressure casting method (molten metal forging method) using industrial pure aluminum as the metal matrix (3).
The fiber volume fraction (Vf) was 60%. Using this FRM, nickel plating was performed by the zincate method shown in Fig. 2 to form a plating layer (4).
The surface-treated FRM (6) shown in FIG. 1 was manufactured.

まず研磨工程(11)において、#600のエメリー紙
によりFRM(1)の表面を研磨した後、水洗工程(1
2)において、超音波洗浄機を用いて洗浄を行った。洗
浄後のFRM(1)は脱脂工程(13)において、トリ
クロルエチレン中で洗浄し、水洗工程(14)の後エッ
チングエ程(15)を行った。エツチングは、エツチン
グ剤として炭酸ナトリウムおよびりん酸ナトリウムの混
合溶液を加熱し、その混合溶液にFRMを浸漬して行っ
た。このとき、エツチング剤を種々の混合比に変化させ
、また加熱温度、浸漬時間tこついても各種の条件で実
験を行い、エツチング深さによる影響を調べて適切な条
件を見い出した。エツチング後は常温番、−で50%硝
酸に30秒間浸漬して活性化工程(17)を行い、亜鉛
置換工程(19)において、ジングー1−処理に供した
。ジングー1−処理後は、めっき工程(20)において
、従来の化学ニッケルめっきと同様の方法り、′:より
ニッケルめっきを行った。
First, in the polishing step (11), the surface of the FRM (1) is polished with #600 emery paper, and then the water washing step (1
In 2), cleaning was performed using an ultrasonic cleaner. The FRM (1) after cleaning was washed in trichlorethylene in a degreasing step (13), and after a water washing step (14), an etching step (15) was performed. Etching was performed by heating a mixed solution of sodium carbonate and sodium phosphate as an etching agent, and immersing the FRM in the mixed solution. At this time, experiments were carried out by changing the etching agent to various mixing ratios, heating temperature and dipping time under various conditions, and examining the influence of etching depth to find appropriate conditions. After etching, an activation step (17) was carried out by immersing it in 50% nitric acid for 30 seconds at room temperature, followed by a zinc substitution step (19), in which it was subjected to a Jingu 1 treatment. After the Jingu 1 treatment, in the plating step (20), nickel plating was performed using the same method as conventional chemical nickel plating.

第3図は得られた表面処理FRM(6)の金属組織を示
す顕微鏡写真である。上記の方法により適切なエツチン
グ条件で表面処理を行うと、第3図に示すようtこ、 
 FRM表面から強化繊維層の数層にわたりぬつぎ層が
個々の強化繊維を包むように埋込み、金属マトリックス
と置換する形で形成之れだ表面処理FRMが得られ5る
FIG. 3 is a micrograph showing the metal structure of the obtained surface-treated FRM (6). When surface treatment is performed using the above method under appropriate etching conditions, as shown in Figure 3,
A splicing layer is embedded over several reinforcing fiber layers from the FRM surface so as to wrap each reinforcing fiber, and a metal matrix is replaced to form a surface-treated FRM.

この時のエツチング条件は、炭酸ナトリウムおよびりん
酸す1−リウムのそれぞれ20〜50g/Qの混合溶液
を50−90℃に加熱し、1−5分間浸漬し。
The etching conditions at this time were to heat a mixed solution of 20 to 50 g/Q of each of sodium carbonate and monolithium phosphate to 50 to 90°C, and immerse it for 1 to 5 minutes.

た。このようなエツチング条件により得られるめっき層
は、強化繊維の線径に則して1.5〜6倍の厚さとなっ
ている。
Ta. The plated layer obtained under such etching conditions has a thickness of 1.5 to 6 times the diameter of the reinforcing fiber.

次に得られた表面処理FRHに対して、めっきの接合強
度について試験した結果について説明する。
Next, the results of testing the bonding strength of plating on the surface-treated FRH obtained will be explained.

試験条件は以下の通りである。The test conditions are as follows.

■熱衛撃試験:150℃の温度で1時間保持後、冷水中
に投入。
■Heat sanitization test: After holding at a temperature of 150°C for 1 hour, it was placed in cold water.

■引き剥し試験:4nm2 の面積を持つ金属をめっき
面に半田伺けし、鋭いナイフにより切込みを導入後、引
き剥し2荷重を測定。
■Peel-off test: A metal with an area of 4 nm2 is soldered onto the plated surface, and after introducing a cut with a sharp knife, the peel-off load is measured.

その結果、エツチング深さに関する条件として、炭酸す
1−リウムおよびりん酸す1−リウムのS度を20−5
0g / Q、カッ温度を50=90’CLn保持l、
た溶液にFRMを】−〜・5分間浸漬りまた表面処理F
RMは、熱衛撃試験ではルーパによる表面観察を行って
も、めっき層表面の膨れはまったく観、察されなかった
As a result, as a condition regarding the etching depth, the S degree of 1-lium carbonate and 1-lium phosphate was 20-5.
0g/Q, keep the cup temperature at 50=90'CLn,
FRM was immersed in the solution for 5 minutes and then surface treated.
Even when the surface of RM was observed using a looper in the thermal sanitary test, no blisters were observed on the surface of the plating layer.

また、引き剥し試験においては、2−2.6kgf/園
m2の値を得た。
In addition, in the peeling test, a value of 2-2.6 kgf/m2 of garden was obtained.

以上の結果より、上記の表面処理FR1’!のめっき層
の接合強度は大きく、従来のFRMl、こ対する表面処
理方法により形成され、るめっき層の引き剥がし試験の
0゜1−0゜5kgf /閥7に比較して、著しく優れ
た接合強度であることがわかる。このような表面処理F
RMは、 さらに金めつきを施して実用に供することか
できる、 次に他の実施例1.ニーついて説明する。
From the above results, the above surface treatment FR1'! The bonding strength of the plating layer is high, and it is formed by a surface treatment method that is different from that of conventional FRMl, and it has a significantly superior bonding strength compared to the peeling test of 0°1-0°5kgf/7. It can be seen that it is. Such surface treatment F
RM can be put into practical use by further applying gold plating.Next, another example 1. Explain about the knee.

強化繊維として炭素繊維を平均0゜6mmの長さに切断
した短繊維を3次元にランダムに配向したもの(VfO
73)を、アルミニウムをマトリックスとしたFRMと
して用いた、本実施例においても前記の実tIifs同
様、研磨、洗浄後1−リクロルエチレン中で洗浄し、水
洗した、適用したエッチングエ程も同様であり、エツチ
ング剤を種々の混合比、濃度に変化させ、また加熱温度
、浸漬時間についても各種の条件で実験を行い、エツチ
ング深さによる影響を調べて避切な条件を見い出した。
As reinforcing fibers, carbon fibers are cut into lengths of 0°6 mm on average and randomly oriented in three dimensions (VfO
73) was used as an FRM with aluminum as a matrix. In this example, the same etching process was applied, as in the case of the above-mentioned actual case, in which the material was polished and washed, then washed in 1-lichlorethylene, and then washed with water. We conducted experiments using various mixing ratios and concentrations of etching agents, as well as heating temperatures and immersion times, and investigated the effects of etching depth to find the best conditions.

エツチング深さは、エツチング剤の濃度、加熱温度、浸
漬時間などの増加とともに増加するが、エツチング深さ
が探すざると、繊帷の脱落や配向の乱れなどを生じた。
The etching depth increases as the etching agent concentration, heating temperature, immersion time, etc. increase, but if the etching depth is not adjusted properly, the fibers will fall off or the orientation will be disturbed.

その結果、T−ツヂング深さに関する条件として、炭酸
す1−リウムおよびりん酸す1−リウムの濃度が20〜
30g/U、かつ温度を50〜70℃に保持した溶液に
FRMを1〜2分間浸漬しためっき層は、熱#1試験で
ばルーぺによる表面観察を行っても、めっき層表面の膨
れはまったく観察されなかった7また、引き剥し試験番
、−4おいては2.3〜3 kHf / 111m2の
値を得た。この実施例の場合、めっき層表面に対して垂
直に近い配向を持つ短繊維がめつき層内に存在すること
により、ピン止め効果を示し、めっき層とFRHの接合
強度が向上したものと考えられる。
As a result, the conditions regarding the T-zing depth were such that the concentrations of 1-lium carbonate and 1-lium phosphate were 20 to 20%.
The plating layer obtained by immersing the FRM in a solution containing 30 g/U and maintained at a temperature of 50 to 70°C for 1 to 2 minutes shows no blistering on the surface of the plating layer even when the surface is observed with a magnifying glass in the heat #1 test. In addition, in peel test number -4, values of 2.3 to 3 kHz/111 m2 were obtained. In the case of this example, it is thought that the existence of short fibers in the plating layer with an orientation close to perpendicular to the surface of the plating layer caused a pinning effect and improved the bonding strength between the plating layer and the FRH. .

以上の結果より、本発明による表面処理は、連続繊維系
FRMばかりでなく、短繊維系FRHに刺しても実用上
非常に有効であり、従来のFRにに対する表面処理方法
により生成するめっき層に比較して。
From the above results, the surface treatment according to the present invention is practically very effective not only for continuous fiber FRM but also for short fiber FRH, and is effective for plating layers produced by conventional surface treatment methods for FR. Compared to.

優れた接合強度であることがわかる。この表面処理FR
Mも連続繊維の場合と同様に、 さらに金めつきを施し
て実用に供することができる。
It can be seen that the bonding strength is excellent. This surface treatment FR
Similarly to the case of continuous fibers, M can be further applied with gold plating for practical use.

なお、上記の実施例はエツチングにより強化繊維を突出
させたが、すでに繊維が蒸出した面への適用も可能であ
り、また切削加工によって複雑形状に切出された部品へ
の適用も可能である。
In the above example, the reinforcing fibers were made to protrude by etching, but it can also be applied to surfaces where the fibers have already been evaporated, and it can also be applied to parts cut into complex shapes by cutting. be.

〔発明の効果〕〔Effect of the invention〕

本発明の表面処理FRMは、強化繊維が金属マトリック
スから突出し、皮膜中に埋込まれているので、皮膜とF
RMの接合強度が大きく、熱サイクルや熱衝撃に対して
も皮膜が剥離することなく、高い信頼性が得られる。
In the surface-treated FRM of the present invention, the reinforcing fibers protrude from the metal matrix and are embedded in the film, so that the reinforcing fibers protrude from the metal matrix and are embedded in the film.
The bonding strength of RM is high, and the film does not peel off even under thermal cycles and thermal shocks, providing high reliability.

また本発明の表面処理FRHの製造方法は6」−記のよ
うな優れた表面処理FRMを容易かつ効率よく製造する
ことができる。
Further, the method for manufacturing a surface-treated FRH of the present invention can easily and efficiently manufacture an excellent surface-treated FRM as described in 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の表面処理FRMを模式的に示す断面図
、第2図は製造工程図、第3図は金属組織を示す顕微鏡
写真、第4図および第5図は従来の表面処理FRMを模
式的に示す断面図である。 各図中、同一符号は同一または相当部分を示し、(1)
はFRM、(2)、(2a)は強化繊維、(3)は金属
マ(・リックス。 ある。 (4)はめっき層、
Fig. 1 is a cross-sectional view schematically showing the surface-treated FRM of the example, Fig. 2 is a manufacturing process diagram, Fig. 3 is a micrograph showing the metal structure, and Figs. 4 and 5 are conventional surface-treated FRMs. It is a sectional view showing typically. In each figure, the same reference numerals indicate the same or corresponding parts, (1)
is FRM, (2) and (2a) are reinforcing fibers, (3) is metal matrix. (4) is plating layer,

Claims (2)

【特許請求の範囲】[Claims] (1)金属マトリックスと、この金属マトリックス中に
埋込まれ、かつ金属マトリックス表面に一部が突出する
強化繊維と、突出する強化繊維を埋込むように金属マト
リックスの表面に形成された皮膜とを備えたことを特徴
とする表面処理繊維強化金属。
(1) A metal matrix, reinforcing fibers embedded in the metal matrix and partially protruding from the surface of the metal matrix, and a film formed on the surface of the metal matrix to embed the protruding reinforcing fibers. A surface-treated fiber-reinforced metal characterized by:
(2)金属マトリックス中に強化繊維が埋込まれた繊維
強化金属の表面に強化繊維が突出するように、強化繊維
の直径の1.5〜6倍のエッチング深さで金属マトリッ
クスをエッチングするエッチングエ程と、突出した強化
繊維を埋込むように、繊維強化金属の表面に皮膜を形成
する皮膜形成工程とからなることを特徴とする表面処理
繊維強化金属の製造方法。
(2) Etching in which the metal matrix is etched to an etching depth of 1.5 to 6 times the diameter of the reinforcing fibers so that the reinforcing fibers protrude from the surface of the fiber-reinforced metal in which the reinforcing fibers are embedded in the metal matrix. 1. A method for producing a surface-treated fiber-reinforced metal, comprising a step of forming a film on the surface of the fiber-reinforced metal so as to embed the protruding reinforcing fibers.
JP18841390A 1990-07-17 1990-07-17 Surface treated fiber reinforced metal and manufacture thereof Pending JPH0475763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18841390A JPH0475763A (en) 1990-07-17 1990-07-17 Surface treated fiber reinforced metal and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18841390A JPH0475763A (en) 1990-07-17 1990-07-17 Surface treated fiber reinforced metal and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0475763A true JPH0475763A (en) 1992-03-10

Family

ID=16223226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18841390A Pending JPH0475763A (en) 1990-07-17 1990-07-17 Surface treated fiber reinforced metal and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0475763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009363A (en) * 2005-06-30 2007-01-18 Toray Ind Inc Chopped carbon fiber for titanium alloy compound and method for producing the chopped carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733089A (en) * 1980-07-28 1982-02-23 Outboard Marine Corp Marine propulsive device with tilting device, working successively, and trim device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733089A (en) * 1980-07-28 1982-02-23 Outboard Marine Corp Marine propulsive device with tilting device, working successively, and trim device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009363A (en) * 2005-06-30 2007-01-18 Toray Ind Inc Chopped carbon fiber for titanium alloy compound and method for producing the chopped carbon fiber

Similar Documents

Publication Publication Date Title
US4588480A (en) Method of producing wear-protection layers on surfaces of structural parts of titanium or titanium-base alloys
Evans et al. Adhesion of polyethylene to metals: The role of surface topography
TWI502098B (en) Hard film-coated member and method of producing the same
JPH06504583A (en) Nickel-cobalt-boron alloy, equipment, plating solution and manufacturing method
US7645494B2 (en) Pre-plating surface treatments for enhanced galvanic-corrosion resistance
WO1990003457A1 (en) Method for plating on titanium
JP2003532549A (en) Nickel / diamond coated saw wire with improved fixation of diamond particles
EP2135974A1 (en) Method of surface treatment for metal glass part, and metal glass part with its surface treated by the method
JPH01502679A (en) Chemical treatment of ceramic bodies for subsequent metallization
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
CN106567057A (en) Method for adopting fluoride-phosphate conversion as titanium alloy chemical nickel plating pretreatment
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
JPH0475763A (en) Surface treated fiber reinforced metal and manufacture thereof
JP3247517B2 (en) Plating method of titanium material
US6932897B2 (en) Titanium-containing metals with adherent coatings and methods for producing same
EP0260301A1 (en) Particulate diamond-coated metal article with high resistance to stress cracking and process therefor
EP0349065B1 (en) Method of bonding two bodies
Wan et al. Adhesion of nylon-6 on surface treated aluminium substrates
US6737173B2 (en) Pretreating method before plating and composites having a plated coat
JPS62199276A (en) Joining method for inorganic fiber reinforced composite aluminum material
CN114259600B (en) Material with Zn-Cu-Ti alloy coating and preparation method and application thereof
JP2001226782A (en) Surface treating method for titanium-nickel alloy material
JPS62173748A (en) Manufacture of lead frame for semiconductor
JPH01169990A (en) Substrate for mounting surface
JP2002129387A (en) Surface treatment method for titanium-nickel alloy