JP2011073191A - Joined body of cfrp and adherend and method of manufacturing the same - Google Patents

Joined body of cfrp and adherend and method of manufacturing the same Download PDF

Info

Publication number
JP2011073191A
JP2011073191A JP2009225057A JP2009225057A JP2011073191A JP 2011073191 A JP2011073191 A JP 2011073191A JP 2009225057 A JP2009225057 A JP 2009225057A JP 2009225057 A JP2009225057 A JP 2009225057A JP 2011073191 A JP2011073191 A JP 2011073191A
Authority
JP
Japan
Prior art keywords
cfrp
prepreg
cfrp prepreg
metal alloy
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009225057A
Other languages
Japanese (ja)
Inventor
Masanori Narutomi
正徳 成富
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2009225057A priority Critical patent/JP2011073191A/en
Publication of JP2011073191A publication Critical patent/JP2011073191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body of a CFRP prepreg and a metallic alloy firmly affixed to each other. <P>SOLUTION: A first CFRP prepreg based on a first PAN carbon fiber with a tensile strength of 4.4 GPa and a second CFRP prepreg based on a second PAN carbon fiber with a tensile strength of 6.0 GPa are stacked and heated to form a CFRP member. The first CFRP prepreg forming the surface of the CFRP member is roughened and a one-pack type epoxy adhesive is applied. A one-pack type epoxy adhesive is applied to the surface of a metallic alloy 11 having three conditions for NAT. The first CFRP prepreg 12 and the metallic alloy are brought close together and heated and the one-pack type epoxy adhesive is cured to obtain a joined body of the CFRP member and the metallic alloy firmly affixed to each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、輸送機器、電気機器、医療機器等の製造分野全般において使用される炭素繊維強化プラスチック(以下「CFRP(Carbon Fiber Reinforced Plasticsの略)」という)と被着材の接合体に関する。特にCFRPと被着材(CFRP又は金属合金)を共硬化(以下「コキュア(co-cure)」という)法によって接着した接合体に関する。また、CFRPと被着材(CFRP又は金属合金)とをエポキシ接着剤を使用したコボンド法によって接着した接合体に関する。   The present invention relates to a bonded body of a carbon fiber reinforced plastic (hereinafter referred to as “CFRP (abbreviation of Carbon Fiber Reinforced Plastics)”) and an adherend used in the entire manufacturing field of transportation equipment, electrical equipment, medical equipment, and the like. In particular, the present invention relates to a bonded body in which CFRP and an adherend (CFRP or metal alloy) are bonded together by a co-curing (hereinafter referred to as “co-cure”) method. The present invention also relates to a joined body in which CFRP and an adherend (CFRP or metal alloy) are bonded by a cobond method using an epoxy adhesive.

本発明者らは、金属合金同士、又は金属合金とCFRPをエポキシ接着剤により強固に接着する技術を開発した。特許文献1には、アルミニウム合金同士、又はアルミニウム合金とCFRPとを1液性エポキシ接着剤を使用して強固に接着する技術を開示している。同様に、特許文献2、3、4、5、及び6には、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、及び一般鋼材を、それぞれ金属合金又はCFRP部材と1液性エポキシ接着剤を使用して強固に接着する技術を開示している。   The inventors of the present invention have developed a technique for firmly bonding metal alloys to each other or a metal alloy and CFRP with an epoxy adhesive. Patent Document 1 discloses a technique for firmly bonding aluminum alloys or between an aluminum alloy and CFRP using a one-component epoxy adhesive. Similarly, in Patent Documents 2, 3, 4, 5, and 6, magnesium alloy, copper alloy, titanium alloy, stainless steel, and general steel material are respectively used as a metal alloy or a CFRP member and a one-component epoxy adhesive. Thus, a technique for firmly bonding is disclosed.

ここで、上記技術においては金属合金表面を所定の形状、構造とすることで、アンカー効果によって接着力を獲得していた。本発明者らは、この理論を「NAT(Nano Adhesion Technologyの略)」と称している。NATでは、金属合金表面が以下に示す3条件を具備することで、被着材との強固な接着を達成することとしている。   Here, in the said technique, the adhesive force was acquired by the anchor effect by making the metal alloy surface into a predetermined shape and structure. The inventors refer to this theory as “NAT (Nano Adhesion Technology)”. In NAT, the metal alloy surface satisfies the following three conditions to achieve strong adhesion to the adherend.

(1)第1の条件は、最新型のダイナミックモード型の走査型プローブ顕微鏡で金属合金表面を走査したときに、RSmが0.8〜10μmであり、Rzが0.2〜5μmである粗度面となっていることである。ここでRSmは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される輪郭曲線要素の平均長さであり、Rzは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される最大高さである。この粗度面を「ミクロンオーダーの粗度を有する表面」と称す。
(2)第2の条件は、上記ミクロンオーダーの粗度を有する金属合金表面に、さらに5nm周期以上の超微細凹凸が形成されていることである。当該条件を具備するために、上記金属合金表面に微細エッチングを行い、前述のミクロンオーダーの粗度をなす凹部内壁面に5〜500nm、好ましくは10〜300nm、より好ましくは30〜100nm(最適値は50〜70nm)周期の超微細凹凸を形成する。
(3)第3の条件は、上記金属合金の表層がセラミック質であることである。具体的には、元来耐食性のある金属合金種に関しては、その表層が自然酸化層レベルかそれ以上の厚さの金属酸化物層であることを要し、耐食性が比較的低い金属合金種(例えばマグネシウム合金や一般鋼材等)では、その表層が化成処理等によって生成した金属酸化物又は金属リン酸化物の薄層であることが第3の条件となる。
(1) The first condition is that when the metal alloy surface is scanned with the latest dynamic mode scanning probe microscope, RSm is 0.8 to 10 μm and Rz is 0.2 to 5 μm. It is a measure. Here, RSm is the average length of contour curve elements defined in Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997), and Rz is Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997). This roughness surface is referred to as a “surface having a roughness on the order of microns”.
(2) The second condition is that ultrafine irregularities having a period of 5 nm or more are further formed on the surface of the metal alloy having a roughness on the order of microns. In order to satisfy the conditions, fine etching is performed on the surface of the metal alloy, and the inner wall surface of the concave portion having a roughness on the order of micron is 5 to 500 nm, preferably 10 to 300 nm, more preferably 30 to 100 nm (optimum value). Form ultra-fine irregularities with a period of 50 to 70 nm.
(3) The third condition is that the surface layer of the metal alloy is ceramic. Specifically, with respect to the metal alloy type that originally has corrosion resistance, the surface layer needs to be a metal oxide layer having a thickness equal to or greater than that of the natural oxide layer, and the metal alloy type having relatively low corrosion resistance ( For example, in the case of a magnesium alloy or a general steel material, the third condition is that the surface layer is a thin layer of metal oxide or metal phosphorous oxide generated by chemical conversion treatment or the like.

これらを模式的に図にすると図20のようになる。金属合金40の表面にはミクロンオーダーの粗度を成している凹部(C)が形成され、さらにその凹部内壁には超微細凹凸(A)が形成され、表層はセラミック質層41となっており、この超微細凹凸に接着剤硬化物層42の一部が浸入している。このようにした金属合金表面に液状の接着剤が侵入し、侵入後に硬化すると、金属合金と硬化した接着剤は非常に強固に接合するという簡潔な考え方である。   These are schematically illustrated as shown in FIG. Concave portions (C) having a roughness on the order of microns are formed on the surface of the metal alloy 40, and ultra fine irregularities (A) are formed on the inner walls of the concave portions, and the surface layer is a ceramic layer 41. In addition, a part of the cured adhesive layer 42 penetrates into the ultra-fine irregularities. It is a simple idea that when a liquid adhesive enters the surface of the metal alloy thus formed and hardens after the penetration, the metal alloy and the hardened adhesive are bonded very firmly.

接着剤接合の手順を以下に示す。まず、金属合金表面をエッチングし、上記3条件を満たすようにする。そして、液状の1液性エポキシ接着剤をその金属合金の所定範囲に塗布し、デシケータに入れて一旦真空下に置き、その後常圧に戻すなどして金属合金表面の超微細凹凸に接着剤を侵入させる。即ち、金属合金表面に接着剤を充分に染み込ませる。その後、前記所定範囲に被着材を貼り合わせ、加熱して接着剤を硬化させる。   The procedure of adhesive bonding is shown below. First, the surface of the metal alloy is etched to satisfy the above three conditions. Then, apply a liquid one-component epoxy adhesive to a predetermined range of the metal alloy, put it in a desiccator, place it under vacuum, and then return it to normal pressure. Invade. That is, the adhesive is sufficiently infiltrated into the metal alloy surface. Thereafter, the adherend is bonded to the predetermined range and heated to cure the adhesive.

こうした場合、エポキシ接着剤が液体であれば、その常温下粘度が高くとも多少の温度上昇で低粘度にできるので、金属合金表面のミクロンオーダーの粗度に係る凹部(前記第1条件における凹凸の凹部)内に侵入可能である。そして侵入したエポキシ接着剤は、その後の加熱でこの凹部内で硬化することになる。実際には、この凹部の内壁面には超微細凹凸がさらに形成されており(前記の第2条件)、且つこの超微細凹凸は、セラミック質の高硬度の薄膜(前記の第3条件)で覆われていることから、凹部内部に侵入して固化したエポキシ樹脂は、スパイクのような超微細凹凸に掴まって抜け難くなる。   In such a case, if the epoxy adhesive is liquid, the viscosity can be lowered with a slight increase in temperature even if the viscosity at room temperature is high. Therefore, the concave portion (roughness of the irregularities in the first condition) on the surface of the metal alloy is reduced. It is possible to enter the recess). And the epoxy adhesive which penetrate | invaded hardens | cures in this recessed part by subsequent heating. Actually, an ultrafine unevenness is further formed on the inner wall surface of the recess (the second condition), and the ultrafine unevenness is a thin ceramic-like thin film (the third condition). Since it is covered, the epoxy resin that has entered the inside of the recess and solidified is difficult to come out by being gripped by ultra-fine irregularities such as spikes.

本発明者らは、「NAT」によって、金属合金同士、又は金属合金とCFRPとの高強度の接着が可能であることを実証した。一例として、「NAT」の条件を具備するA7075アルミニウム合金同士を、市販の1液性エポキシ接着剤を使用して接着した結果、70MPaもの強烈なせん断破断力、引っ張り破断力を示す接合体を得ることができた(特許文献1)。   The present inventors have demonstrated that “NAT” enables high-strength adhesion between metal alloys or between a metal alloy and CFRP. As an example, as a result of adhering together A7075 aluminum alloys having the conditions of “NAT” using a commercially available one-component epoxy adhesive, a bonded body exhibiting an intense shear breaking force and tensile breaking force as high as 70 MPa is obtained. (Patent Document 1).

WO 2008/114669 A1(アルミニウム合金)WO 2008/114669 A1 (aluminum alloy) WO 2008/133096 A1(マグネシウム合金)WO 2008/133096 A1 (magnesium alloy) WO 2008/126812 A1(銅合金)WO 2008/126812 A1 (copper alloy) WO 2008/133030 A1(チタン合金)WO 2008/133030 A1 (titanium alloy) WO 2008/133296 A1(ステンレス鋼)WO 2008/133296 A1 (stainless steel) WO 2008/146833 A1(一般鋼材)WO 2008/146833 A1 (general steel)

スリーボンド・テクニカルニュース19(昭和62年10月1日発行,株式会社スリーボンド)ThreeBond Technical News 19 (issued October 1, 1987, ThreeBond Co., Ltd.)

本発明者らは、前述したように市販の1液性エポキシ接着剤を使用し、「NAT」に基づいて、金属合金同士又は金属合金とCFRPを接着接合する実験を行ったが、金属合金とCFRPの接着に関しては、金属合金同士を接着した場合と比較して、せん断破断力及び引っ張り破断力が低下する傾向にあった。金属合金とCFRPの強固な接着は、航空機や船舶等の様々な分野で待望されている。しかしながら、金属合金とCFRPを1液性エポキシ接着剤で接着した場合に、金属合金同士の接着と同等の接着力を安定的に得ることができなかった。具体的に言えば、金属合金とCFRPを接着した複合体は、せん断破断力及び引っ張り破断力の複合体間のばらつきが大きく、且つ、破断力自体が明らかに低くなった。本発明者らは1液性エポキシ接着剤を改良して同様の接着実験を行った。その結果、NATの条件に適合する金属合金同士の接着力向上には寄与したものの、金属合金とCFRPの接着力向上には寄与しないことが確認された。   As described above, the present inventors used a commercially available one-part epoxy adhesive, and based on “NAT”, conducted an experiment to bond and bond metal alloys to each other or a metal alloy and CFRP. Regarding the bonding of CFRP, the shear breaking force and the tensile breaking force tended to be lower than when metal alloys were bonded to each other. Strong adhesion between a metal alloy and CFRP is expected in various fields such as aircraft and ships. However, when a metal alloy and CFRP are bonded with a one-component epoxy adhesive, an adhesive force equivalent to that of metal alloys cannot be stably obtained. Specifically, the composite in which the metal alloy and CFRP are bonded has a large variation between the composites in the shear breaking force and the tensile breaking force, and the breaking force itself is clearly reduced. The present inventors performed the same adhesion experiment by improving the one-component epoxy adhesive. As a result, it was confirmed that although it contributed to the improvement in the adhesion between metal alloys meeting the NAT conditions, it did not contribute to the improvement in the adhesion between the metal alloy and CFRP.

本発明者らが、金属合金同士の接着力と比較してCFRPと金属合金の接着力が劣る要因を調査した結果、以下の事実が明らかになった。端的に述べると、CFRPと金属合金の複合体が破断する要因はCFRP中の炭素繊維とマトリックス樹脂間の接着力にあることが判明した。CFRPと金属合金の複合体を引っ張り破断した後、その金属合金の破断面を拡大観察したところ、その全てについて炭素繊維が多く付着していた。即ち、硬化したCFRPプリプレグ表層における硬化したマトリックス樹脂と硬化した接着剤の間の接着力が、硬化したCFRPプリプレグ内部における硬化したマトリックス樹脂と炭素繊維の間の接着力を超えていたのである。これにより、破断時は、硬化したマトリックス樹脂と炭素繊維の間で先に剥離が生じ、これが低い接着力として現れていた。言い換えると、金属合金表面と接着剤硬化物間、及び接着剤硬化物とマトリックス樹脂硬化物間の相互間の接着力は極めて高く、且つ接着剤硬化物自体も極めて強固であるため、金属合金とCFRPの接着力を決定する要因は、炭素繊維とマトリックス樹脂間の接着力にある。   As a result of investigating factors that cause the adhesive strength between CFRP and metal alloy to be inferior to the adhesive strength between metal alloys, the present inventors have found the following facts. In short, it has been found that the cause of the fracture of the composite of CFRP and metal alloy is the adhesive force between the carbon fiber in CFRP and the matrix resin. When the composite of CFRP and metal alloy was pulled and broken, the fracture surface of the metal alloy was enlarged and observed, and a lot of carbon fibers were attached to all of the fracture surface. That is, the adhesive force between the cured matrix resin and the cured adhesive on the cured CFRP prepreg surface layer exceeded the adhesive force between the cured matrix resin and the carbon fiber inside the cured CFRP prepreg. Thereby, at the time of a fracture | rupture, peeling occurred previously between the hardened matrix resin and carbon fiber, and this appeared as a low adhesive force. In other words, the adhesive strength between the surface of the metal alloy and the cured adhesive and between the cured adhesive and the cured matrix resin is extremely high, and the cured adhesive itself is extremely strong. The factor that determines the adhesive strength of CFRP is the adhesive strength between the carbon fiber and the matrix resin.

このことから、炭素繊維とマトリックス樹脂間の接着力の向上が、金属合金とCFRPとの接着力向上に直接的に寄与すると推定される。本発明は、このような背景のもとになされたものであり、その目的は、炭素繊維とマトリックス樹脂間の接着力を向上させたCFRPを使用することにより、そのCFRPと被着材(CFRP又は金属合金)が強固に接着された接合体を提供することにある。   From this, it is estimated that the improvement in the adhesion between the carbon fiber and the matrix resin directly contributes to the improvement in the adhesion between the metal alloy and CFRP. The present invention has been made based on such a background. The purpose of the present invention is to use CFRP with improved adhesion between carbon fibers and a matrix resin so that the CFRP and the adherend (CFRP) are used. Another object is to provide a bonded body in which a metal alloy) is firmly bonded.

CFRPは超軽量ながら鋼を超える強靭さを有し、極めて優れた構造材料として認められている。高価であるため当初は戦闘機の尾翼材として使用されるに留まっていたが、近年は航空機、ゴルフクラブ、テニスラケット、釣竿等の民生品にも使用されており、一般的な構造材料として認識されつつある。このような事情もあり、CFRPプリプレグの炭素繊維、炭素繊維の表面処理方法、及びマトリックス樹脂等に関する技術は確立されている。しかしながら、上述したように本発明者らが「NAT」を開発した結果、金属合金と1液性エポキシ接着剤、当該1液性エポキシ接着剤とCFRPとの強固な接着が可能となり、その結果として、CFRPにおける炭素繊維とマトリックス樹脂間の接着力が問題化した。   Although CFRP is super lightweight, it has toughness exceeding steel and is recognized as an extremely excellent structural material. Although it was expensive, it was initially used only as a tail material for fighters, but in recent years it has also been used for civilian products such as aircraft, golf clubs, tennis rackets, and fishing rods, and is recognized as a general structural material. It is being done. Under such circumstances, techniques relating to carbon fiber of CFRP prepreg, carbon fiber surface treatment method, matrix resin and the like have been established. However, as described above, as a result of the development of the “NAT” by the present inventors, it becomes possible to firmly bond the metal alloy and the one-part epoxy adhesive, and the one-part epoxy adhesive and the CFRP. The adhesion between carbon fiber and matrix resin in CFRP became a problem.

炭素繊維とマトリックス樹脂間の接着力を向上させるための手法として(1)最適な炭素繊維の選択(繊維強度ではなく表面性に着目する)、(2)炭素繊維の表面処理方法の改良、及び(3)マトリックス樹脂の改良が考えられる。本発明では特に(1)に着目した。近年は、炭素繊維メーカーから各種のCFRPプリプレグが市販されている。そのカタログには使用した炭素繊維の原糸種(PAN(Poly-acrylonitrile)系かPITCH系か)、その引っ張り強度及び引っ張り弾性率が記載されている。   As a method for improving the adhesion between the carbon fiber and the matrix resin, (1) selection of an optimal carbon fiber (focus on surface properties, not fiber strength), (2) improvement of the surface treatment method of the carbon fiber, and (3) The matrix resin can be improved. In the present invention, (1) is particularly focused. In recent years, various CFRP prepregs are commercially available from carbon fiber manufacturers. The catalog describes the type of carbon fiber yarn used (PAN (Poly-acrylonitrile) or PITCH), its tensile strength and tensile modulus.

PAN系の炭素繊維のうち、引っ張り強度が6GPa程度の最高強度のものは、その断面が真円に近く、且つ繊維表面が平滑である。一方でPAN系の炭素繊維のうち、引っ張り強度が3GPa以下のものは、その断面が真円ではなく楕円又は菱形に近く、且つ繊維表面には高低差(数十nm)のある溝が形成されている。一般的には前者をベースとするCFRPプリプレグは一級品、後者をベースとするCFRPプリプレグは二級品として取り扱われ、用途及び価格も異なる。但し、昨今は引っ張り強度4〜6GPaの高性能炭素繊維しか生産されておらず、引っ張り強度が3GPa程度の炭素繊維を入手するのは困難である。   Among the PAN-based carbon fibers, those having the highest tensile strength of about 6 GPa have a cross section close to a perfect circle and a smooth fiber surface. On the other hand, among the PAN-based carbon fibers, those having a tensile strength of 3 GPa or less have a cross section close to an ellipse or rhombus, and a groove having a height difference (several tens of nm) is formed on the fiber surface. ing. In general, the CFRP prepreg based on the former is treated as a first-class product, and the CFRP prepreg based on the latter is treated as a second-class product. However, only high-performance carbon fibers having a tensile strength of 4 to 6 GPa have been produced recently, and it is difficult to obtain carbon fibers having a tensile strength of about 3 GPa.

このようにCFRPプリプレグの用途及び価格は炭素繊維によって決定されるのが一般的であり、これに対してマトリックス樹脂の組成は共通しているのが通常である。即ち、炭素繊維と異なりマトリックス樹脂には用途別以外に優劣の差異を設けていない。従って、通常は引っ張り強度が高く、繊維表面が平滑なCFRPプリプレグ(高性能のCFRPプリプレグ)を使用することが、被着材との強固な接着を生ずると考えられる。しかし、これに反して本発明者らは、CFRPプリプレグと被着材との接着という点に関しては、炭素繊維として低級に分類されるものをベースとしたCFRPプリプレグの方が適していると推定した。即ち、引っ張り強度は低いが、繊維表面が平滑でないことによって表面積が大きいという点を利点と捉えた。この推定を立証すべくCFRPと被着材(CFRP又は金属合金)との接着実験を行った結果、上記推定が正しいことを確認することができた。   As described above, the use and price of the CFRP prepreg are generally determined by the carbon fiber, whereas the composition of the matrix resin is usually the same. That is, unlike carbon fiber, there is no difference in superiority or inferiority in matrix resin other than by use. Accordingly, it is considered that the use of a CFRP prepreg having a high tensile strength and a smooth fiber surface (a high-performance CFRP prepreg) usually produces strong adhesion to the adherend. On the other hand, however, the present inventors have estimated that CFRP prepregs based on those classified as lower in carbon fiber are more suitable in terms of adhesion between CFRP prepregs and adherends. . That is, although the tensile strength was low, it was regarded as an advantage that the surface area was large because the fiber surface was not smooth. As a result of conducting an adhesion experiment between CFRP and an adherend (CFRP or metal alloy) to prove this estimation, it was confirmed that the above estimation was correct.

本発明者らは、引っ張り強度6GPaの炭素繊維「T800SC(東レ株式会社製)」と引っ張り強度4.4GPaの炭素繊維「TR30S(三菱レイヨン株式会社製)」の表面を電子顕微鏡で観察した。その結果、図16及び図17に示すように、「T800SC」は断面が真円に近く、その表面に溝は認められるものの、溝の高低差は殆どが50nm以下に留まり、平滑であった。一方で、図13〜図15に示すように、「TR30S」は、断面は殆ど真円に近いものの、50nm〜100nmの高低差のある溝が多く見られた。概ね、高低差50nm以上の溝が、炭素繊維方向の長さ約20μm内(表面積が5×10−4mm)に1つ以上存在した。即ち、引っ張り強度が4.4GPaの「TS30S」は、引っ張り強度が3GPaと比較すると表面性は良好であるといえるが、引っ張り強度が6GPaの炭素繊維と比較すると、明らかに表面性が悪いと言える。 The inventors observed the surface of carbon fiber “T800SC (manufactured by Toray Industries, Inc.)” having a tensile strength of 6 GPa and carbon fiber “TR30S (manufactured by Mitsubishi Rayon)” having a tensile strength of 4.4 GPa with an electron microscope. As a result, as shown in FIG. 16 and FIG. 17, “T800SC” had a cross section close to a perfect circle and a groove was observed on the surface, but the height difference of the groove was almost 50 nm or less and was smooth. On the other hand, as shown in FIG. 13 to FIG. 15, “TR30S” had many grooves with a height difference of 50 to 100 nm, although the cross section was almost a perfect circle. Generally, at least one groove having a height difference of 50 nm or more was present within a length of about 20 μm in the carbon fiber direction (surface area of 5 × 10 −4 mm 2 ). That is, “TS30S” having a tensile strength of 4.4 GPa has a good surface property compared to 3 GPa in the tensile strength, but clearly has a poor surface property compared to carbon fiber having a tensile strength of 6 GPa. .

前述したように、引っ張り強度の差から、引っ張り強度が6GPaの炭素繊維は一級品、6GPa未満のものは二級品として扱われている。後述する実験では、それぞれの炭素繊維をベースとしたCFRPプリプレグを使用して接着実験を行い、二級品に分類される炭素繊維をベースとしたCFRPプリプレグが、一級品と比較して高い接着力を獲得しうることを確認した。この際の接着方法として、コキュア法、コボンド法の両方を使用したが、いずれの場合にも低級炭素繊維を選択した効果を確認することができた。   As described above, due to the difference in tensile strength, carbon fibers having a tensile strength of 6 GPa are treated as first-class products and those having a tensile strength of less than 6 GPa are treated as second-class products. In the experiment described below, a CFRP prepreg based on each carbon fiber was used to conduct an adhesion test, and the CFRP prepreg based on the carbon fiber classified as the second grade has a higher adhesive strength than the first grade. Confirmed that you can win. As the bonding method at this time, both the co-curing method and the co-bonding method were used. In either case, the effect of selecting the lower carbon fiber could be confirmed.

以下、本発明を構成する各要素について詳細に説明する。
[CFRPプリプレグ]
市販のCFRPプリプレグは、マトリックス樹脂として常温で固体の熱硬化性エポキシ樹脂組成物が使用されており、CFRPプリプレグは固体のシート状物となっている。市販のCFRPプリプレグに関しては、マトリックス樹脂の具体的な組成は非公開となっているため詳細は不明であるが、概ね以下の組成となっている。マトリックス樹脂となるエポキシ樹脂は、その主成分がビスフェノールA型エポキシ樹脂の単量体型であり、その他にビスフェノールA型エポキシ樹脂の多量体型、及び、3個以上のエポキシ基を有する多官能型エポキシ樹脂を含む3〜5種類程度の異なったエポキシ樹脂同士の混合物となっている。この混合物に硬化剤として芳香族ジアミン又はジシアンジアミドを加え、加熱しつつ混練してマトリックス樹脂としている。
Hereafter, each element which comprises this invention is demonstrated in detail.
[CFRP prepreg]
A commercially available CFRP prepreg uses a thermosetting epoxy resin composition that is solid at room temperature as a matrix resin, and the CFRP prepreg is a solid sheet. Regarding the commercially available CFRP prepreg, since the specific composition of the matrix resin is not disclosed, the details are unknown, but the composition is generally as follows. The epoxy resin used as the matrix resin is a monomer type of bisphenol A type epoxy resin as a main component, and a multimeric type of bisphenol A type epoxy resin and a polyfunctional type epoxy resin having three or more epoxy groups. It is a mixture of about 3 to 5 types of different epoxy resins. An aromatic diamine or dicyandiamide is added to this mixture as a curing agent, and the mixture is kneaded while heating to form a matrix resin.

硬化剤を芳香族ジアミンとすると、エポキシ樹脂硬化物のTg(ガラス転移点)を150〜180℃と高くすることができ、CFRPの耐熱性を確保できる。芳香族ジアミンを硬化剤とした場合には、その添加量はエポキシ当量に基づいた値が最適であり、通常、エポキシ樹脂100質量部に対して25〜35質量部となる。硬化剤として最もよく使用される芳香族ジアミンはジアミノジフェニルスルホン(「DDS」という)であり、これは固体である。エポキシ樹脂混合物は高粘度の液体であり、これに混合する硬化剤は固体であって、かつ、その添加量が上述したように多い。それ故、エポキシ樹脂混合物を60〜80℃に加熱した状態で硬化剤との混合操作を行うことになる。具体的には加熱ロールによって両者が混練されてシート状のマトリックス樹脂となる。即ち、混練物は常温で固体となる。このシート化されたマトリックス樹脂2枚によって、炭素繊維束又は炭素繊維布を挟み込み、再び加熱しつつロールにかけて1層物にしたものがCFRPプリプレグとなる。このようにして得られたCFRPプリプレグは全体として硬く薄いシート状物であり、マトリックス樹脂が固体となっているのでカバーフィルムは原則必要なく、これを切断する際に自動制御されたカッターを使用できる。   When the curing agent is an aromatic diamine, the Tg (glass transition point) of the cured epoxy resin can be increased to 150 to 180 ° C., and the heat resistance of CFRP can be ensured. When aromatic diamine is used as the curing agent, the amount added is optimally based on the epoxy equivalent, and is usually 25 to 35 parts by mass with respect to 100 parts by mass of the epoxy resin. The most commonly used aromatic diamine as a curing agent is diaminodiphenyl sulfone (referred to as “DDS”), which is a solid. The epoxy resin mixture is a high-viscosity liquid, and the curing agent mixed therewith is a solid, and the amount of addition is large as described above. Therefore, mixing operation with a hardening | curing agent will be performed in the state which heated the epoxy resin mixture to 60-80 degreeC. Specifically, both are kneaded by a heating roll to form a sheet-like matrix resin. That is, the kneaded product becomes solid at room temperature. A CFRP prepreg is formed by sandwiching a carbon fiber bundle or a carbon fiber cloth between the two matrix resins formed into a sheet and heating it again to form a single layer by heating. The CFRP prepreg thus obtained is a hard and thin sheet-like material as a whole, and since the matrix resin is solid, there is no need for a cover film in principle, and an automatically controlled cutter can be used when cutting this. .

一方、硬化剤をジシアンジアミドとした場合、そのエポキシ樹脂硬化物のTgはエポキシ樹脂組成によって変化する(非特許文献1)。この非特許文献1には「エポキシ樹脂間の重合について、硬化剤として脂肪族ポリアミン又は芳香族ジアミンを使用した場合と、ジシアンジアミドを硬化剤とした場合とで異なり、ジシアンジアミドの場合は付加重合だけでなく触媒的重合も生じている」とある。その根拠として、ジシアンジアミド粉体を硬化剤として用いた場合、最適の添加量はエポキシ当量に基づく値より遥かに少なく、エポキシ樹脂100質量部に対し3〜6質量部となる。それ故、ジシアンジアミドを硬化剤とした場合、マトリックス樹脂は、硬化剤添加前のエポキシ樹脂混合物より若干の粘度上昇が生じるに過ぎず、常温では固体とならずに通常は高粘度液状物となる。   On the other hand, when the curing agent is dicyandiamide, the Tg of the cured epoxy resin varies depending on the epoxy resin composition (Non-Patent Document 1). This Non-Patent Document 1 states that “the polymerization between epoxy resins is different between the case where an aliphatic polyamine or an aromatic diamine is used as a curing agent and the case where dicyandiamide is used as a curing agent. There is also catalytic polymerization. " As a basis for this, when dicyandiamide powder is used as a curing agent, the optimum addition amount is far less than the value based on the epoxy equivalent, and is 3 to 6 parts by mass with respect to 100 parts by mass of the epoxy resin. Therefore, when dicyandiamide is used as the curing agent, the matrix resin is only slightly increased in viscosity compared to the epoxy resin mixture before the addition of the curing agent, and is usually not a solid at room temperature but a high viscosity liquid.

前述したように炭素繊維にはPAN系とPITCH系がある。PAN系炭素繊維とPITCH系炭素繊維を比較すると、前者は引っ張り強度に優れる一方で後者は引っ張り弾性率に優れるという特徴がある。これら炭素繊維の表面性について説明する。PAN系炭素繊維に関しては、引っ張り強度の高い繊維ほど繊維断面が真円に近く、且つ繊維表面が平滑である。電子顕微鏡による観察でも均一性のある表面が観察される。引っ張り強度の低い炭素繊維においては、繊維断面が真円ではなく、楕円又は菱形に近いものが多くを占め、且つ繊維方向に平行に溝が生じていることが知られている。要するに引っ張り強度の低い炭素繊維ほど表面性が悪い。   As described above, carbon fibers include PAN and PITCH. When the PAN-based carbon fiber and the PITCH-based carbon fiber are compared, there is a feature that the former is excellent in tensile strength while the latter is excellent in tensile elastic modulus. The surface properties of these carbon fibers will be described. Regarding the PAN-based carbon fiber, the fiber having a higher tensile strength has a fiber cross section closer to a perfect circle and a smooth fiber surface. Even with an electron microscope, a uniform surface is observed. It is known that carbon fibers having a low tensile strength have a fiber cross section that is not a perfect circle but is mostly an ellipse or rhombus, and grooves are formed in parallel to the fiber direction. In short, the carbon fiber with lower tensile strength has a lower surface property.

一方、PITCH系炭素繊維は引っ張り弾性率によって品質が判断される。PITCH系炭素繊維においては、黒鉛化率が高いこと及び黒鉛結晶の並び方が繊維方向に対して平行に近いこと等が高い引っ張り弾性率を生む要因となる。その製造方法は以下の通りである。高純度にしたPITCHを数百度の高温にして溶融し、小さな穴を通して紡糸する。得られた繊維は高温にすると再び溶融するので酸化等によって不融化し、不融化した繊維を千度を越える高温下の不活性ガス中に置いて黒鉛化した物が炭素繊維となる。原料のPITCH自体が高炭素含有率であるから、高温での焼成時(黒鉛化時)に生じる分解ガスは前述したPAN系より少ない。従ってその表面性は紡糸時に殆ど決まり、概して良好である。原料ピッチの純度が良くない場合には、紡糸後の不融化又は黒鉛化工程で不純物が分解して表面性を悪化させると考えられる。これは前述したように、炭素繊維とマトリックス樹脂の接着力を向上させ、これによりCFRPと被着材の接着力を向上させるという面からは好ましい。しかしながらPITCH系炭素繊維のメーカーとしては、原料であるPITCHの純度を向上させること及び黒鉛化工程の改良によって、PAN系炭素繊維に対して性能面で劣らないものを提供してきた経緯がある。それ故、本発明で求めるような表面性が良好ではない炭素繊維をあえて使用することによって、被着材との接着力を向上させるという着想はない。   On the other hand, the quality of the PITCH-based carbon fiber is determined by the tensile elastic modulus. In the PITCH-based carbon fiber, a high graphitization rate and a method of arranging graphite crystals parallel to the fiber direction cause high tensile elastic modulus. The manufacturing method is as follows. The highly purified PITCH is melted at a high temperature of several hundred degrees and spun through a small hole. The obtained fiber is melted again at a high temperature, so that it is infusible by oxidation or the like, and the infusible fiber is placed in an inert gas at a high temperature exceeding 1000 degrees to graphitize the carbon fiber. Since the raw material PITCH itself has a high carbon content, the decomposition gas generated during firing at high temperature (graphitization) is less than that of the PAN system described above. Therefore, the surface property is almost determined at the time of spinning and is generally good. When the purity of the raw material pitch is not good, it is considered that impurities are decomposed in the infusibilization or graphitization step after spinning to deteriorate the surface property. As described above, this is preferable from the viewpoint of improving the adhesion between the carbon fiber and the matrix resin, thereby improving the adhesion between the CFRP and the adherend. However, manufacturers of PITCH-based carbon fibers have a history of providing performance that is not inferior to that of PAN-based carbon fibers by improving the purity of the raw material PITCH and improving the graphitization process. Therefore, there is no idea of improving the adhesive force with the adherend by using carbon fiber having a poor surface property as required in the present invention.

PAN系炭素繊維及びPITCH系炭素繊維のカタログには、通常、物性指標として引っ張り強度及び引っ張り弾性率が表示されている。PITCH系炭素繊維においては、これら物性指標と表面性との相関が低い。一方でPAN系炭素繊維に関しては高い相関を示す。故に、PAN系炭素繊維に関しては引っ張り強度及び引っ張り弾性率が低いものを選択することが、当該炭素繊維表面に適度な溝が生じているものを選択することに直結し、「引っ張り強度及び引っ張り弾性率が低い炭素繊維を敢えて選択することによる接着力の向上」を図ることとなる。以下、PAN系炭素繊維をベースとしたCFRPプリプレグについて詳述する。現状のPAN系炭素繊維として引っ張り強度が最も高いものは「T800SC(東レ株式会社製)」である。これの引っ張り強度は6GPa、引っ張り弾性率は300GPaである。これより引っ張り強度が低いものとして「T300(東レ株式会社製)」がある。これの引っ張り強度は3.6GPa、引っ張り弾性率235GPaである。また「TR30S(三菱レイヨン株式会社製)」は引っ張り強度が4.4GPa、引っ張り弾性率が234GPaである。   In catalogs of PAN-based carbon fibers and PITCH-based carbon fibers, tensile strength and tensile elastic modulus are usually displayed as physical property indicators. In PITCH-based carbon fiber, the correlation between these physical property indices and surface properties is low. On the other hand, the PAN-based carbon fiber shows a high correlation. Therefore, for PAN-based carbon fibers, selecting one having a low tensile strength and tensile modulus is directly connected to selecting one having an appropriate groove on the surface of the carbon fiber. “Adhesion is improved by deliberately selecting carbon fibers having a low rate”. Hereinafter, the CFRP prepreg based on the PAN-based carbon fiber will be described in detail. “T800SC (manufactured by Toray Industries, Inc.)” has the highest tensile strength as the current PAN-based carbon fiber. This has a tensile strength of 6 GPa and a tensile modulus of 300 GPa. There exists "T300 (made by Toray Industries, Inc.)" as a thing with lower tensile strength than this. This has a tensile strength of 3.6 GPa and a tensile modulus of 235 GPa. “TR30S (manufactured by Mitsubishi Rayon Co., Ltd.)” has a tensile strength of 4.4 GPa and a tensile elastic modulus of 234 GPa.

上記「T800SC」をベースとしたCFRPプリプレグが市販されている。本発明者らはその中から厚さ0.2mmのCFRPプリプレグ「トレカ2255S−25(東レ株式会社製)」を高糸強度タイプのプリプレグとして用いることとした。また、これと比較するため「TR30S」をベースとした0.2mm厚のプリプレグ「パイロフィルTR3523M(三菱レイヨン株式会社製)」を使用した。この「パイロフィルTR3523M」を小さく切断し、アセトンに漬けてマトリックス樹脂を溶かし出し、表出した炭素繊維「TR30S」をアセトンにて数回洗浄して乾燥し、その表面を電子顕微鏡で観察した結果を図13〜図15に示す。図13(2千倍写真)より、繊維方向と平行の溝が出現しているのが確認できる。図14(2千倍写真)は、繊維表面の最も平滑とみられる箇所の拡大写真であるが、この範囲にも溝を確認することができる。図15(1万倍写真)から、溝を構成する凹凸が比較的なだらかであり、急勾配ではないことが把握される。観察結果から得た表面の特徴は、概ね高低差70nmの溝が繊維長さ20μm内に1つ以上存在した。   CFRP prepreg based on the above “T800SC” is commercially available. The inventors decided to use a CFRP prepreg “Torayca 2255S-25 (manufactured by Toray Industries, Inc.)” having a thickness of 0.2 mm as a high yarn strength type prepreg. For comparison, a 0.2 mm thick prepreg “Pyrofil TR3523M (manufactured by Mitsubishi Rayon Co., Ltd.)” based on “TR30S” was used. This “Pyrofil TR3523M” was cut into small pieces, soaked in acetone to dissolve the matrix resin, the exposed carbon fiber “TR30S” was washed several times with acetone and dried, and the surface was observed with an electron microscope. It is shown in FIGS. It can be confirmed from FIG. 13 (2 000 times photograph) that a groove parallel to the fiber direction appears. FIG. 14 (2 000 times photograph) is an enlarged photograph of the most smooth part of the fiber surface, and the groove can also be confirmed in this range. From FIG. 15 (10,000 times photograph), it is understood that the unevenness constituting the groove is comparatively gentle and not steep. The surface characteristics obtained from the observation results were that at least one groove having a height difference of approximately 70 nm was present within a fiber length of 20 μm.

一方、同様の処理を「トレカ2255S−25」について行い、炭素繊維「T800S」の表面を電子顕微鏡で観察した結果を図16(2千倍写真)及び図17(1万倍写真)に示す。溝自体は存在するが、「TR30S」と比較した場合に高低差が明かに小さく、50nm以下である。後述する実験例では、「トレカ2255S−25」及び「パイロフィルTR3523M」を積層してCFRP部材を作成した。これらのいずれもマトリックス樹脂は熱硬化型エポキシ樹脂組成物である。双方の表面性の違いによって接着力に差が生じるか否かを確認した。   On the other hand, the same process was performed on “Torayca 2255S-25”, and the result of observing the surface of the carbon fiber “T800S” with an electron microscope is shown in FIG. 16 (2,000 times photograph) and FIG. 17 (10,000 times photograph). Although the groove itself exists, the height difference is clearly small when compared with “TR30S”, which is 50 nm or less. In an experimental example to be described later, a CFRP member was created by laminating “Trekka 2255S-25” and “Pyrofil TR3523M”. In any of these, the matrix resin is a thermosetting epoxy resin composition. It was confirmed whether or not there was a difference in adhesive strength due to the difference in surface properties between the two.

[CFRP部材の作成]
上述したCFRPプリプレグを積層してCFRP部材を作成する。CFRPプリプレグからCFRP部材を作成する過程は以下のようになる。CFRPプリプレグシートを切断し、プリプレグ片を多数作成する。これらのプリプレグ片はCFRP部材の各部の形状に合致するように切断される。プリプレグ片を積層させた状態で全体を治具によって締め付け、これをオートクレーブに入れて真空にしつつ加熱する。マトリックス樹脂はオートクレーブ内で加熱されることにより80〜90℃で一端溶融して高粘度液状物となるから、真空近くまで減圧してプリプレグ片に挟まれている空気及びプリプレグ片中に残されていた空気を排除する。更に昇温しつつタイミングを図り、オートクレーブ内を加圧状態にする。この加圧によって、空気が抜けたあとのボイドは潰され、マトリックス樹脂は完全硬化に向かう。硬化温度は140〜180℃とし、この温度に1時間以上置くのが普通である。
[Create CFRP member]
A CFRP member is prepared by laminating the CFRP prepreg described above. The process of creating a CFRP member from a CFRP prepreg is as follows. A CFRP prepreg sheet is cut and a large number of prepreg pieces are produced. These prepreg pieces are cut so as to match the shape of each part of the CFRP member. The whole of the prepreg pieces is laminated with a jig, and the whole is put into an autoclave and heated while being evacuated. When the matrix resin is heated in an autoclave, it melts at 80 to 90 ° C. to become a highly viscous liquid material. Therefore, the matrix resin is depressurized to near vacuum and left in the air and the prepreg pieces. To eliminate air. The timing is further increased while the temperature is raised, and the autoclave is pressurized. By this pressurization, the voids after the air escapes are crushed, and the matrix resin goes to complete curing. The curing temperature is 140 to 180 ° C., and it is usually placed at this temperature for 1 hour or longer.

ここで、本発明においては、CFRPと被着材との接着力を向上させる目的をもって、あえて表面性が良くない(結果として引っ張り強度及び引っ張り弾性率が低い)炭素繊維をベースとしたCFRPプリプレグを使用する。このようなCFRPプリプレグのみでCFRP部材を構成しても良い。一方で、CFRP部材(CFRPプリプレグの積層物)において、被着材又は接着剤と接する層となるCFRPプリプレグ以外のCFRPプリプレグに関しては、引っ張り強度及び引っ張り弾性率が高い炭素繊維を使用しても差し支えない。むしろ、表層以外のCFRPプリプレグは、CFRP部材全体の強度を考慮すると、性能の良い炭素繊維の使用が好ましいといえる。このように、表層に位置するCFRPプリプレグに関してのみ、表面性の良くない炭素繊維を使用し、その他のCFRPプリプレグに関しては表面性が良好で引っ張り強度及び引っ張り弾性率が高いものを使用してCFRP部材を作成する例を以下に示す。   Here, in the present invention, a CFRP prepreg based on a carbon fiber having a poor surface property (resulting in low tensile strength and tensile elastic modulus) is used for the purpose of improving the adhesion between the CFRP and the adherend. use. You may comprise a CFRP member only with such a CFRP prepreg. On the other hand, in CFRP members (CFRP prepreg laminates), carbon fibers having a high tensile strength and high tensile modulus may be used for CFRP prepregs other than the CFRP prepreg serving as a layer in contact with the adherend or the adhesive. Absent. Rather, it can be said that the CFRP prepreg other than the surface layer is preferably a carbon fiber having good performance in consideration of the strength of the entire CFRP member. As described above, only the CFRP prepreg located on the surface layer uses carbon fibers with poor surface properties, and other CFRP prepregs use those with good surface properties and high tensile strength and tensile elastic modulus. An example of creating is shown below.

CFRPプリプレグを積層して厚さ3mmのCFRP部材を作成する場合、表面が平滑な(引っ張り強度及び引っ張り弾性率が高い)炭素繊維をベースとしたCFRPプリプレグを積層して厚さ2.4mmにする。即ち、CFRPプリプレグが0.2mm厚であれば12枚積層する。その上に表面に凹凸がある(引っ張り強度及び引っ張り弾性率が低い)炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグを3枚積層する。この表層をなすCFRPプリプレグの厚さに関しては適宜、調整すべきである。CFRPプリプレグに関しては厚さが0.05〜0.2mmのものが多く、単層型と多層型が存在する。仮に最も薄い0.05mmのCFRPプリプレグを1枚のみ使用した場合、このCFRPプリプレグのみが被着材又は接着剤と接する層を構成する。この場合に、その層の剛性が問題となり、下の層を構成するCFRPプリプレグとの剥がれやすさ等が問題となるケースも生じうるので、この表層の厚さに関しては適宜調整することになる。   When a CFRP member having a thickness of 3 mm is prepared by laminating CFRP prepreg, a CFRP prepreg based on carbon fiber having a smooth surface (high tensile strength and high tensile modulus) is laminated to a thickness of 2.4 mm. . That is, if the CFRP prepreg is 0.2 mm thick, 12 sheets are laminated. Three CFRP prepregs having a thickness of 0.2 mm based on carbon fibers having a concavo-convex surface (low tensile strength and low tensile modulus) are laminated thereon. The thickness of the CFRP prepreg constituting the surface layer should be adjusted as appropriate. Many CFRP prepregs have a thickness of 0.05 to 0.2 mm, and there are a single layer type and a multilayer type. If only the thinnest 0.05 mm CFRP prepreg is used, only this CFRP prepreg constitutes a layer in contact with the adherend or adhesive. In this case, there is a case where the rigidity of the layer becomes a problem and the ease of peeling off from the CFRP prepreg constituting the lower layer may be a problem. Therefore, the thickness of the surface layer is appropriately adjusted.

後述する接着実験においては、45mm×15mmで厚さ3mmのCFRPプリプレグ同士を、接着面積0.5〜0.6cmで接着して、せん断破断力を測定した。このCFRPプリプレグの表面端部0.5〜0.6cmに概ね2〜4kNの引っ張り加重がかかる。過去の実験から、この範囲の接着面積と加重の関係であれば、表層を構成するCFRPプリプレグ(引っ張り強度及び引っ張り弾性率が低い炭素繊維をベースとしたもの)の厚さが0.6mm程度あれば、当該層と、その下の層との剥がれは問題とならない。CFRPプリプレグのサイズ(45mm×15mm)に対する接着面積がより小さければ、表層を構成するCFRPプリプレグはこれより薄くとも良い。 In the adhesion experiment described later, CFRP prepregs having a thickness of 45 mm × 15 mm and a thickness of 3 mm were bonded to each other with an adhesion area of 0.5 to 0.6 cm 2 and the shear breaking strength was measured. A tensile load of approximately 2 to 4 kN is applied to the surface edge 0.5 to 0.6 cm 2 of the CFRP prepreg. From past experiments, if the relationship between the adhesion area and the load in this range, the thickness of the CFRP prepreg (based on carbon fiber having low tensile strength and tensile modulus) constituting the surface layer should be about 0.6 mm. For example, peeling between the layer and the layer below it does not matter. If the adhesion area with respect to the size (45 mm × 15 mm) of the CFRP prepreg is smaller, the CFRP prepreg constituting the surface layer may be thinner.

[コボンド法による接合体の作成]
コボンド法によるCFRP部材と被着材の接合体の作成方法について説明する。CFRPプリプレグの積層物を治具で固定し、オートクレーブに入れて減圧下で昇温し、90℃程度まで積層物の温度が上がった後に常圧に戻し、更には数気圧の加圧状態にする。CFRPプリプレグは90℃前後で一旦軟化するので、この時点でCFRPプリプレグの層間に挟まれていた空気が抜ける。次いで加圧されることで、空気が抜けたあとの空隙が潰される。更に積層物を硬化温度まで昇温して完全硬化させ、加熱を止めてオートクレーブから積層物を取り出す。この積層物をCFRP部材とする。又は、必要に応じて積層物を高圧水切断機で切断加工して形状化したものをCFRP部材とする。このCFRP部材と被着材(CFRP部材又は金属合金)を接着剤によって接着することで接合体を作成する。
[Preparation of joined body by co-bonding method]
A method for producing a joined body of a CFRP member and an adherend by the cobond method will be described. Fix the laminate of CFRP prepreg with a jig, put it in an autoclave, raise the temperature under reduced pressure, return to normal pressure after the temperature of the laminate rises to about 90 ° C, and further pressurize it to several atmospheres . Since the CFRP prepreg is once softened around 90 ° C., the air sandwiched between the layers of the CFRP prepreg is released at this point. Then, by applying pressure, the air gap after the air has escaped is crushed. Further, the laminate is heated to the curing temperature to be completely cured, the heating is stopped, and the laminate is taken out from the autoclave. This laminate is a CFRP member. Alternatively, the CFRP member is formed by cutting the laminate with a high-pressure water cutter as necessary. A bonded body is created by bonding the CFRP member and the adherend (CFRP member or metal alloy) with an adhesive.

[コキュア法による接合体の作成]
一方、コキュア法による接合体の作成においては、既硬化のCFRP部材を被着材と接着させるのではなく、未硬化のCFRPプリプレグと被着材を抱き合わせた状態で加熱し、一体化する。例えば、未硬化のCFRPプリプレグの積層物同士を一体化する場合、CFRPプリプレグ積層物同士の所定範囲を密着させた状態で治具を使用して固定する。そして、治具によって固定した状態でオートクレーブに入れて全体を硬化させる方法がある。これがコキュア法によるCFRP(未硬化のCFRPプリプレグの積層物)同士の接着法である。ここで、未硬化のCFRPプリプレグの積層物同士をエポキシ接着剤を介して接着させるようにしても良い。即ち上記所定範囲にエポキシ接着剤を塗布しておき、オートクレーブ内でCFRPプリプレグのマトリックス樹脂とエポキシ接着剤を一時に硬化させる。これもコキュア法による接着である。CFRPプリプレグ積層物同士の接触面に対して上下から締め付ける力を加えることが困難な場合等には、エポキシ接着剤を使用することが好ましい。
[Creating a bonded body by the cocure method]
On the other hand, in the production of the bonded body by the co-curing method, the uncured CFRP member is not bonded to the adherend, but is heated and integrated in a state where the uncured CFRP prepreg and the adherend are conjugated. For example, when uncured CFRP prepreg laminates are integrated, they are fixed using a jig in a state in which a predetermined range of CFRP prepreg laminates is in close contact. And there exists a method of hardening the whole by putting in an autoclave in the state fixed with the jig | tool. This is an adhesion method between CFRP (a laminate of uncured CFRP prepregs) by a co-curing method. Here, a laminate of uncured CFRP prepregs may be bonded together via an epoxy adhesive. That is, an epoxy adhesive is applied to the predetermined range, and the CFRP prepreg matrix resin and the epoxy adhesive are cured at a time in an autoclave. This is also adhesion by the co-curing method. In the case where it is difficult to apply a tightening force from above and below to the contact surfaces of the CFRP prepreg laminates, it is preferable to use an epoxy adhesive.

また未硬化のCFRPプリプレグの積層物と金属合金とを接着させる場合には、先だって金属合金表面の接着領域にエポキシ接着剤を塗布した後、後述する染み込まし処理を行う。その後、その金属合金と未硬化のCFRPプリプレグの積層物とを密着させ、治具によって固定する。これをオートクレーブに入れて加熱し、CFRPプリプレグのマトリックス樹脂とエポキシ接着剤を一時に硬化させる。これもコキュア法による接着である。   In addition, when the uncured CFRP prepreg laminate and the metal alloy are bonded, an epoxy adhesive is first applied to the bonding region on the surface of the metal alloy, and then a soaking process described later is performed. Thereafter, the metal alloy and the uncured CFRP prepreg laminate are brought into close contact with each other and fixed with a jig. This is placed in an autoclave and heated to cure the CFRP prepreg matrix resin and epoxy adhesive at a time. This is also adhesion by the co-curing method.

[CFRP部材の粗面化]
CFRP部材を被着材と接着させる場合、CFRP部材表面を粗面化することで安定した接着力が得られる。この表面の研磨は研磨紙によって可能であり、本発明者らが試行錯誤を行った結果、JISR6252に規定される80番〜480番、好ましくは120番〜240番のやや目の粗い研磨紙でCFRP部材表面を10〜20回程度研磨したものが、安定的に高い接着力を発揮する被着材となった。粗面化後の表面に付着した汚れ(微粉)を除去するため、CFRP部材を洗剤を含む水溶液に浸漬した後、乾燥する。または、強い水流で粗面化した部分の汚れを取り去り、水道水又は純水に漬けて水洗し、乾燥しても良い。後述する実験例では研磨紙を使用したが、研磨用部材は研磨紙に限らない。量産工程では研磨紙に代えてサンドブラストを使用することが可能である。
[Roughening of CFRP member]
When the CFRP member is bonded to the adherend, a stable adhesive force can be obtained by roughening the surface of the CFRP member. This surface can be polished with abrasive paper, and as a result of trial and error by the present inventors, 80-480, preferably 120-240, as specified in JIS R6252 A material obtained by polishing the surface of the CFRP member about 10 to 20 times was an adherend that stably exhibited high adhesive strength. In order to remove dirt (fine powder) adhering to the roughened surface, the CFRP member is immersed in an aqueous solution containing a detergent and then dried. Alternatively, the dirt on the roughened portion may be removed with a strong water flow, soaked in tap water or pure water, washed, and dried. In the experimental examples to be described later, abrasive paper is used, but the polishing member is not limited to abrasive paper. In the mass production process, sandblasting can be used instead of abrasive paper.

CFRP部材表面から炭素繊維の一部が剥き出しとなる程度の粗面化が好ましい。概して炭素繊維とマトリックス樹脂との接着性よりも、炭素繊維と1液性エポキシ接着剤の接着性が優れているからである。市販の1液性エポキシ接着剤を使用した場合、常温下では炭素繊維とマトリックス樹脂との接着性よりも、炭素繊維と1液性エポキシ接着剤の接着性が優れている。しかし、100℃以上の高温下においては市販の1液性エポキシ接着剤と炭素繊維との接着力が急激に低下して、この1液性エポキシ接着剤と炭素繊維との間で破断が生じる。即ち、高温下においては、本発明で使用するCFRPプリプレグにおける炭素繊維とマトリックス樹脂との接着力ではなく、炭素繊維と1液性エポキシ接着剤の接着力の低下によって破断に至るのである。   Roughening to such an extent that a part of the carbon fiber is exposed from the surface of the CFRP member is preferable. This is because the adhesion between the carbon fiber and the one-component epoxy adhesive is generally superior to the adhesion between the carbon fiber and the matrix resin. When a commercially available one-component epoxy adhesive is used, the adhesion between the carbon fiber and the one-component epoxy adhesive is superior to the adhesion between the carbon fiber and the matrix resin at room temperature. However, at a high temperature of 100 ° C. or higher, the adhesive force between the commercially available one-component epoxy adhesive and the carbon fiber is sharply reduced, and breakage occurs between the one-component epoxy adhesive and the carbon fiber. That is, at a high temperature, not the adhesive force between the carbon fiber and the matrix resin in the CFRP prepreg used in the present invention, but a breakage is caused by a decrease in the adhesive force between the carbon fiber and the one-component epoxy adhesive.

この結果に基づけば、高温下における炭素繊維と1液性エポキシ接着剤との接着力を向上させることが可能であれば、常温から高温にかけてCFRP部材と被着材とが極めて強固に接着された接合体を得ることができることになる。即ち、常温下においては、炭素繊維とマトリックス樹脂との接着力が問題となるので、炭素繊維を改良(最適な炭素繊維の選択)することによって両者の接着力を向上させる。一方で、高温下においては、炭素繊維と1液性エポキシ接着剤との接着力が問題となるので、1液性エポキシ接着剤の改良によってこの接着力を向上させることを試みた。本発明者らが開発した耐熱型1液性エポキシ接着剤を使用した場合、常温のみならず、100〜150℃下における炭素繊維と当該接着剤との接着力が、炭素繊維とマトリックス樹脂の接着力を上回るので、常温から高温にかけてCFRP部材と被着材とが極めて強固に接着された接合体を得ることができる。これは、剥き出しになった炭素繊維の周囲を改良した1液性エポキシ接着剤が覆うことになり、これが新たなマトリックス樹脂となった結果、CFRPとしての耐熱性が向上するからである。この接着剤に関して以下に説明する。   Based on this result, if it was possible to improve the adhesion between the carbon fiber and the one-component epoxy adhesive at high temperature, the CFRP member and the adherend were bonded extremely firmly from room temperature to high temperature. A joined body can be obtained. That is, since the adhesive force between the carbon fiber and the matrix resin becomes a problem at room temperature, the adhesive force between the two is improved by improving the carbon fiber (selecting the optimum carbon fiber). On the other hand, since the adhesive force between the carbon fiber and the one-component epoxy adhesive becomes a problem at high temperatures, an attempt was made to improve this adhesive force by improving the one-component epoxy adhesive. When the heat-resistant one-component epoxy adhesive developed by the present inventors is used, the adhesive force between the carbon fiber and the adhesive not only at room temperature but also at 100 to 150 ° C. Since it exceeds the force, it is possible to obtain a joined body in which the CFRP member and the adherend are bonded extremely firmly from room temperature to high temperature. This is because the one-component epoxy adhesive with improved surroundings of the exposed carbon fiber is covered, and as a result, the heat resistance as CFRP is improved. This adhesive will be described below.

[1液性エポキシ接着剤]
本発明において、エポキシ接着剤の組成は特に限定しない。しかし、常温〜高温下での安定した接着力を確保するため、且つ、NATの条件を具備する金属合金材との接着力を高めるため、組成を最適化ものを使用することが好ましい。一般的な1液性エポキシ接着剤に関して以下のことが知られている。即ち、硬化剤としては芳香族ジアミンが使用されることが多い。芳香族ジアミンを硬化剤とした場合には、その添加量はエポキシ当量に基づいた値が最適であり、通常、エポキシ樹脂100質量部に対して25〜35質量部となる。硬化剤として最もよく使用される芳香族ジアミンは4,4‘−ジアミノジフェニルスルホン、及び3,4’−ジアミノジフェニルスルホンである。これに対して、本発明者らが好ましいと考える接着剤では硬化剤の含量が少なくて済むように、硬化剤としてジシアンジアミド粉体を使用する。
[One-part epoxy adhesive]
In the present invention, the composition of the epoxy adhesive is not particularly limited. However, in order to secure a stable adhesive force from room temperature to high temperature and to enhance the adhesive force with the metal alloy material having the NAT conditions, it is preferable to use a material having an optimized composition. The following is known about a general one-component epoxy adhesive. That is, an aromatic diamine is often used as the curing agent. When aromatic diamine is used as the curing agent, the amount added is optimally based on the epoxy equivalent, and is usually 25 to 35 parts by mass with respect to 100 parts by mass of the epoxy resin. The most commonly used aromatic diamines as curing agents are 4,4'-diaminodiphenyl sulfone and 3,4'-diaminodiphenyl sulfone. On the other hand, dicyandiamide powder is used as the curing agent so that the adhesive that the present inventors consider preferable is low in the content of the curing agent.

ジシアンジアミド粉体を使用した場合、その接着性能が最高になる添加量はエポキシ樹脂100質量部に対して3〜6質量部に過ぎず、エポキシ当量に基づいて算出される15〜25質量部と大きく異なる。本発明者らがエポキシ樹脂とジシアンジアミド粉体(硬化剤)を混合した1液性エポキシ接着剤を作成し、この接着剤を使用して金属合金同士の接着実験を行った結果、エポキシ樹脂100質量に対して3〜6質量部の添加で特に高い接着力を発揮した。言い換えると、エポキシ樹脂100質量部に対してジシアンジアミド粉体の添加量が上記範囲より多いとき(例えば15質量部〜30質量部とした場合)には、強い接着力が得られなくなるという傾向を見出した。   When dicyandiamide powder is used, the addition amount that maximizes the adhesive performance is only 3 to 6 parts by mass with respect to 100 parts by mass of the epoxy resin, and is as large as 15 to 25 parts by mass calculated based on the epoxy equivalent. Different. As a result of the inventors creating a one-component epoxy adhesive in which an epoxy resin and dicyandiamide powder (curing agent) are mixed and performing an adhesion experiment between metal alloys using this adhesive, 100 mass of epoxy resin is obtained. In particular, the addition of 3 to 6 parts by mass exhibited particularly high adhesive strength. In other words, when the addition amount of the dicyandiamide powder is larger than the above range with respect to 100 parts by mass of the epoxy resin (for example, when 15 parts by mass to 30 parts by mass), a tendency that a strong adhesive force cannot be obtained is found. It was.

これらの結果は、ジシアンジアミド粉体を硬化剤とすることで、エポキシ当量を考慮する上で前提となる付加重合理論に沿わない可能性、即ち、重合触媒として作用する可能性があることを示している。要するに、1液性エポキシ接着剤の硬化剤に芳香族ジアミンでなくジシアンジアミド粉体を使用することで、1液性エポキシ接着剤中の硬化剤の比率を減らし、1液性エポキシ接着剤中のエポキシ基濃度を高めることが出来る。これは本発明にとって好ましいことである。   These results show that by using dicyandiamide powder as a curing agent, it may not comply with the theory of addition polymerization, which is a prerequisite for considering the epoxy equivalent, that is, it may act as a polymerization catalyst. Yes. In short, by using dicyandiamide powder instead of aromatic diamine as the curing agent for the one-part epoxy adhesive, the ratio of the curing agent in the one-part epoxy adhesive is reduced and the epoxy in the one-part epoxy adhesive is reduced. The base concentration can be increased. This is preferred for the present invention.

(最適化した1液性エポキシ接着剤)
本発明での使用に好ましい1液性エポキシ接着剤の組成は以下である。この1液性エポキシ接着剤を構成する全エポキシ樹脂混合物を100質量部としたときに、ビスフェノールA型エポキシ樹脂単量体を主体とするビスフェノールA型エポキシ樹脂を60〜75質量部、エポキシ基を3個以上有する多官能型であって且つ芳香環を有するエポキシ樹脂を25〜40質量部混合したものである。このエポキシ樹脂混合物は(1)ビスフェノールA型エポキシ樹脂単量体を60〜75質量部、(2)ビスフェノールA型エポキシ樹脂オリゴマーを0〜15質量部、(3)エポキシ基を3個以上有する多官能型であって且つ芳香環を有するエポキシ樹脂を25〜40質量部混合したものが好ましい。このエポキシ樹脂混合物100質量部に対して、硬化剤としてジシアンジアミド粉体を3〜6質量部添加し、硬化助剤として3−(3,4−ジクロルフェニル)−1,1−ジメチルウレア粉体を1〜3質量部添加したものを基本組成とする。硬化剤及び硬化助剤は下記充填材をエポキシ樹脂に添加して混合した後に、添加することが好ましい。
(Optimized one-part epoxy adhesive)
The composition of the one-component epoxy adhesive preferable for use in the present invention is as follows. When the total epoxy resin mixture constituting this one-component epoxy adhesive is 100 parts by mass, 60 to 75 parts by mass of bisphenol A type epoxy resin mainly composed of bisphenol A type epoxy resin monomer, and epoxy group It is a polyfunctional type having 3 or more and 25 to 40 parts by mass of an epoxy resin having an aromatic ring. This epoxy resin mixture has (1) 60 to 75 parts by mass of bisphenol A type epoxy resin monomer, (2) 0 to 15 parts by mass of bisphenol A type epoxy resin oligomer, and (3) many having three or more epoxy groups. What mixed 25-40 mass parts of epoxy resins which are functional types and have an aromatic ring is preferable. 3 to 6 parts by mass of dicyandiamide powder as a curing agent is added to 100 parts by mass of this epoxy resin mixture, and 3- (3,4-dichlorophenyl) -1,1-dimethylurea powder as a curing aid. Is added to 1 to 3 parts by mass. It is preferable to add the curing agent and the curing aid after adding the following filler to the epoxy resin and mixing them.

本発明に係る1液性エポキシ接着剤では、上記基本組成に充填材を添加している。粒径分布の中心が10〜30μm径のタルク粉体又はクレー粉体、粒径分布中心が10〜30μm径のアルミニウム粉体、及び、粒径分布の中心が10〜30μmの水酸基付きポリエーテルスルホン樹脂粉体を添加する。特にアルミニウム粉末の使用によって接着力を向上させることができた。過去に本発明者らが、タルクを無機充填材として添加した1液性エポキシ接着剤と、アルミニウム粉末を無機充填材として添加した1液性エポキシ接着剤を使用した接着実験を行った結果、後者の接着力が高かった。これらの原因は、アルミニウム粉体の表面もアルミニウムの自然酸化層であるから、エポキシ樹脂との親和性がタルクより良好であったことにあると推定される。   In the one-component epoxy adhesive according to the present invention, a filler is added to the basic composition. Talc powder or clay powder having a particle size distribution center of 10 to 30 μm, aluminum powder having a particle size distribution center of 10 to 30 μm, and polyethersulfone with a hydroxyl group having a particle size distribution center of 10 to 30 μm Add resin powder. In particular, the adhesive force could be improved by using aluminum powder. In the past, the inventors conducted a bonding experiment using a one-component epoxy adhesive in which talc was added as an inorganic filler and a one-component epoxy adhesive in which aluminum powder was added as an inorganic filler. The adhesive strength of was high. These causes are presumed to be due to the fact that the surface of the aluminum powder is also a natural oxidation layer of aluminum, so that the affinity for the epoxy resin was better than that of talc.

耐衝撃性を高めることを目的で水酸基付きポリエーテルスルホン樹脂粉体を添加した。粒径分布の中心が10〜30μmの水酸基付きポリエーテルスルホン樹脂粉体を全エポキシ樹脂100質量部に対し5〜30質量部加えても硬化性能、接着性能に影響はなかった。ポリエーテルスルホン樹脂(以下、「PES」という)は融点300℃以上の熱可塑性樹脂であり、常温から150℃程度までであれば十分に硬いが、非常な力がかかった時にはクリープして変形するので接着剤硬化物に耐衝撃性を与える。充填材の添加量は、全エポキシ樹脂量を100質量部として、タルク粉体又はクレー粉体を5〜20質量部、アルミニウム粉体を10〜60質量部、水酸基付きポリエーテルスルホン樹脂粉体を5〜30質量部である。   A polyethersulfone resin powder with a hydroxyl group was added for the purpose of improving impact resistance. Even when 5 to 30 parts by mass of a hydroxyl group-containing polyethersulfone resin powder having a particle size distribution center of 10 to 30 μm was added to 100 parts by mass of the total epoxy resin, the curing performance and the adhesion performance were not affected. Polyethersulfone resin (hereinafter referred to as “PES”) is a thermoplastic resin having a melting point of 300 ° C. or higher, and is sufficiently hard from room temperature to about 150 ° C., but it creeps and deforms when an excessive force is applied. Therefore, it gives impact resistance to the cured adhesive. The amount of filler added is 100 parts by mass of the total epoxy resin, 5 to 20 parts by mass of talc powder or clay powder, 10 to 60 parts by mass of aluminum powder, and polyethersulfone resin powder with a hydroxyl group. 5 to 30 parts by mass.

[染み込まし処理]
(金属合金)
NATに適合する第1の条件〜第3の条件を具備する金属合金表面に1液性エポキシ系接着剤を塗布した後、その金属合金をデシケータ等の容器に入れて密閉し、容器内を真空ポンプ等で一旦減圧し、その後に常圧に戻す操作を行う。具体的には、容器内を数十mmHg程度まで減圧して一定時間以上(概ね数秒〜数分)置き、その後空気を入れて常圧に戻す(又は数気圧以上の圧力まで加圧する)ことが好ましい。減圧状態に置く時間は、接着剤の超微細凹凸への侵入具合に応じて調整する。この減圧/常圧戻し操作を数回繰り返すのが好ましい。この減圧/常圧戻し操作に使用する容器、例えばデシケータは使用前に50〜70℃に暖めておくことが好ましい。これは塗布した接着剤の粘度を下げて表面の超微細凹凸に染み込み易くするためである。接着剤の接着剤粘度を15Pa秒以下、好ましくは10Pa秒以下とすることで超微細凹凸に侵入させる。染み込まし処理を終えた金属合金を容器から取り出して熱風乾燥機に入れ、接着剤を硬化させる。
[Soaking process]
(Metal alloy)
After applying a one-component epoxy adhesive to the surface of the metal alloy satisfying the first to third conditions that conform to NAT, the metal alloy is sealed in a container such as a desiccator, and the container is vacuumed. The pressure is once reduced with a pump or the like, and then returned to normal pressure. Specifically, the inside of the container is depressurized to about several tens of mmHg and left for a certain period of time (approximately several seconds to several minutes), and then air is returned to normal pressure (or pressure is increased to a pressure of several atmospheres or more). preferable. The time in which the pressure is reduced is adjusted according to the degree of penetration of the adhesive into the ultra-fine irregularities. This depressurization / return to normal pressure operation is preferably repeated several times. It is preferable that the container used for this decompression / normal pressure return operation, for example, a desiccator, is warmed to 50 to 70 ° C. before use. This is to reduce the viscosity of the applied adhesive so that it can easily penetrate into the ultra-fine irregularities on the surface. By setting the adhesive viscosity of the adhesive to 15 Pa seconds or less, preferably 10 Pa seconds or less, the ultra fine unevenness is caused to enter. The metal alloy soaked and treated is taken out of the container and placed in a hot air dryer to cure the adhesive.

ここで、金属合金表面に塗布しようとする接着剤の粘度が低い(例えば10Pa秒以下である)場合には上記減圧/常圧戻し操作を行うまでもなく、接着剤が超微細凹凸に侵入する場合がある。この場合には、当然染み込まし処理は不要である。また、塗布しようとする接着剤の粘度が高くても、金属合金を暖めておくことにより、塗布後に接着剤の粘度が低下して超微細凹凸に侵入する場合がある。この場合にも染み込まし処理は不要となる。これら、接着剤塗布前における金属合金の加熱、及び染み込まし処理は、接着剤の超微細凹凸への侵入具合に応じて行えばよい。   Here, when the viscosity of the adhesive to be applied to the surface of the metal alloy is low (for example, 10 Pa seconds or less), the adhesive penetrates into the ultra-fine irregularities without performing the above-described decompression / normal pressure return operation. There is a case. In this case, of course, the soaking process is unnecessary. Moreover, even if the viscosity of the adhesive to be applied is high, by warming the metal alloy, the viscosity of the adhesive may decrease after application and may enter into the ultra-fine irregularities. Even in this case, the soaking process is unnecessary. The heating and the soaking process of the metal alloy before application of the adhesive may be performed according to the degree of penetration of the adhesive into the ultra-fine irregularities.

(CFRP部材)
粗面化したCFRP部材の所定箇所に、1液性エポキシ接着剤を塗布した後、デシケータ等の容器に入れて密閉し、容器内を真空ポンプ等で一旦減圧し、その後に常圧に戻す操作を行う。具体的には、容器内を数十mmHg程度まで減圧して一定時間以上(概ね数秒〜数分)置き、その後空気を入れて常圧に戻す(又は数気圧以上の圧力まで加圧する)ことが好ましい。減圧状態に置く時間は、接着剤の粗面化部分に係る凹凸への侵入具合に応じて調整する。この作業は、粗面化により生じたCFRP部材表面の凹凸に接着剤を侵入させることを目的とする。即ち、CFRPのマトリックス樹脂が硬化したエポキシ樹脂硬化物に、エポキシ接着剤である接着剤を染み込ませるのである。硬化剤を混入した後の接着剤の粘度が数十Pa秒以上と高い場合には、染み込まし処理に使用する容器は予め50〜70℃に加熱しておく。これによりエポキシ接着剤の粘度を15Pa秒以下、好ましくは10Pa秒以下にする。
(CFRP member)
After applying a one-component epoxy adhesive to a specified part of the roughened CFRP member, place it in a container such as a desiccator, seal it, and once depressurize the container with a vacuum pump, then return to normal pressure I do. Specifically, the inside of the container is depressurized to about several tens of mmHg and left for a certain period of time (approximately several seconds to several minutes), and then air is returned to normal pressure (or pressure is increased to a pressure of several atmospheres or more). preferable. The time for placing the pressure-reduced state is adjusted according to the degree of intrusion into the irregularities related to the roughened portion of the adhesive. The purpose of this operation is to allow the adhesive to penetrate into the irregularities on the surface of the CFRP member caused by the roughening. That is, the epoxy resin cured product obtained by curing the CFRP matrix resin is soaked with an adhesive as an epoxy adhesive. When the viscosity of the adhesive after mixing the curing agent is as high as several tens of Pa seconds or more, the container used for the soaking process is heated to 50 to 70 ° C. in advance. Thus, the viscosity of the epoxy adhesive is set to 15 Pa seconds or less, preferably 10 Pa seconds or less.

ここで、CFRP部材に塗布しようとする接着剤の粘度が低い(例えば15Pa秒以下である)場合には上記減圧/常圧戻し操作を行うまでもなく、接着剤が粗面化部分に係る凹凸に侵入する場合がある。この場合には、当然染み込まし処理は不要である。また、塗布しようとする接着剤の粘度が高くても、CFRP部材を暖めておくことにより、塗布後に接着剤の粘度が低下して粗面化部分の凹凸に侵入する場合がある。この場合にも染み込まし処理は不要となる。これら、接着剤塗布前におけるCFRP部材の加熱及び染み込まし処理は、接着剤の凹凸への侵入具合に応じて行えばよい。   Here, when the viscosity of the adhesive to be applied to the CFRP member is low (for example, 15 Pa seconds or less), it is not necessary to perform the above-described decompression / normal pressure return operation, and the adhesive is uneven on the roughened portion. May invade. In this case, of course, the soaking process is unnecessary. Even if the viscosity of the adhesive to be applied is high, by warming the CFRP member, the viscosity of the adhesive may decrease after application and may enter the irregularities of the roughened portion. Even in this case, the soaking process is unnecessary. The heating and soaking process of the CFRP member before application of the adhesive may be performed according to the degree of penetration of the adhesive into the unevenness.

本発明は、引っ張り強度及び引っ張り弾性率が低い炭素繊維を選択することによって、これをベースとしたCFRPプリプレグにおける当該炭素繊維とマトリックス樹脂との接着力を向上させた。その結果として、接着対象となる部分に上記CFRPプリプレグを使用したCFRP部材と被着材との強固な接着が可能となった。コボンド法による接着を行う場合であって、被着材がNATの3条件を満たす金属合金である場合、従来技術では当該金属合金と1液性エポキシ接着剤との接着力が、炭素繊維とマトリックス樹脂との接着力を上回っていた。これにより、複合体全体としてはNATに基づく強固な接合の効果が減殺されるという課題があった。しかし、本発明によって、この課題が解決された。CFRP部材同士のコボンド接着においても、炭素繊維とマトリックス樹脂との接着力の向上によって、同様に接合体の接着力が向上した。また、コキュア法によってCFRP部材と被着材(金属合金又はCFRP)とを接合させた場合にも、従来より強固な接合体となった。   In the present invention, by selecting a carbon fiber having a low tensile strength and tensile modulus, the adhesion between the carbon fiber and the matrix resin in a CFRP prepreg based on the carbon fiber is improved. As a result, the CFRP member using the CFRP prepreg in the portion to be bonded and the adherend can be firmly bonded. When bonding is performed by the cobond method, and the adherend is a metal alloy that satisfies the three conditions of NAT, in the prior art, the adhesive force between the metal alloy and the one-component epoxy adhesive is the carbon fiber and the matrix. The adhesive strength with the resin was exceeded. Thereby, there existed a subject that the effect of the strong joining based on NAT was attenuated as the whole composite. However, this problem has been solved by the present invention. Also in the co-bond adhesion between the CFRP members, the adhesion force of the joined body was similarly improved by improving the adhesion force between the carbon fiber and the matrix resin. Further, when the CFRP member and the adherend (metal alloy or CFRP) are bonded by the co-curing method, the bonded body is stronger than before.

本発明は、一般的には低級として分類されている引っ張り強度が低いPAN系炭素繊維をベースとしたCFRPプリプレグを使用することにより、被着材との強固な接合を実現しようとするものである。既に1液性エポキシ接着剤とNATの3条件を満たす金属合金、又はCFRPのマトリックス樹脂硬化物とNATの3条件を満たす金属合金との極めて強固な接着が本発明者らによって実現されていたのである。これにより、接合体全体では、極めて高いせん断破断力(常温下では40MPa以上)が与えられたときに炭素繊維とマトリックス樹脂の接着力に起因して破断が起こるという特殊な事例が生じた。この特殊性を踏まえた上で、炭素繊維とマトリックス樹脂の接着力を向上させ、このような特殊状況下におけるCFRP部材と被着材(CFRP部材又は金属合金)の接合力を一層高めたものである。   The present invention is intended to realize strong bonding with a substrate by using a CFRP prepreg based on a PAN-based carbon fiber, which is generally classified as lower and has a low tensile strength. . Since the present inventors have already realized extremely strong adhesion between a one-component epoxy adhesive and a metal alloy satisfying the three conditions of NAT, or a CFRP matrix resin cured product and a metal alloy satisfying the three conditions of NAT. is there. As a result, there was a special case in which the entire bonded body was broken due to the adhesive force between the carbon fiber and the matrix resin when an extremely high shear breaking force (40 MPa or more at normal temperature) was given. Based on this particularity, the adhesion between the carbon fiber and the matrix resin is improved, and the bonding force between the CFRP member and the adherend (CFRP member or metal alloy) is further enhanced under such special circumstances. is there.

CFRP部材のうち、接着に供される範囲となる表層以外に関しては、引っ張り強度の高いPAN系炭素繊維をベースとしたCFRPプリプレグを使用することでCFRP部材全体としては引っ張り強度が改善される。即ち、接着に供される表層についてのみ、低級のCFRPプリプレグを使用することによって、接着性能が良好であり、かつCFRP部材自体としても引っ張り強度に優れた部材とすることができた。また、本発明らが開発した1液性エポキシ接着剤を使用することにより、100℃以上の高温下においても破断しがたい接合体を作成することができた。本発明は、炭素繊維やCFRPプリプレグメーカー以外の一般製造業者にとっても容易に実施可能であり、CFRP部材の領域拡大に大きく貢献する技術である。   Among the CFRP members, those other than the surface layer that is used for adhesion, the tensile strength of the CFRP member as a whole is improved by using a CFRP prepreg based on a PAN-based carbon fiber having a high tensile strength. That is, by using a lower CFRP prepreg only for the surface layer used for adhesion, it was possible to obtain a member having good adhesion performance and excellent tensile strength as the CFRP member itself. Further, by using the one-component epoxy adhesive developed by the present inventors, it was possible to produce a joined body that was not easily broken even at a high temperature of 100 ° C. or higher. The present invention can be easily implemented by general manufacturers other than carbon fiber and CFRP prepreg manufacturers, and is a technology that greatly contributes to the expansion of the CFRP member area.

図1は、A7075アルミニウム合金を苛性ソーダ水溶液で化学エッチングし、水和ヒドラジン水溶液で微細エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 1 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching an A7075 aluminum alloy with a caustic soda aqueous solution and finely etching with a hydrated hydrazine aqueous solution. 図2は、A5052アルミニウム合金を苛性ソーダ水溶液で化学エッチングし、水和ヒドラジン水溶液で微細エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 2 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching an A5052 aluminum alloy with an aqueous caustic soda solution and finely etching with an aqueous hydrazine solution. 図3は、AZ31Bマグネシウム合金をクエン酸水溶液で化学エッチングし、過マンガン酸カリ水溶液で化成処理した表面の10万倍電子顕微鏡写真((a)(b)いずれも10万倍)である。FIG. 3 is a 100,000 times electron micrograph (100% magnification of (a) and (b)) of a surface obtained by chemically etching an AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図4は、C1100銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 4 is an electron micrograph of a surface obtained by chemically etching a C1100 copper alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and surface-treating with an aqueous solution of sodium chlorite ((a): 10,000 times, (b): 100,000 times) ). 図5は、C5191リン青銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 5 is an electron micrograph ((a): 10,000 times, (b): 100,000) of a surface obtained by chemically etching a C5191 phosphor bronze alloy with sulfuric acid / hydrogen peroxide aqueous solution and surface hardening treatment with sodium chlorite aqueous solution. Times). 図6は、KFC銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。Fig. 6 shows electron micrographs of the surface of KFC copper alloy chemically etched with sulfuric acid / hydrogen peroxide solution and surface hardened with sodium chlorite solution ((a): 10,000 times, (b): 100,000 times) ). 図7は、KLF5銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 7 is an electron micrograph of a surface obtained by chemically etching a KLF5 copper alloy with sulfuric acid / hydrogen peroxide aqueous solution and surface-hardening with sodium chlorite aqueous solution ((a): 10,000 times, (b): 100,000 times) ). 図8は、「KS40」純チタン系チタン合金を1水素2弗化アンモニウム水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 8 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching a “KS40” pure titanium-based titanium alloy with an aqueous solution of 1 hydrogen difluoride ammonium. 図9は、「KSTi−9」α−β系チタン合金を1水素2弗化アンモニウム水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 9 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching a “KSTi-9” α-β titanium alloy with an aqueous solution of ammonium hydrogen difluoride. is there. 図10は、SUS304ステンレス鋼を硫酸水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 10 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching SUS304 stainless steel with a sulfuric acid aqueous solution. 図11は、SPCC冷間圧延鋼材を硫酸水溶液でエッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 11 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by etching a SPCC cold rolled steel material with a sulfuric acid aqueous solution. 図12は、SPHC熱間圧延鋼材を硫酸水溶液でエッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 12 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of the surface of SPHC hot-rolled steel material etched with a sulfuric acid aqueous solution. 図13は、炭素繊維「TR30S(三菱レイヨン株式会社製)」の2千倍電子顕微鏡写真である。FIG. 13 is a 2000 × electron micrograph of carbon fiber “TR30S (manufactured by Mitsubishi Rayon Co., Ltd.)”. 図14は、炭素繊維「TR30S(三菱レイヨン株式会社製)」の2千倍電子顕微鏡写真である。FIG. 14 is a 2000 × electron micrograph of carbon fiber “TR30S (manufactured by Mitsubishi Rayon Co., Ltd.)”. 図15は、炭素繊維「TR30S(三菱レイヨン株式会社製)」の1万倍電子顕微鏡写真である。FIG. 15 is a 10,000 times electron micrograph of carbon fiber “TR30S (manufactured by Mitsubishi Rayon Co., Ltd.)”. 図16は、炭素繊維「T800SC(東レ株式会社製)」の2千倍電子顕微鏡写真である。FIG. 16 is a 2000 × electron micrograph of carbon fiber “T800SC (manufactured by Toray Industries, Inc.)”. 図17は、炭素繊維「T800SC(東レ株式会社製)」の1万倍電子顕微鏡写真である。FIG. 17 is a 10,000 times electron micrograph of carbon fiber “T800SC (manufactured by Toray Industries, Inc.)”. 図18は、CFRP同士の接合体、又は金属合金とCFRPの複合体を作成する焼成治具の構造図である。FIG. 18 is a structural diagram of a firing jig for producing a joined body of CFRPs or a composite of a metal alloy and CFRP. 図19は、金属合金とCFRPの複合体、又はCFRP同士の接合体の形状を示す外観図である。FIG. 19 is an external view showing the shape of a composite of a metal alloy and CFRP, or a joined body of CFRP. 図20は、金属合金と1液性エポキシ接着剤が接合したときの表面構造を示す断面図である。FIG. 20 is a cross-sectional view showing a surface structure when a metal alloy and a one-component epoxy adhesive are joined. 図21は、CFRPプリプレグを積層してCFRP板を作成する焼成治具の構造図である。FIG. 21 is a structural diagram of a firing jig for producing a CFRP plate by laminating CFRP prepregs. 図22は、補強した金属合金とCFRPの複合体の形状を示す外観図である。FIG. 22 is an external view showing the shape of a reinforced metal alloy / CFRP composite.

(NATの条件に適合する金属合金)
以下の実験例では、CFRPの被着材として、「NAT」の3条件を具備する金属合金を使用する。前述の「NAT」に基づく表面構造を具備する金属合金としては、理論上特にその種類に制限はない。しかし、実際に「NAT」を適用できるのは、硬質で実用的な金属合金である。本発明者等は、アルミニウム、マグネシウム、銅、チタン、及び鉄を主成分とする金属合金種に関して「NAT」が適用可能であることを確認した。特許文献1にアルミニウム合金に関する記載をした。特許文献2にマグネシウム合金に関する記載をした。特許文献3に銅合金に関する記載をした。特許文献4にチタン合金に関する記載をした。特許文献5にステンレス鋼に関する記載をした。特許文献6に一般鋼材に関する記載をした。しかし、「NAT」ではアンカー効果により接着力の向上を図っているので、少なくともこれらの金属合金種に限定されるものではない。以下、金属合金表面を「NAT」の条件に適合する表面構造とするための表面処理工程について述べる。
(Metal alloy that meets NAT requirements)
In the following experimental examples, a metal alloy satisfying the three conditions “NAT” is used as the CFRP adherend. The metal alloy having a surface structure based on the above-described “NAT” is not particularly limited in theory. However, “NAT” can actually be applied to hard and practical metal alloys. The inventors of the present invention have confirmed that “NAT” can be applied to metal alloy types mainly composed of aluminum, magnesium, copper, titanium, and iron. Patent Document 1 describes an aluminum alloy. Patent Document 2 describes a magnesium alloy. Patent Document 3 describes a copper alloy. Patent Document 4 describes a titanium alloy. Patent Document 5 describes stainless steel. Patent Document 6 describes general steel materials. However, since “NAT” aims to improve the adhesive force by the anchor effect, it is not limited to at least these metal alloy types. Hereinafter, a surface treatment process for making the surface of the metal alloy into a surface structure conforming to the “NAT” condition will be described.

(化学エッチング)
この表面処理工程における化学エッチングは、金属合金表面にミクロンオーダーの粗度を生じさせることを目的とする。腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。
(Chemical etching)
The chemical etching in this surface treatment process is intended to produce a roughness on the order of microns on the surface of the metal alloy. There are various types of corrosion, such as general corrosion, pitting corrosion, and fatigue corrosion, but it is possible to select an appropriate etching agent by selecting a chemical species that causes general corrosion for the metal alloy and performing trial and error. According to literature records (for example, "Chemical Engineering Handbook (edited by Chemical Engineering Association)"), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof.

又、耐食性の強い銅合金は、高濃度の硝酸水溶液や強酸性とした過酸化水素などの酸化性酸や酸化剤配合液によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難い物もあるが、これらも本発明の金属合金に含まれる。実際に使用されている金属合金の殆どは、特徴的な物性を求めて多種多用な元素が混合されて純金属系の物は少なく、実質的にも合金である。   In addition, copper alloys with strong corrosion resistance can be corroded entirely by highly concentrated nitric acid aqueous solution or strongly acidic oxidizing acid such as hydrogen peroxide or oxidizer compound liquid, and titanium alloys are oxalic acid or hydrofluoric acid based It can be seen from technical books and patent literature that it can be totally corroded with a special acid. The metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and are hardly called alloys. Included in the alloy. Most of the metal alloys that are actually used are mixed with a wide variety of elements in order to obtain characteristic physical properties, and there are few pure metal materials, and they are substantially alloys.

即ち、金属合金の殆どは、元々の金属物性を低下させることなく耐食性を向上させることを目的として純金属から合金化されたものである。それ故、金属合金によっては、前記酸・塩基類や特定の化学物質を使っても、目標とする化学エッチングができない場合もよくある。実際には使用する酸・塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。   That is, most metal alloys are alloyed from pure metal for the purpose of improving corrosion resistance without deteriorating the original metal properties. Therefore, depending on the metal alloy, even if the acid / base or a specific chemical substance is used, the target chemical etching is often not possible. In practice, appropriate chemical etching is performed by trial and error while devising the concentration of the acid / base aqueous solution to be used, the liquid temperature, the immersion time, and, in some cases, the additive.

化学エッチング法については、特許文献1にアルミニウム合金に関する記載、特許文献2にマグネシウム合金に関する記載、特許文献3に銅合金に関する記載、特許文献4にチタン合金に関する記載、特許文献5にステンレス鋼に関する記載、及び特許文献6に一般鋼材に関する記載をした。   Regarding the chemical etching method, Patent Document 1 describes an aluminum alloy, Patent Document 2 describes a magnesium alloy, Patent Document 3 describes a copper alloy, Patent Document 4 describes a titanium alloy, and Patent Document 5 describes a stainless steel. And Patent Document 6 described general steel materials.

実際に行う作業として全般的に共通する点を説明する。金属合金を所定の形状に形状化した後、当該金属合金用の脱脂剤を溶かした水溶液に浸漬して脱脂し、水洗する。この工程は、金属合金を形状化する工程で付着した機械油や指脂の大部分を除くための処理であり、常に行うことが好ましい。次いで、薄く希釈した酸・塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程である。一般鋼材のように酸で腐食するような金属合金では、塩基性水溶液に浸漬し水洗する。また、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属合金では、希薄酸水溶液に浸漬し水洗する。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それ故にこの予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。これらの工程の後に化学エッチング工程を行う。   The points that are generally common in the work actually performed will be described. After shaping the metal alloy into a predetermined shape, the metal alloy is degreased by immersing it in an aqueous solution in which a degreasing agent for the metal alloy is dissolved and washed with water. This process is a process for removing most of the machine oil and finger grease adhering in the process of shaping the metal alloy, and it is preferably always performed. Then, it is preferably immersed in a thinly diluted acid / base aqueous solution and washed with water. This is a process that the present inventors have referred to as preliminary acid cleaning and preliminary base cleaning. In the case of a metal alloy that corrodes with an acid such as a general steel material, it is immersed in a basic aqueous solution and washed with water. Further, in the case of a metal alloy that is particularly rapidly corroded with a basic aqueous solution such as an aluminum alloy, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for chemical etching is attached (adsorbed) to the metal alloy in advance, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. . Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice. After these steps, a chemical etching step is performed.

(微細エッチング・表面硬化処理)
また上記表面処理工程における微細エッチングは、金属合金表面に超微細凹凸を形成することを目的とする。また本発明における表面硬化処理は、金属合金の表層を金属酸化物又は金属リン酸化物の薄層とすることを目的とする。金属合金種によっては前記化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、超微細凹凸が形成される場合がある。さらに、金属合金種によっては表面の自然酸化層が元よりも厚くなって表面硬化処理も完了している場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで、表面がミクロンオーダーの粗度を有し、且つ超微細凹凸も形成される。即ち、化学エッチングと併せて微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
(Fine etching and surface hardening treatment)
The purpose of the fine etching in the surface treatment step is to form ultra-fine irregularities on the surface of the metal alloy. Moreover, the surface hardening process in this invention aims at making the surface layer of a metal alloy into a thin layer of a metal oxide or a metal phosphate. Depending on the type of metal alloy, nano-order fine etching may be performed at the same time by performing the chemical etching, and ultra-fine irregularities may be formed. Furthermore, depending on the type of metal alloy, the natural oxide layer on the surface may be thicker than the original and the surface hardening process may be completed. For example, a pure titanium-based titanium alloy is only subjected to chemical etching, so that the surface has a roughness on the order of microns and ultra-fine irregularities are also formed. That is, fine etching is performed together with chemical etching. However, in many cases, it is necessary to perform fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。即ち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理をしたとき、得られる表面に偶然ながら超微細凹凸が形成される場合がある。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかったが、表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は、結晶が検出限界を超えた薄い層であったからである。要するに、マグネシウム合金では表面硬化処理としての化成処理を施したことで、微細エッチングも併せて完了していたことになった。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, when a metal alloy after chemical etching is reacted with an oxidizing agent or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment, ultra fine irregularities may be formed on the resulting surface by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of rod-like crystals having a diameter of 5 to 10 nm that can be finally identified with a 100,000-fold electron microscope. Although this sample was analyzed by XRD (X-ray diffractometer), diffraction lines derived from manganese oxides could not be detected, but it is clear by XPS analysis that the surface was covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit. In short, the magnesium alloy was subjected to a chemical conversion treatment as a surface hardening treatment, so that fine etching was also completed.

銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる表面硬化処理を行ったところ、純銅系銅合金では、その表面は楕円形の穴開口部で覆われた特有の超微細凹凸面になる。一方、純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物又は不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸面になる。この場合でも表面の殆どは酸化第2銅で覆われており、表面の硬化と超微細凹凸の形成が同時に起こる。   The same applies to copper alloys. When surface hardening treatment was performed to change the surface to cupric oxide by oxidation under basic conditions, the surface of pure copper-based copper alloys was covered with an elliptical hole opening. It becomes an ultra fine uneven surface. On the other hand, in the case of a copper alloy that is not pure copper-based, not a concave shape but a particle size or an indefinite polygonal shape having a diameter of 10 to 150 nm is continuous, and an ultrafine uneven surface in a form of being partially melted and stacked. Even in this case, most of the surface is covered with cupric oxide, and the hardening of the surface and the formation of ultrafine irregularities occur simultaneously.

一般鋼材に関しては、更なる検証が必要ではあるものの、ミクロンオーダーの粗度を形成するための化学エッチングだけで超微細凹凸も併せて形成されていることが多く、元来表層(自然酸化層)が硬いこともあって、表面硬化処理や微細エッチング処理を改めて行わずとも、「NAT」の条件を備える場合があった。その際の問題は、自然酸化層の耐食性が十分でないために接着工程までに腐食が開始してしまうこと、また、接着後の環境如何では短時間で接着力が低下することであった。これらは化成処理によって防ぐことができる。例を挙げると、化成処理をしていない一般鋼材(SPCC:冷間圧延鋼材)同士をフェノール樹脂系接着剤で接着した接合体に関しては、4週間という短期間で接着力が急激に低下した。一方、化成処理をした一般鋼材(SPCC)同士をフェノール樹脂系接着剤で接着した接合体に関しては、同じ期間では当初の接着力から低下しなかった。   For general steel materials, although further verification is required, ultra-fine irregularities are often formed only by chemical etching to form micron-order roughness, and originally the surface layer (natural oxide layer) In some cases, the condition of “NAT” is provided without performing a surface hardening process or a fine etching process again. The problem at that time is that the corrosion resistance of the natural oxide layer is not sufficient, so that corrosion starts before the bonding step, and the adhesive strength is reduced in a short time depending on the environment after bonding. These can be prevented by chemical conversion treatment. For example, regarding a joined body in which general steel materials (SPCC: cold rolled steel materials) not subjected to chemical conversion treatment are bonded with a phenol resin adhesive, the adhesive strength rapidly decreased in a short period of 4 weeks. On the other hand, regarding the joined body in which the general steel materials (SPCC) subjected to the chemical conversion treatment were bonded to each other with the phenol resin-based adhesive, the initial adhesive force did not decrease during the same period.

また、本発明者らは、一般に、化成処理によって金属合金表面に形成された被膜(化成被膜)の膜厚が厚いと、接着力が低下することが多いことを確認している。前記のマグネシウム合金に付着した酸化マンガン薄層のように、XRDで回折線が検出されないような薄層である方が、強い接着力が得られる。化成被膜が厚い金属合金同士をエポキシ接着剤で接着し、破壊試験した場合、破壊面は殆どが化成皮膜と金属合金層との間となる。本発明者らが行った実験では、厚い化成皮膜とエポキシ接着剤硬化物との接合力は、その化成皮膜と金属合金との接合力より常に強かった。即ち、一般鋼材でも、化成処理時間を更に長くして化成処理層を厚くすれば、接着力は長期間低下しないと考えられる。しかしながら化成皮膜を厚くすれば、接着力自体が低下する。従って、どの程度でバランスを取るかは、使用目的、用途等にもよる。   In addition, the present inventors have generally confirmed that when the thickness of a film (chemical conversion film) formed on the surface of a metal alloy by chemical conversion treatment is thick, the adhesive force often decreases. A strong adhesive force can be obtained when the thin layer is such that the diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When metal alloys having a thick chemical conversion film are bonded to each other with an epoxy adhesive and subjected to a destructive test, most of the fracture surface is between the chemical conversion film and the metal alloy layer. In experiments conducted by the present inventors, the bonding force between the thick chemical conversion film and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the metal alloy. That is, even with a general steel material, it is considered that the adhesive strength does not decrease for a long period of time if the chemical conversion treatment time is further increased to increase the thickness of the chemical conversion treatment layer. However, if the chemical conversion film is thickened, the adhesive strength itself is lowered. Therefore, the degree of balance depends on the purpose of use and application.

以下、本発明の実施の形態を説明する。測定等に使用した機器類は以下に示したものである。
(a)X線表面観察(XPS観察)
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クレイトス(米国)/株式会社 島津製作所(日本国京都府)製)」を使用した。
(b)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社 日立製作所製)」及び「JSM−6700F(日本電子株式会社(日本国東京都)製)」を使用し1〜2KVにて観察した。
(c)走査型プローブ顕微鏡観察
「SPM−9600(株式会社 島津製作所製)」を使用した。
(d)X線回折分析(XRD分析)
「XRD−6100(株式会社 島津製作所製)」を使用した。
(e)複合体の接合強度の測定
引っ張り試験機「MODEL−1323(アイコーエンジニアリング株式会社(日本国大阪府)製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
次に、CFRP部材の被着材となる金属合金の表面処理について説明する。
Embodiments of the present invention will be described below. The equipment used for measurement etc. is shown below.
(A) X-ray surface observation (XPS observation)
ESCA “AXIS-Nova (Kraitos (USA) / Shimadzu Corporation (Kyoto Prefecture, Japan))” in the form of observing constituent elements on a surface having a diameter of several μm in a depth range of 1 to 2 nm was used.
(B) Electron microscope observation Using SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (manufactured by JEOL Ltd. (Tokyo, Japan))” at 1-2 KV Observed.
(C) Scanning probe microscope observation “SPM-9600 (manufactured by Shimadzu Corporation)” was used.
(D) X-ray diffraction analysis (XRD analysis)
“XRD-6100 (manufactured by Shimadzu Corporation)” was used.
(E) Measurement of Bonding Strength of Composite Material Using a tensile tester “MODEL-1323 (manufactured by Aiko Engineering Co., Ltd. (Osaka, Japan))”, the shear breaking strength was measured at a pulling speed of 10 mm / min.
Next, the surface treatment of the metal alloy that is the adherend of the CFRP member will be described.

[実験例1](アルミニウム合金(A7075)の表面処理)
市販の厚さ3mmのアルミニウム合金板材「A7075」を入手し、切断して長方形(45mm×18mm)のA7075片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を投入して、60℃、濃度7.5%の水溶液とした。これに前記A7075片を7分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A7075片を1分浸漬し、よく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A7075片を4分浸漬し、よく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A7075片を1分浸漬し、水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A7075片を2分浸漬し、水洗した。次いで5%濃度の過酸化水素水溶液を40℃とし、これに前記A7075片を5分浸漬し、水洗した。次いで67℃にした温風乾燥機に前記A7075片を15分入れて乾燥した。
[Experimental Example 1] (Surface treatment of aluminum alloy (A7075))
A commercially available aluminum alloy sheet “A7075” with a thickness of 3 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) A7075 pieces. A commercially available degreasing agent for aluminum alloy “NE-6 (manufactured by Meltex Co.)” was added to the water in the tank to prepare an aqueous solution at 60 ° C. and a concentration of 7.5%. The A7075 pieces were immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% hydrochloric acid aqueous solution having a temperature of 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 1 minute and washed thoroughly with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 4 minutes and washed thoroughly with water. Subsequently, a 3% nitric acid aqueous solution at 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the A7075 pieces were immersed in the solution for 2 minutes and washed with water. Next, a 5% aqueous hydrogen peroxide solution was brought to 40 ° C., and the A7075 pieces were immersed in this for 5 minutes and washed with water. Next, the A7075 pieces were put in a hot air dryer set to 67 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記A7075片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、40〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図1に示した。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによるとRSmは3〜4μm、Rzは1〜2μmであった。   After drying, the A7075 pieces were wrapped together with aluminum foil, which was then sealed in a plastic bag. When one of the same treatment was observed with an electron microscope, it was found that it was covered with a recess having a diameter of 40 to 100 nm. A photograph when the electron microscope is observed at 10,000 times and 100,000 times is shown in FIG. The roughness data was obtained by scanning probe microscope. According to this, RSm was 3-4 μm, and Rz was 1-2 μm.

[実験例2](アルミニウム合金(A5052)の表面処理)
市販の厚さ1.6mmのアルミニウム合金板材「A5052」を入手し、切断して長方形(45mm×18mm)のA5052片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を投入して、60℃、濃度7.5%の水溶液とした。これに前記A5052片を7分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A5052片を1分浸漬し、よく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A5052片を2分浸漬し、よく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A5052片を1分浸漬し、よく水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A5052片を2分浸漬し、水洗した。次いで67℃にした温風乾燥機に前記A5052片を15分入れて乾燥した。
[Experimental example 2] (Surface treatment of aluminum alloy (A5052))
A commercially available 1.6 mm-thick aluminum alloy sheet “A5052” was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) A5052 pieces. A commercially available degreasing agent for aluminum alloy “NE-6 (manufactured by Meltex Co.)” was added to the water in the tank to prepare an aqueous solution at 60 ° C. and a concentration of 7.5%. The A5052 piece was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 1 minute and washed thoroughly with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed thoroughly with water. Subsequently, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, and the A5052 piece was immersed in this for 1 minute and thoroughly washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed with water. Next, the A5052 pieces were put in a warm air dryer set to 67 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記A5052片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、30〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図2に示した。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによるとRSmは1〜2μm、Rzは0.3〜0.5μmであった。   After drying, the A5052 pieces were wrapped together with an aluminum foil, which was then placed in a plastic bag and sealed. When one of the same treatment was observed with an electron microscope, it was found to be covered with a recess having a diameter of 30 to 100 nm. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. The roughness data was obtained by scanning probe microscope. According to this, RSm was 1-2 μm and Rz was 0.3-0.5 μm.

[実験例3](マグネシウム合金の表面処理)
市販の厚さ1mmのマグネシウム合金板材「AZ31B」を入手し、切断して長方形(45mm×18mm)のAZ31B片を多数作成した。槽の水に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス社製)」を投入して、65℃、濃度7.5%の水溶液とした。これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を6分浸漬し、よく水洗した。次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記AZ31B片を5分浸漬し、水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を1分浸漬し、水洗した。次いで過マンガン酸カリを2%、酢酸を1%、及び水和酢酸ナトリウムを0.5%含む水溶液(45℃)を用意し、これに前記AZ31B片を1分浸漬し、15秒水洗した後、90℃にした温風乾燥機に15分入れて乾燥した。
[Experiment 3] (Surface treatment of magnesium alloy)
A commercially available magnesium alloy plate “AZ31B” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) AZ31B pieces. A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex)” was added to the water in the tank to prepare an aqueous solution at 65 ° C. and a concentration of 7.5%. The AZ31B piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 6 minutes and washed thoroughly with water. Next, an aqueous solution containing 1% sodium carbonate and 1% sodium hydrogen carbonate at 65 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 15% caustic soda aqueous solution at 65 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed with water. Next, a 0.25% strength hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (45 ° C.) containing 2% potassium permanganate, 1% acetic acid, and 0.5% hydrated sodium acetate was prepared, and the AZ31B piece was immersed in this for 1 minute and washed with water for 15 seconds. Then, it was placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記AZ31B片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、5〜10nm径の棒状結晶が複雑に絡み合っている箇所や、それらの塊が100nm径程度の集まりとなり、その集まりが面を作っている超微細な凹凸形状で覆われている箇所があった。電子顕微鏡を10万倍として観察したときの写真を図3に示した。又、走査型プローブ顕微鏡で走査して粗度観測を行ったところ、RSmが2〜3μm、Rzが1〜1.5μmであった。   After drying, the AZ31B pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. When one of the same treatments was observed with an electron microscope, it was found that 5-10 nm diameter rod-shaped crystals were intricately entangled and their lumps gathered together with a diameter of about 100 nm, and the gathering formed a surface. There was a portion covered with fine irregularities. A photograph of the electron microscope observed at a magnification of 100,000 is shown in FIG. Further, when the roughness was observed by scanning with a scanning probe microscope, RSm was 2 to 3 μm and Rz was 1 to 1.5 μm.

[実験例4](銅合金(C1100)の表面処理)
市販の厚さ1mmの純銅系銅合金であるタフピッチ銅板材「C1100」を入手し、切断して長方形(45mm×18mm)のC1100片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これに前記C1100片を5分浸漬して水洗した。次いで40℃とした1.5%濃度の苛性ソーダ水溶液に前記C1100片を1分浸漬して水洗することにより予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記C1100片を10分浸漬し、水洗した。
[Experimental Example 4] (Surface treatment of copper alloy (C1100))
A tough pitch copper plate material “C1100”, which is a commercially available pure copper-based copper alloy with a thickness of 1 mm, was obtained and cut to create a large number of rectangular (45 mm × 18 mm) C1100 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” was prepared in a tank, and the C1100 pieces were immersed in this for 5 minutes and washed with water. Next, preliminary base washing was performed by immersing the C1100 piece in a 1.5% strength caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (manufactured by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the C1100 piece was immersed in this for 10 minutes and washed with water.

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、前記C1100片を1分浸漬し、よく水洗した。次いで前記C1100片を前述したエッチング用槽に1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記C1100片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記C1100片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、RSmは3〜7μm、Rzは3〜5μmであった。又、10万倍電子顕微鏡で観察したところ、直径又は長径短径の平均が10〜150nmの孔開口部又は凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図4に示した。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the C1100 piece was immersed for 1 minute and washed thoroughly with water. Next, the C1100 piece was immersed in the above-described etching bath for 1 minute and washed with water, and then immersed in the above-described oxidizing aqueous solution for 1 minute and thoroughly washed with water. Next, the C1100 piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried. After drying, the C1100 pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, RSm was 3 to 7 μm, and Rz was 3 to 5 μm. Moreover, when observed with an electron microscope of 100,000 times, it was found that the average diameter or major axis and minor axis averaged from 10 to 150 nm, and the hole openings or recesses existed on the entire surface at irregular intervals of 30 to 300 nm. Was covered. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例5](銅合金(C5191)の表面処理)
市販の厚さ0.8mmのリン青銅板材「C5191」を入手し、切断して長方形(45mm×18mm)のC5191片を多数作成した。槽に市販のアルミ合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を脱脂用水溶液として用意し、これに前記C5191片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記C5191片を15分浸漬し水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液(65℃)として用意し、これに前記C5191片を1分浸漬し、よく水洗した。
[Experimental Example 5] (Surface treatment of copper alloy (C5191))
A commercially available phosphor bronze plate material “C5191” having a thickness of 0.8 mm was obtained and cut to prepare a large number of rectangular (45 mm × 18 mm) C5191 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” is prepared as a degreasing aqueous solution in a tank, and the C5191 piece is immersed in this for 5 minutes. Degreased and washed well with water. Subsequently, an aqueous solution (25 ° C.) containing 20% of a copper alloy etching material “CB5002 (made by MEC)” and 18% of 30% hydrogen peroxide was prepared in another tank, and the C5191 piece was immersed in this for 15 minutes. Washed with water. Next, an aqueous solution containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution (65 ° C.) in another tank, and the C5191 pieces were immersed in this for 1 minute and washed thoroughly with water.

次いで前記C5191片を、再び前述したエッチング液に1分浸漬し、水洗した後、再度前述した酸化用水溶液に1分浸漬し、水洗した。次いで前記C5191片を、90℃にした温風乾燥機に15分入れて乾燥した。アルミニウム箔に包んで保管した。同じ処理をした1個を、電子顕微鏡にて1万倍、10万倍として観察したときの写真を図5に示した。電子顕微鏡を10万倍としたときの観察で、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。又、走査型プローブ顕微鏡にかけた。その結果、RSmは1〜3μm、Rzは0.3〜0.4μmであった。   Next, the C5191 piece was again immersed in the above-described etching solution for 1 minute, washed with water, then again immersed in the above-described oxidizing aqueous solution for 1 minute and washed with water. Next, the C5191 piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried. Wrapped in aluminum foil and stored. FIG. 5 shows a photograph of the same treated piece observed with an electron microscope at 10,000 times and 100,000 times. An observation with an electron microscope at a magnification of 100,000 times shows that the projections having an average diameter or major axis and minor axis of 10 to 200 nm are mixed together and have an ultra-fine irregular shape that is present on the entire surface. The shape was completely different from the structure. Moreover, it applied to the scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.3 to 0.4 μm.

[実験例6](銅合金(KFC)の表面処理)
市販の厚さ0.7mmの鉄含有銅合金板材「KFC(神戸製鋼所社製)」を入手し、切断して長方形(45mm×18mm)のKFC片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これに前記KFC片を5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗することにより予備塩基洗浄した。次いで、銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記KFC片を8分浸漬し、水洗した。
[Experimental example 6] (Surface treatment of copper alloy (KFC))
A commercially available iron-containing copper alloy sheet “KFC (manufactured by Kobe Steel)” having a thickness of 0.7 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) KFC pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” is prepared in a tank, and the KFC pieces are immersed in this for 5 minutes and then washed with water. Preliminary base washing was performed by immersing in an aqueous 1.5% caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002 (manufactured by MEC)” and 18% of 30% hydrogen peroxide was prepared, and the KFC piece was immersed in this for 8 minutes and washed with water. .

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KFC片を1分浸漬し、よく水洗した。次いで、前述したエッチング用槽に前記KFC片を1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記KFC片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、前記KFC片をアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、RSmは1〜3μm、Rzは0.3〜0.5μmであった。又、10万倍電子顕微鏡観察したところ、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図6に示した。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KFC pieces were immersed in this for 1 minute and washed thoroughly with water. Next, the KFC piece was immersed in the above-described etching tank for 1 minute and washed with water, and then immersed in the above-described oxidizing aqueous solution for 1 minute and thoroughly washed with water. Next, the KFC pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried. After drying, the KFC pieces were wrapped together with aluminum foil, which was then put in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.3 to 0.5 μm. Further, when observed with an electron microscope of 100,000 times, the entire surface was covered with an ultra fine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm were mixed and present on the entire surface. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例7](銅合金(KLF5)の表面処理)
市販の厚さ0.4mmの特殊銅合金板材「KLF5(神戸製鋼所社製)」を入手し、切断して長方形(45mm×18mm)のKLF5片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これに前記KLF5片を5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗することにより予備塩基洗浄した。次いで銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記KLF5片を8分浸漬し、水洗した。
[Experimental Example 7] (Surface treatment of copper alloy (KLF5))
A commercially available special copper alloy plate material “KLF5 (manufactured by Kobe Steel)” having a thickness of 0.4 mm was obtained and cut to create a large number of rectangular (45 mm × 18 mm) KLF5 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” is prepared in a tank, and the KLF5 piece is immersed in this for 5 minutes and then washed with water. Preliminary base washing was performed by immersing in an aqueous 1.5% caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002 (manufactured by MEC)” and 18% of 30% hydrogen peroxide was prepared, and the KLF5 pieces were immersed in this for 8 minutes and washed with water.

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KLF5片を1分浸漬してよく水洗した。次いで前述したエッチング用槽に前記KLF5片を1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記KLF5片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記KLF5片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。又、10万倍電子顕微鏡観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図7に示す。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KLF5 pieces were immersed in this for 1 minute and washed with water. Next, the KLF5 piece was immersed in the etching tank described above for 1 minute and washed with water, and then immersed in the aqueous solution for oxidation described above for 1 minute and thoroughly washed with water. Next, the KLF5 pieces were placed in a warm air dryer at 90 ° C. for 15 minutes and dried. After drying, the KLF5 pieces were wrapped together with an aluminum foil, and further put in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 1 to 3 μm, and the maximum height roughness (Rz) was 0.3 to 0.5 μm. In addition, when observed with an electron microscope at a magnification of 100,000 times, a shape in which a particle having a diameter of 10 to 20 nm and an indefinite polygon having a diameter of 50 to 150 nm are mixed and stacked, that is, a lava plateau slope-like ultra fine uneven shape is formed. Almost the entire surface was covered. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例8](純チタン合金の表面処理)
市販の厚さ1mmの純チタン型チタン合金板材「KS40(神戸製鋼所社製)」を入手し、切断して長方形(45mm×18mm)のKS40片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KS40片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(金属加工技術研究所社製)」を2%含む水溶液(60℃)を用意し、これに前記KS40片を3分浸漬し、イオン交換水でよく水洗した。次いで、前記KS40片を3%濃度の硝酸水溶液に1分浸漬し、水洗した後、90℃とした温風乾燥機に15分入れて乾燥した。
[Experiment 8] (Surface treatment of pure titanium alloy)
A commercially available pure titanium type titanium alloy plate “KS40 (manufactured by Kobe Steel)” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) KS40 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was prepared in the tank, and this was used as a degreasing aqueous solution. The KS40 pieces were immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Subsequently, an aqueous solution (60 ° C.) containing 2% of a universal etching material “KA-3 (manufactured by Metalworking Technology Laboratories)” containing 40% ammonium bifluoride in a separate tank is prepared in another tank. The piece was immersed for 3 minutes and washed thoroughly with ion-exchanged water. Next, the KS40 piece was immersed in a 3% nitric acid aqueous solution for 1 minute, washed with water, and then placed in a warm air dryer at 90 ° C. for 15 minutes to dry.

乾燥後、アルミ箔で前記KS40片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡にかけ観察した。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが10nm以上(殆どは数百nm)の湾曲した連山状突起が間隔周期10〜数百nmで面上に林立している形状の超微細凹凸面を有していることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図8に示した。又、走査型プローブ顕微鏡の観察で、RSmは1〜3μm、Rzは0.8〜1.5μmであった。又、XPSによる分析から表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることが分かり、しかも暗色であることから3価のチタンの酸化物と推定された。   After drying, the KS40 pieces were wrapped together with aluminum foil, which was then stored in a plastic bag. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. From observation with an electron microscope, curved continuous mountain-shaped projections having a width and height of 10 to several hundreds of nanometers and a length of 10 nm or more (mostly several hundreds of nanometers) stand on the surface at intervals of 10 to several hundred nanometers. It was found to have an ultra-fine irregular surface of the shape. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. Moreover, RSm was 1-3 micrometers and Rz was 0.8-1.5 micrometers by observation with the scanning probe microscope. Further, from the analysis by XPS, a large amount of oxygen and titanium were observed on the surface, and a small amount of carbon was observed. From these, it was found that the surface layer was composed mainly of titanium oxide, and because it was dark, it was estimated to be a trivalent titanium oxide.

[実験例9](α−β型チタン合金の表面処理)
市販の厚さ1mmのα−β型チタン合金板材「KSTi−9(神戸製鋼社製)」を入手し、切断して長方形(45mm×18mm)のKSTi−9片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KSTi−9片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に苛性ソーダ1.5%濃度の水溶液(40℃)を用意し、これに前記KSTi−9片を1分浸漬し、水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3(金属加工技術研究所社製)」を2重量%溶解した水溶液(60℃)を用意し、これに前記KSTi−9片を3分浸漬し、イオン交換水でよく水洗した。ここで前記KSTi−9片には黒色のスマットが付着していたので、40℃とした3%濃度の硝酸水溶液に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し、水洗した。次いで前記KSTi−9片を、90℃とした温風乾燥機に15分入れて乾燥した。得られたKSTi−9片に金属光沢はなく暗褐色であった。
[Experimental Example 9] (Surface treatment of α-β type titanium alloy)
A commercially available α-β type titanium alloy plate “KSTi-9 (manufactured by Kobe Steel)” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) KSTi-9 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was prepared in the tank, and this was used as a degreasing aqueous solution. The KSTi-9 pieces were immersed in this degreasing aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Next, an aqueous solution (40 ° C.) having a caustic soda concentration of 1.5% was prepared in another tank, and the KSTi-9 piece was immersed in this for 1 minute and washed with water. Next, in another tank, an aqueous solution (60 ° C.) in which 2% by weight of a commercially available general-purpose etching reagent “KA-3 (manufactured by Metalworking Technology Laboratories)” was dissolved was prepared, and the KSTi-9 piece was immersed in this for 3 minutes. And washed thoroughly with ion-exchanged water. Here, since the black smut was adhered to the KSTi-9 piece, it was immersed in a 3% concentration nitric acid aqueous solution at 40 ° C. for 3 minutes, and then immersed in ion-exchanged water subjected to ultrasonic waves for 5 minutes. The smut was dropped and again immersed in a 3% nitric acid aqueous solution for 0.5 minutes and washed with water. Next, the KSTi-9 pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried. The obtained KSTi-9 pieces were dark brown with no metallic luster.

乾燥後、アルミ箔で前記KSTi−9片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡を1万倍、10万倍として観察したときの写真を図9に示す。その様子は実験例8の電顕観察写真図8に酷似した部分に加え、表現が難しい枯葉状の部分が多く見られた。又、走査型プローブ顕微鏡による走査解析によると、RSmは4〜6μm、Rzは1〜2μmであった。   After drying, the KSTi-9 pieces were wrapped together with an aluminum foil, which was then placed in a plastic bag and sealed. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. In addition to the portion very similar to the electron microscopic observation photograph 8 of Experimental Example 8, many dead leaf-like portions that are difficult to express were seen. Moreover, according to the scanning analysis by a scanning probe microscope, RSm was 4-6 micrometers and Rz was 1-2 micrometers.

[実験例10](ステンレス鋼の表面処理)
市販の厚さ1mmのステンレス鋼板材「SUS304」を入手し、切断して長方形(45mm×18mm)のSUS304片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記SUS304片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に1水素2弗化アンモニウムを1%と98%硫酸を5%含む水溶液(65℃)を用意し、これに前記SUS304片を4分浸漬し、イオン交換水でよく水洗した。次いで、前記SUS304片を、40℃とした3%濃度の硝酸水溶液に3分浸漬し、水洗した後、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 10] (Stainless steel surface treatment)
A commercially available stainless steel plate material “SUS304” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SUS304 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was prepared in the tank, and this was used as a degreasing aqueous solution. The SUS304 piece was immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Next, an aqueous solution (65 ° C.) containing 1% ammonium difluoride and 5% sulfuric acid in 5% was prepared in another tank, and the SUS304 piece was immersed in this for 4 minutes and washed thoroughly with ion-exchanged water. Next, the SUS304 piece was immersed in a 3% nitric acid aqueous solution at 40 ° C. for 3 minutes, washed with water, and then placed in a hot air dryer at 90 ° C. for 15 minutes to be dried.

乾燥後、アルミ箔で前記SUS304片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡を1万倍、10万倍として観察したときの写真を図10に示す。電子顕微鏡による観察では、表面が、直径20〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状、の超微細凹凸形状で覆われていた。また、走査型プローブ顕微鏡の走査解析で、RSmは1〜2μmであり、Rzは0.3〜0.4μmであった。更に別の1個をXPS分析にかけた。このXPS分析から表面には酸素と鉄が大量に、又、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから表層は金属酸化物が主成分であることが分かった。この分析パターンはエッチング前のSUS304と殆ど同じであった。   After drying, the SUS304 pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. In the observation with an electron microscope, the surface was covered with an ultra-fine uneven shape of a shape in which a particle having a diameter of 20 to 70 nm or an indefinite polygonal shape was piled up, that is, a lava plateau sloped surface. Moreover, in the scanning analysis of the scanning probe microscope, RSm was 1-2 μm and Rz was 0.3-0.4 μm. Another one was subjected to XPS analysis. From this XPS analysis, a large amount of oxygen and iron was observed on the surface, and a small amount of nickel, chromium, carbon, a very small amount of molybdenum and silicon were observed. From these, it was found that the surface layer was mainly composed of metal oxide. This analysis pattern was almost the same as SUS304 before etching.

[実験例11](一般鋼材(SPCC)の表面処理)
市販の厚さ1.6mmの冷間圧延鋼板材「SPCC」を入手し、切断して長方形(45mm×18mm)のSPCC片を多数作成した。各SPCC片の端部に穴を開け、その穴に塩化ビニルでコートした銅線を通し、SPCC片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液(60℃)を用意し、これに前記SPCC片を5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPCC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%含む水溶液(50℃)を用意し、これに前記SPCC片を6分浸漬し、イオン交換水で十分に水洗した。次いで前記SPCC片を、25℃とした1%濃度のアンモニア水に1分浸漬して水洗した後、2%濃度の過マンガン酸カリ、1%濃度の酢酸、0.5%濃度の水和酢酸ナトリウムを含む水溶液(45℃)に1分浸漬して十分に水洗した。次いで、前記SPCC片を90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental Example 11] (Surface treatment of general steel (SPCC))
A commercially available cold-rolled steel plate material “SPCC” having a thickness of 1.6 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SPCC pieces. A hole was made at the end of each SPCC piece, a copper wire coated with vinyl chloride was passed through the hole, and the copper wire was bent and processed so that the SPCC pieces did not overlap each other, so that all could be hung at the same time. An aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6 (Meltex)” was prepared in a tank, and the SPCC piece was immersed in the solution for 5 minutes, and tap water (Ota, Gunma) City). Then, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the SPCC piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (50 ° C.) containing 10% of 98% sulfuric acid was prepared in another tank, and the SPCC pieces were immersed in this for 6 minutes and sufficiently washed with ion-exchanged water. Next, the SPCC piece was immersed in 1% ammonia water at 25 ° C. for 1 minute and washed with water, and then 2% potassium permanganate, 1% acetic acid, 0.5% hydrated acetic acid. It was immersed in an aqueous solution containing sodium (45 ° C.) for 1 minute and thoroughly washed with water. Next, the SPCC piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPCC片の10万倍電子顕微鏡による観察結果を図11に示した。この写真から、高さ及び奥行きが80〜200nmで幅が数百〜数千nmの階段が無限に続いた形状の超微細凹凸形状で、ほぼ全面が覆われていることが分かる。パーライト構造が剥き出しになった様子であり、化成処理層はごく薄いことが分かる。一方、走査型プローブ顕微鏡による走査解析では、RSmが1〜3μm、Rzが0.3〜1.0μmの粗度が観察された。   FIG. 11 shows the observation results of the SPCC pieces treated in the same manner with a 100,000 times electron microscope. From this photograph, it can be seen that the entire surface is covered with an ultra-fine uneven shape having an infinite number of steps having a height and depth of 80 to 200 nm and a width of several hundred to several thousand nm. The pearlite structure is exposed and it can be seen that the chemical conversion layer is very thin. On the other hand, in the scanning analysis with the scanning probe microscope, the roughness of RSm of 1 to 3 μm and Rz of 0.3 to 1.0 μm was observed.

〔実験例12〕(一般鋼材(SPHC)の表面処理)
市販の厚さ1.6mmの熱間圧延鋼板材「SPHC」を入手し、切断して長方形(45mm×18mm)のSPHC片を多数作成した。各SPHC片の端部に穴を開け、その穴に塩化ビニルでコートした銅線を通し、SPHC片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液(60℃)を用意し、これに前記SPHC片を5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPHC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液(65℃)を用意し、これに前記SPHC片を2分浸漬し、イオン交換水で十分に水洗した。次いで、前記SPHC片を、25℃とした1%濃度のアンモニア水に1分浸漬して水洗した。次いで、前記SPHC片を、80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液(55℃)に1分浸漬して十分に水洗した。次いで、前記SPHC片を90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental example 12] (Surface treatment of general steel (SPHC))
A commercially available hot rolled steel plate material “SPHC” with a thickness of 1.6 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SPHC pieces. A hole was made in the end of each SPHC piece, and a copper wire coated with vinyl chloride was passed through the hole, and the copper wire was bent and processed so that the SPHC pieces did not overlap each other, so that all could be hung at the same time. An aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6 (Meltex)” was prepared in a tank, and the SPHC pieces were immersed in this for 5 minutes, and tap water (Ota, Gunma) City). Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the SPHC pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (65 ° C.) containing 10% 98% sulfuric acid and 1% ammonium difluoride was prepared in another tank, and the SPHC pieces were immersed in this for 2 minutes and washed thoroughly with ion-exchanged water. . Next, the SPHC piece was immersed in 1% ammonia water adjusted to 25 ° C. for 1 minute and washed with water. Next, the SPHC piece was dissolved in an aqueous solution containing 55% 80% orthophosphoric acid, 0.21% zinc white, 0.16% sodium silicofluoride, and 0.23% basic nickel carbonate (55 ° C). ) And then thoroughly washed with water. Next, the SPHC pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

得られたSPHC片の10万倍電子顕微鏡による観察結果(図12)から、高さ及び奥行きが80〜500nmで幅が数百〜数万nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かり、これもやはりパーライト構造であった。一方、走査型プローブ顕微鏡による走査解析ではRSmが1〜3μm、Rzが0.3〜1.0μmの粗度が観察された。   From the result of observation of the obtained SPHC piece with a 100,000 times electron microscope (FIG. 12), an ultra-fine uneven shape having a shape in which steps having a height and depth of 80 to 500 nm and a width of several hundred to tens of thousands of nm are infinitely continued. It was found that almost the entire surface was covered, and this was also a pearlite structure. On the other hand, in scanning analysis with a scanning probe microscope, roughness with RSm of 1 to 3 μm and Rz of 0.3 to 1.0 μm was observed.

[実験例13](1液性エポキシ接着剤の作成)
ビスフェノールA型エポキシ樹脂の単量体型が主成分の分子量約370のエポキシ樹脂「JER828(ジャパンエポキシレジン株式会社製)」、固体である分子量約1600のオリゴマー型のビスフェノールA型エポキシ樹脂「JER1004(ジャパンエポキシレジン株式会社製)」、多官能型のフェノールノボラック型エポキシ樹脂「JER154(ジャパンエポキシレジン株式会社製)」、アニリン型の3官能エポキシ樹脂「JER630(ジャパンエポキシレジン株式会社製)」、平均粒径が8〜12μmの微粉タルク「ハイミクロンHE5(竹原化学工業社製)」、これと同等の粒径のクレー(カオリン)「サテントン5(竹原化学工業社製)」、粒径分布の中心が16μmの純アルミニウム系アルミニウム合金粉体「フィラー用アルミニウムパウダー(東洋アルミニウム株式会社製)」、エポキシ樹脂の硬化剤である微粉型ジシアンジアミド「DICY7(ジャパンエポキシレジン株式会社製)」、硬化助剤として使う3−(3,4−ジクロルフェニル)−1,1−ジメチルウレア「DCMU99(保土ヶ谷化学工業社製)」、粒径分布の中心が20μmの水酸基付きPES粉体「ウルトラゾーンE2020P−SRMicro(BASF社製)」を入手した。
[Experimental example 13] (Preparation of one-component epoxy adhesive)
An epoxy resin “JER828 (manufactured by Japan Epoxy Resin Co., Ltd.)” whose main component is a monomer type of bisphenol A type epoxy resin and a molecular weight of about 1600, an oligomer type bisphenol A type epoxy resin “JER1004” (Japan) Epoxy Resin Co., Ltd.) ”, multifunctional phenol novolac type epoxy resin“ JER154 (Japan Epoxy Resin Co., Ltd.) ”, aniline type trifunctional epoxy resin“ JER630 (Japan Epoxy Resin Co., Ltd.) ”, average grain Fine talc with a diameter of 8-12 μm “Hi-micron HE5 (manufactured by Takehara Chemical Co., Ltd.)”, clay (Kaolin) “Satinton 5 (manufactured by Takehara Chemical Industry Co., Ltd.)” with the same particle size, 16μm pure aluminum-based aluminum alloy powder for filler Aluminum powder (manufactured by Toyo Aluminum Co., Ltd.), fine powder type dicyandiamide “DICY7 (manufactured by Japan Epoxy Resin Co., Ltd.)” which is a curing agent for epoxy resin, 3- (3,4-dichlorophenyl)-used as a curing aid A 1,1-dimethylurea “DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.)” and a PES powder with a hydroxyl group having a particle size distribution center of 20 μm “Ultrazone E2020P-SRMicro (manufactured by BASF)” were obtained.

「JER828」を65質量部、「JER1004」を5質量部、「JER154」を10質量部、及び「JER630」20質量部をビーカーに取り、160℃とした熱風乾燥機内に放置して加熱し、固体型「JER1004」を溶融すると同時によく撹拌し、全体を均一化した。その後、放冷し、エポキシ樹脂液として保管した。   Take 65 parts by weight of “JER828”, 5 parts by weight of “JER1004”, 10 parts by weight of “JER154”, and 20 parts by weight of “JER630” in a beaker and leave it in a hot air dryer at 160 ° C. The solid type “JER1004” was melted and stirred at the same time to make the whole uniform. Then, it stood to cool and stored as an epoxy resin liquid.

次いで乳鉢に、前記混合物100質量部、粒径分布中心が約10μmのタルク粉体「ハイミクロンHE5(竹原化学工業社製)」を10質量部、粒径分布中心が16μmのアルミニウム粉体「フィラー用アルミニウムパウダー」を40質量部、粒径分布中心が20μmの水酸基付きポリエーテルスルホン樹脂粉体「ウルトラゾーンE2020P−SRMicro(BASF社製)」を20質量部、硬化剤としての微粉型ジシアンジアミド「DICY7」5質量部、3−(3,4−ジクロルフェニル)−1,1−ジメチルウレア「DCMU99(保土ヶ谷化学工業社製)」2.5質量部を取った。この乳鉢内容物を乳棒で3分混合し混練した。1時間放置してから再度乳棒で1分混練した。これをポリエチ瓶に取り1日間室温下で放置してエージングし、その後5℃とした冷蔵庫に保管した。   Next, in a mortar, 100 parts by mass of the mixture, 10 parts by mass of talc powder “Himicron HE5 (manufactured by Takehara Chemical Co., Ltd.)” having a particle size distribution center of about 10 μm, and aluminum powder “filler having a particle size distribution center of 16 μm. 40 parts by weight of “aluminum powder”, 20 parts by weight of a polyethersulfone resin powder with a hydroxyl group having a particle size distribution center of 20 μm “Ultrazone E2020P-SRMicro (manufactured by BASF)”, fine powder dicyandiamide “DICY7” as a curing agent “5 parts by mass, 2.5 parts by mass of 3- (3,4-dichlorophenyl) -1,1-dimethylurea“ DCMU99 (Hodogaya Chemical Co., Ltd.) ”were taken. The mortar contents were mixed with a pestle for 3 minutes and kneaded. The mixture was allowed to stand for 1 hour and then kneaded again with a pestle for 1 minute. This was taken in a polyethylene bottle and aged at room temperature for 1 day, and then stored in a refrigerator at 5 ° C.

[実験例14](CFRPとA7075アルミニウム合金片のコキュア接着)
引っ張り強度が6GPaである高強度炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「トレカ2255S−25(東レ社製)」を用意し、これから45mm×15mmの長方形片(厚さ0.2mm)を多数切り出した。また、繊維の引っ張り強度が4.4GPaと前者より低い炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「パイロフィルTR3523M(三菱レイヨン社製)」を用意し、これから45mm×15mmの長方形片(厚さ0.2mm)を多数切り出した。
[Experimental Example 14] (Cocure adhesion between CFRP and A7075 aluminum alloy piece)
Prepare a CFRP prepreg “Torayca 2255S-25 (manufactured by Toray Industries, Inc.)” with a thickness of 0.2 mm based on a high-strength carbon fiber with a tensile strength of 6 GPa. From this, a rectangular piece of 45 mm × 15 mm (thickness 0.2 mm) ) Was cut out. In addition, a CFRP prepreg “Pyrofil TR3523M (manufactured by Mitsubishi Rayon Co., Ltd.)” having a thickness of 0.2 mm based on carbon fiber having a tensile strength of 4.4 GPa, which is lower than the former, is prepared, and a rectangular piece (45 mm × 15 mm) A number of 0.2 mm thickness) was cut out.

一方、実験例1の方法で表面処理を施したNAT処理済みA7075アルミニウム合金片を得た。このアルミニウム合金片の端部4mmまでに実験例13で得た1液性エポキシ接着剤を塗布した。図18に示す焼成治具1を用いてCFRPとアルミニウム合金片の複合体を作成する。金型本体2及び金型底板5を組み合わせると、金型本体2の側壁と金型底板5の上面によって金型凹部が形成される。この金型凹部を覆うように、0.05mm厚の離型用フィルム17を敷いた。この離型用フィルム17の上に、アルミニウム合金片11を接着剤塗布面を上にして置き、このアルミニウム合金片11と金型本体2の側壁の空隙をポリテトラフルオロエチレン樹脂(以下、「PTFE」という。)製のスペーサ16で埋めた。   On the other hand, a NAT-treated A7075 aluminum alloy piece subjected to surface treatment by the method of Experimental Example 1 was obtained. The one-component epoxy adhesive obtained in Experimental Example 13 was applied to the end of the aluminum alloy piece up to 4 mm. A composite of CFRP and aluminum alloy pieces is prepared using the firing jig 1 shown in FIG. When the mold body 2 and the mold bottom plate 5 are combined, a mold recess is formed by the side wall of the mold body 2 and the upper surface of the mold bottom plate 5. A release film 17 having a thickness of 0.05 mm was laid so as to cover the mold recess. An aluminum alloy piece 11 is placed on the release film 17 with the adhesive-coated surface facing upward, and a gap between the aluminum alloy piece 11 and the side wall of the mold body 2 is made of polytetrafluoroethylene resin (hereinafter referred to as “PTFE”). It was filled with spacers 16 made of.

次いで、これらアルミニウム合金片11及びスペーサ16の上面に、「パイロフィルTR3523M」片を3枚積層した。更にこの「パイロフィルTR3523M」片上に「トレカ2255S−25」片12枚を積層した。これらCFRPプリプレグ15枚の積層物が図中のCFRPプリプレグ積層物12として示されている。ここで、図18に示すCFRPプリプレグ積層物12の最下層となる「パイロフィルTR3523M」片の下面の左端部分が、アルミニウム合金片11上面の接着剤塗布領域と接触している。このCFRPプリプレグ積層物12と金型本体2の側壁の空隙を埋めるためにPTFE製のスペーサ13を設置し、これらを覆うように離型用フィルム14を敷いた。   Next, three “pyrofil TR3523M” pieces were laminated on the upper surfaces of the aluminum alloy pieces 11 and the spacers 16. Furthermore, 12 “Treka 2255S-25” pieces were laminated on this “Pyrofil TR3523M” piece. A laminate of these 15 CFRP prepregs is shown as CFRP prepreg laminate 12 in the figure. Here, the left end portion of the lower surface of the “pyrofil TR3523M” piece, which is the lowermost layer of the CFRP prepreg laminate 12 shown in FIG. 18, is in contact with the adhesive application region on the upper surface of the aluminum alloy piece 11. In order to fill the gap between the CFRP prepreg laminate 12 and the side wall of the mold body 2, a PTFE spacer 13 was installed, and a release film 14 was laid so as to cover them.

離型用フィルム14の上にPTFE製のブロック15を乗せ、ブロック15の上に鉄製の10kgの錘18を乗せて大型オートクレーブの中に置いた。オートクレーブの蓋を閉めて内温を約80℃とした後に真空ポンプで内圧を10mmHg以下とした。この温度で10分加熱し、その後温度を上げて135℃に達したときに空気を入れて常圧に戻した。その後、135℃で40分加熱し、その後で更に165℃まで温度を上げて、165℃前後を維持するように調節しつつ30分加熱した。その後、加熱を停止して30分間放冷した。オートクレーブを開き、焼成治具1を分解してCFRP(CFRPプリプレグ積層物12の硬化物)とアルミニウム合金片の複合体を得た。図19に複合体10の外観を示す。アルミニウム合金片11とCFRP12が、接着剤塗布領域13を介して接合されている。このようにして複合体10を多数作成した。   A PTFE block 15 was placed on the release film 14, and a 10 kg weight 18 made of iron was placed on the block 15 and placed in a large autoclave. The lid of the autoclave was closed and the internal temperature was adjusted to about 80 ° C., and then the internal pressure was reduced to 10 mmHg or less with a vacuum pump. After heating at this temperature for 10 minutes, the temperature was raised and when it reached 135 ° C., air was introduced to return to normal pressure. Then, it heated at 135 degreeC for 40 minutes, and raised the temperature to 165 degreeC after that, and heated for 30 minutes, adjusting so that it might be around 165 degreeC. Thereafter, the heating was stopped and the mixture was allowed to cool for 30 minutes. The autoclave was opened and the firing jig 1 was disassembled to obtain a composite of CFRP (cured product of CFRP prepreg laminate 12) and aluminum alloy pieces. FIG. 19 shows the appearance of the composite 10. The aluminum alloy piece 11 and the CFRP 12 are joined via the adhesive application region 13. In this way, a large number of composites 10 were prepared.

[実験例15](CFRPとA7075アルミニウム合金片のコキュア接着)
実験例14と同様の方法で、「トレカ2255S−25」片のみからなるCFRPプリプレグ15枚の積層物と、実験例1の表面処理を施したA7075アルミニウム合金片との複合体を作成した。即ち、実験例14においては、「トレカ2255S−25」片12枚と「パイロフィルTR3523M」片3枚を積層したが、本実験例では「トレカ2255S−25」片15枚を積層し、その最下層に位置するものが、A7075アルミニウム合金片表面の1液性エポキシ接着剤との接着に供されることになる。
[Experimental Example 15] (Cocure bonding of CFRP and A7075 aluminum alloy piece)
In the same manner as in Experimental Example 14, a composite of 15 laminates of CFRP prepreg consisting only of “Trekka 2255S-25” pieces and A7075 aluminum alloy pieces subjected to the surface treatment of Experimental Example 1 was prepared. That is, in Experimental Example 14, 12 “Trekker 2255S-25” pieces and 3 “Pyrofil TR3523M” pieces were laminated, but in this Experimental Example, 15 “Trekker 2255S-25” pieces were laminated, and the bottom layer thereof. What is located in is used for adhesion | attachment with the 1 liquid epoxy adhesive of the surface of A7075 aluminum alloy piece.

[実験例16](接着力の測定)
実験例14で得たCFRPとA7075アルミニウム合金片の複合体について、1週間後に7対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果(7対の平均値)を表1に示す(実験例16−1)。また、実験例15で得たCFRPとA7075アルミニウム合金片の複合体について、1週間後に7対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果(7対の平均値)を表1に示す(実験例16−2)。
[Experimental Example 16] (Measurement of adhesive strength)
With respect to the composite of CFRP and A7075 aluminum alloy piece obtained in Experimental Example 14, one week later, 7 pairs were pulled and broken using a testing machine, and the shear breaking force was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. The results (average value of 7 pairs) are shown in Table 1 (Experimental Example 16-1). Moreover, about the composite of the CFRP and A7075 aluminum alloy piece obtained in Experimental Example 15, one pair was pulled and ruptured using a testing machine after one week, and the shear breaking force was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. The results (average value of 7 pairs) are shown in Table 1 (Experimental Example 16-2).

表1には、常温、100℃、150℃における7対の複合体のせん断破断力の平均値を示した。括弧書きには7対の複合体について測定されたせん断破断力の最低値と最高値を示した(最低値〜最高値)。この結果から、常温〜100℃の温度域において、引っ張り強度が4.4GPaである「パイロフィルTR3523M」を接着部に使用した複合体のせん断破断力が、引っ張り強度が6GPaである「トレカ2255S−25」を使用した複合体を明確に上回った。せん断破断力の差は10MPa以上であった。この結果から、コキュア法により接着剤と被着材(ここではA7075アルミニウム合金)との強固な接着が確保されている条件下では、引っ張り強度が高い炭素繊維をベースとしたCFRPプリプレグよりも、表面に凹凸が存在し、表面性能が良くないとされているCFRPプリプレグの方が高い接着性能を示すことが明らかとなった。即ち、接着部に低級品に区分されるCFRPプリプレグを使用することにより、高級品に区分されるCFRPプリプレグよりも被着材との強固な接着を達成しうるという結果を得た。但し、150℃下ではこれらの効果が見えなくなった。NAT処理金属合金片同士の接着物ではこのようなことがなかったから、破壊メカニズムに線膨張率の差異が影響しているのかもしれない。   Table 1 shows the average value of the shear breaking strength of 7 pairs of composites at room temperature, 100 ° C., and 150 ° C. The brackets indicate the minimum and maximum values of the shear breaking force measured for 7 pairs of composites (minimum value to maximum value). From this result, in the temperature range from room temperature to 100 ° C., the shear breaking force of the composite using “Pyrofil TR3523M” having a tensile strength of 4.4 GPa as an adhesive portion is “Treka 2255S-25” having a tensile strength of 6 GPa. Clearly exceeded the complex using "." The difference in shear breaking force was 10 MPa or more. From this result, under the condition that the strong adhesion between the adhesive and the adherend (here A7075 aluminum alloy) is ensured by the co-cure method, the surface is higher than the CFRP prepreg based on carbon fiber having high tensile strength. It was revealed that the CFRP prepreg, which has irregularities on the surface and the surface performance is not good, exhibits higher adhesion performance. That is, by using a CFRP prepreg classified as a low-grade product in the bonded portion, it was possible to achieve stronger adhesion to the adherend than a CFRP prepreg classified as a high-grade product. However, these effects disappeared at 150 ° C. Since this was not the case with the bonded metal alloy pieces of NAT treatment, the difference in linear expansion coefficient may have an influence on the fracture mechanism.

[実験例17](CFRP片の作成)
引っ張り強度が6GPaである高強度炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「トレカ2255S−25」を用意し、これから220mm×220mmの正方形片(厚さ0.2mm)を多数切り出した。また、引っ張り強度が前者より低い4.4GPaである炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「パイロフィルTR3523M」を用意し、これから220mm×220mmの正方形片(厚さ0.2mm)を多数切り出した。実験例14及び15で使用した焼成治具と基本構造は同じで大きさの異なる焼成治具(図21)を使用し、これらCFRPプリプレグの積層物からなるCFRP板を作成する。金型本体2及び金型底板5を組み合わせると、金型本体2の側壁と金型底板5の上面によって金型凹部が形成される。この金型凹部を覆うように、0.05mm厚の離型用フィルム17を敷いた。
[Experimental Example 17] (Creation of CFRP piece)
A CFRP prepreg “Trekka 2255S-25” having a thickness of 0.2 mm based on a high-strength carbon fiber having a tensile strength of 6 GPa was prepared, and a large number of 220 mm × 220 mm square pieces (thickness 0.2 mm) were cut out therefrom. . Also, a 0.2 mm thick CFRP prepreg “Pyrofil TR3523M” based on carbon fiber having a tensile strength of 4.4 GPa lower than the former is prepared, and a 220 mm × 220 mm square piece (thickness 0.2 mm) is prepared from this. A large number were cut out. A firing jig (FIG. 21) having the same basic structure as that of the firing jig used in Experimental Examples 14 and 15 but different in size is used to produce a CFRP plate made of a laminate of these CFRP prepregs. When the mold body 2 and the mold bottom plate 5 are combined, a mold recess is formed by the side wall of the mold body 2 and the upper surface of the mold bottom plate 5. A release film 17 having a thickness of 0.05 mm was laid so as to cover the mold recess.

この離型用フィルム17の上に、切断しておいた220mm×220mmの「トレカ2255S−25」片12枚を積層した。更にこの「トレカ2255S−25」片上に「パイロフィルTR3523M」片を3枚積層した。これらCFRPプリプレグ15枚の積層物が図中のCFRPプリプレグ積層物22として示されている。このCFRPプリプレグ積層物22を覆うように離型用フィルム14を敷いた。   On the release film 17, 12 pieces of “Treka 2255S-25” pieces of 220 mm × 220 mm that had been cut were laminated. Further, three “Pyrofil TR3523M” pieces were laminated on this “Torayca 2255S-25” piece. A laminate of these 15 CFRP prepregs is shown as a CFRP prepreg laminate 22 in the figure. A release film 14 was laid so as to cover the CFRP prepreg laminate 22.

離型用フィルム14の上にPTFE製のブロック15を乗せ、ブロック15の上に鉄製の10kgの錘18を乗せて大型オートクレーブの中に置いた。オートクレーブの蓋を閉めて内温を約80℃とした後に真空ポンプで内圧を10mmHg以下とした。この温度で10分加熱し、その後温度を上げて135℃に達したときに空気を入れて常圧に戻した。その後、135℃で40分加熱し、その後で更に165℃まで温度を上げて、165℃前後を維持するように調節しつつ30分加熱した。その後、加熱を停止して30分間放冷した。オートクレーブを開き、焼成治具1を分解してCFRP板(CFRPプリプレグ積層物22の硬化物)を得た。このCFRP板を高圧水切断機により切断して、45mm×15mmで厚さ3mmのCFRP片を多数作成した。同様の工程を繰り返し、CFRP片を多数作成した。   A PTFE block 15 was placed on the release film 14, and a 10 kg weight 18 made of iron was placed on the block 15 and placed in a large autoclave. The lid of the autoclave was closed and the internal temperature was adjusted to about 80 ° C., and then the internal pressure was reduced to 10 mmHg or less with a vacuum pump. After heating at this temperature for 10 minutes, the temperature was raised and when it reached 135 ° C., air was introduced to return to normal pressure. Then, it heated at 135 degreeC for 40 minutes, and raised the temperature to 165 degreeC after that, and heated for 30 minutes, adjusting so that it might be around 165 degreeC. Thereafter, the heating was stopped and the mixture was allowed to cool for 30 minutes. The autoclave was opened and the firing jig 1 was disassembled to obtain a CFRP plate (cured product of the CFRP prepreg laminate 22). The CFRP plate was cut with a high-pressure water cutter to produce a large number of CFRP pieces of 45 mm × 15 mm and a thickness of 3 mm. The same process was repeated to produce a large number of CFRP pieces.

このようにして作成したCFRP片の「パイロフィルTR3523M」表面端部5mmを、JISR6252に規定される120番の研磨紙で10数回しっかり研磨して、粗面化した。次いで、超音波発信端を設置した槽にアルミニウム合金用脱脂剤「NE−6」を7.5%を含む水溶液(60℃)を用意し、これに超音波をかけた状態として、粗面化したCFRP片を5分浸漬した。その後、このCFRP片を水洗し、80℃にセットした熱風乾燥機に15分入れて乾燥した。   The end portion 5 mm of the “Pyrofil TR3523M” surface of the CFRP piece thus produced was firmly polished 10 times with a 120th polishing paper defined by JIS R6252 to roughen the surface. Next, an aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6” is prepared in a tank provided with an ultrasonic wave transmitting end, and the surface is roughened by applying ultrasonic waves thereto. The CFRP piece was immersed for 5 minutes. Thereafter, this CFRP piece was washed with water and dried in a hot air dryer set at 80 ° C. for 15 minutes.

[実験例18](CFRP片の作成)
実験例17と同様の方法で、「トレカ2255S−25」片のみからなるCFRP片を作成した。即ち、実験例17においては、「トレカ2255S−25」片12枚と「パイロフィルTR3523M」片3枚を積層したが、本実験例では「トレカ2255S−25」片15枚を積層してCFRP板を得た。さらに、このCFRP板から、実験例17と同様の方法でCFRP片を多数作成した。
[Experiment 18] (Creation of CFRP piece)
A CFRP piece consisting of only the “Torayca 2255S-25” piece was prepared in the same manner as in Experimental Example 17. That is, in Experimental Example 17, 12 “Torayca 2255S-25” pieces and 3 “Pyrofil TR3523M” pieces were laminated, but in this Experimental Example, 15 “Torayca 2255S-25” pieces were laminated to form a CFRP plate. Obtained. Furthermore, many CFRP pieces were produced from this CFRP plate by the same method as in Experimental Example 17.

このようにして作成したCFRP片の表面端部5mmを、JISR6252に規定される120番の研磨紙で10数回しっかり研磨して、粗面化した。次いで、超音波発信端を設置した槽にアルミニウム合金用脱脂剤「NE−6」を7.5%を含む水溶液(60℃)を用意し、これに超音波をかけた状態として、粗面化したCFRP片を5分浸漬した。その後、このCFRP片を水洗し、80℃にセットした熱風乾燥機に15分入れて乾燥した。   The surface end portion 5 mm of the CFRP piece thus prepared was firmly polished 10 times with a 120th polishing paper defined by JIS R6252 to roughen the surface. Next, an aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6” is prepared in a tank provided with an ultrasonic wave transmitting end, and the surface is roughened by applying ultrasonic waves thereto. The CFRP piece was immersed for 5 minutes. Thereafter, this CFRP piece was washed with water and dried in a hot air dryer set at 80 ° C. for 15 minutes.

[実験例19](CFRP片とA7075アルミニウム合金片のコボンド接着)
実験例1で得たA7075アルミニウム合金片の端部4mmまでに実験例13で得た1液性エポキシ接着剤を塗布した。また、実験例17で得たCFRP片の端部の粗面化部分に同じ1液性エポキシ接着剤を塗布した。同様に、実験例18で得たCFRP片の端部の粗面化部分に同じ1液性エポキシ接着剤を塗布した。このようにして接着剤を塗布したA7075アルミニウム合金片、実験例17で得たCFRP片、及び実験例18で得たCFRP片を、デシケータに入れた。このデシケータは、予め67℃とした温風乾燥機内に15分置いて温めておいたものである。次いで、デシケータ内を真空ポンプで減圧し、3分程度10mmHg以下の低圧状態に維持した後、常圧に戻した。この減圧/常圧戻しの操作(染み込まし処理)を複数回行った後、A7075アルミニウム合金片、実験例17で得たCFRP片、及び実験例18で得たCFRP片をデシケータから取り出した。
[Experimental Example 19] (Cobond bonding of CFRP piece and A7075 aluminum alloy piece)
The one-component epoxy adhesive obtained in Experimental Example 13 was applied to the end of 4 mm of the A7075 aluminum alloy piece obtained in Experimental Example 1. Further, the same one-component epoxy adhesive was applied to the roughened portion at the end of the CFRP piece obtained in Experimental Example 17. Similarly, the same one-component epoxy adhesive was applied to the roughened portion at the end of the CFRP piece obtained in Experimental Example 18. Thus, the A7075 aluminum alloy piece which apply | coated the adhesive agent, the CFRP piece obtained in Experimental example 17, and the CFRP piece obtained in Experimental example 18 were put into the desiccator. This desiccator was previously warmed by placing it in a warm air dryer at 67 ° C. for 15 minutes. Next, the inside of the desiccator was depressurized with a vacuum pump, maintained at a low pressure of 10 mmHg or less for about 3 minutes, and then returned to normal pressure. After this decompression / normal pressure return operation (soaking process) was performed a plurality of times, the A7075 aluminum alloy piece, the CFRP piece obtained in Experimental Example 17, and the CFRP piece obtained in Experimental Example 18 were taken out from the desiccator.

A7075アルミニウム合金片の接着剤塗布領域と、実験例17で得たCFRP片の接着剤塗布領域とを密着させて図19に示す形状の対とし、クリップで固定した。同様に、A7075アルミニウム合金片の接着剤塗布領域と、実験例18で得たCFRP片の接着剤塗布領域とを密着させて図19に示す形状の対とし、クリップで固定した。接着面積(図19の斜線部分13)は0.5cm程度となるようにした。これらを90℃にセットした熱風乾燥機に入れ、135℃に昇温して40分加熱した。その後、さらに165℃まで昇温して30分加熱した後、電源を切って放冷した。 The adhesive application region of the A7075 aluminum alloy piece and the adhesive application region of the CFRP piece obtained in Experimental Example 17 were brought into close contact to form a pair of shapes shown in FIG. 19 and fixed with clips. Similarly, the adhesive application region of the A7075 aluminum alloy piece and the adhesive application region of the CFRP piece obtained in Experimental Example 18 were brought into close contact to form a pair having the shape shown in FIG. The adhesion area (shaded portion 13 in FIG. 19) was set to about 0.5 cm 2 . These were put into a hot air dryer set at 90 ° C., heated to 135 ° C. and heated for 40 minutes. Then, after heating up to 165 degreeC and heating for 30 minutes, the power supply was turned off and it stood to cool.

上記のようにして得られたA7075アルミニウム合金/実験例17のCFRP(「トレカ2255S−25」及び「パイロフィルTR3523M」)複合体について、1週間後に7対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果(7対の平均値)を表2に示す(実験例19−1)。また、上記のようにして得られたA7075アルミニウム合金/実験例18のCFRP(「トレカ2255S−25」)複合体について、1週間後に7対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果(7対の平均値)を表2に示す(実験例19−2)。   For the A7075 aluminum alloy / CFRP ("Trekka 2255S-25" and "Pyrofil TR3523M") composite obtained in the above-described manner, 7 pairs were pulled and broken using a testing machine after 1 week. The shear breaking strength was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. The results (average values of 7 pairs) are shown in Table 2 (Experimental Example 19-1). In addition, the A7075 aluminum alloy / CFRP ("Trekka 2255S-25") composite obtained in the above-described manner was pulled and ruptured 7 weeks later using a testing machine, and shear ruptured. The force was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. The results (average value of 7 pairs) are shown in Table 2 (Experimental Example 19-2).

この結果から、常温、100℃、150℃の全ての温度域において、引っ張り強度が4.4GPaである「パイロフィルTR3523M」を接着部に使用した複合体のせん断破断力が、引っ張り強度が6GPaである「トレカ2255S−25」を使用した複合体を明確に上回った。特に常温及び100℃におけるせん断破断力が高かった。この結果から、コボンド法により接着剤と被着材(ここではA7075アルミニウム合金)との強固な接着が確保されている条件下では、引っ張り強度が高い炭素繊維をベースとしたCFRPプリプレグよりも、表面に凹凸が存在し、表面性能が良くないとされているCFRPプリプレグの方が高い接着性能を示すことが明らかとなった。これはコキュア法と同様である。   From this result, in all temperature ranges of normal temperature, 100 ° C., and 150 ° C., the shear breaking force of the composite using “Pyrofil TR3523M” having a tensile strength of 4.4 GPa as an adhesive portion has a tensile strength of 6 GPa. It clearly exceeded the complex using “Torayca 2255S-25”. In particular, the shear breaking strength at normal temperature and 100 ° C. was high. From this result, under the condition that strong adhesion between the adhesive and the adherend (here A7075 aluminum alloy) is ensured by the cobond method, the surface is higher than the CFRP prepreg based on carbon fiber having high tensile strength. It was revealed that the CFRP prepreg, which has irregularities on the surface and the surface performance is not good, exhibits higher adhesion performance. This is the same as the Cocure method.

[実験例20](CFRP片同士のコボンド接着)
実験例17で得たCFRP片の端部の粗面化部分に同じ1液性エポキシ接着剤を塗布し、デシケータに入れた。このデシケータは、予め67℃とした温風乾燥機内に15分置いて温めておいたものである。次いで、デシケータ内を真空ポンプで減圧し、3分程度10mmHg以下の低圧状態に維持した後、常圧に戻した。この減圧/常圧戻しの操作(染み込まし処理)を複数回行った後、CFRP片をデシケータから取り出した。
[Experimental Example 20] (Cobond adhesion between CFRP pieces)
The same one-component epoxy adhesive was applied to the roughened portion at the end of the CFRP piece obtained in Experimental Example 17, and placed in a desiccator. This desiccator was previously warmed by placing it in a warm air dryer at 67 ° C. for 15 minutes. Next, the inside of the desiccator was depressurized with a vacuum pump, maintained at a low pressure of 10 mmHg or less for about 3 minutes, and then returned to normal pressure. After this pressure reduction / normal pressure return operation (soaking process) was performed a plurality of times, the CFRP piece was taken out of the desiccator.

染み込まし処理を経た2つのCFRP片の接着剤塗布領域同士を密着させて図19に示す形状の対とし、クリップで固定した。接着面積(図19の斜線部分13)は0.5cm程度となるようにした。これらを90℃にセットした熱風乾燥機に入れ、135℃に昇温して40分加熱した。その後、さらに165℃まで昇温して30分加熱した後、電源を切って放冷した。上記のようにして得られた複合体について、1週間後に5対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果(5対の平均値)を表3に示す(実験例20)。 The adhesive application areas of the two CFRP pieces soaked and treated were brought into close contact with each other to form a pair of shapes shown in FIG. 19 and fixed with clips. The adhesion area (shaded portion 13 in FIG. 19) was set to about 0.5 cm 2 . These were put into a hot air dryer set at 90 ° C., heated to 135 ° C. and heated for 40 minutes. Then, after heating up to 165 degreeC and heating for 30 minutes, the power supply was turned off and it stood to cool. The composite obtained as described above was subjected to tensile rupture using a tester after one week, and the shear rupture force was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. The results (average of 5 pairs) are shown in Table 3 (Experimental example 20).

[実験例21](CFRP片同士のコボンド接着)
実験例17で得たCFRP片に代えて、実験例18で得たCFRP片を使用して実験例20と同様の実験を行った。その結果(5対の平均値)を表3に示す(実験例21)。
[Experimental example 21] (Co-bond adhesion between CFRP pieces)
Instead of the CFRP piece obtained in Experimental Example 17, the same experiment as in Experimental Example 20 was performed using the CFRP piece obtained in Experimental Example 18. The results (average of 5 pairs) are shown in Table 3 (Experimental example 21).

この結果からも、常温、100℃の温度域において、引っ張り強度が4.4GPaである「パイロフィルTR3523M」を接着部に使用した接合体のせん断破断力が、引っ張り強度が6GPaである「トレカ2255S−25」を使用した接合体を明確に上回った。常温、100℃におけるせん断破断力は概ね10MPa以上高かった。即ち、CFRP同士のコボンド接着においても、引っ張り強度が高い炭素繊維をベースとしたCFRPプリプレグよりも、表面に凹凸が存在し、表面性能が良くないとされているCFRPプリプレグの方が高い接着性能を示すことが明らかとなった。又、150℃下の結果は表1のデータとほぼ同じで接着力値がやや低く、両者の差異は殆どなくなっていた。この接着物はCFRP片同士であるから線膨張率に差異があるわけではない。本発明者らにとってやや理解し難い結果であった。   Also from this result, in the temperature range of room temperature and 100 ° C., the shear breaking force of the joined body using “Pyrofil TR3523M” having a tensile strength of 4.4 GPa as an adhesive portion is “Treka 2255S- Clearly exceeded the conjugate using 25 ". The shear breaking strength at room temperature and 100 ° C. was generally higher than 10 MPa. That is, in co-bond bonding between CFRPs, CFRP prepregs, which have surface irregularities and have poor surface performance, have higher bonding performance than CFRP prepregs based on carbon fibers with high tensile strength. It became clear to show. The results at 150 ° C. were almost the same as the data in Table 1 and the adhesive strength value was slightly low, and the difference between the two was almost eliminated. Since these adhesives are CFRP pieces, there is no difference in linear expansion coefficient. The results were somewhat difficult for the inventors to understand.

[実験例22](CFRP同士のコキュア接着)
引っ張り強度が6GPaである高強度炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「トレカ2255S−25(東レ社製)」を用意し、これから45mm×15mmの長方形片(厚さ0.2mm)を多数切り出した。また、繊維の引っ張り強度が4.4GPaと前者より低い炭素繊維をベースとした厚さ0.2mmのCFRPプリプレグ「パイロフィルTR3523M(三菱レイヨン社製)」を用意し、これから45mm×15mmの長方形片(厚さ0.2mm)を多数切り出した。
[Experimental example 22] (Cocure adhesion between CFRPs)
Prepare a CFRP prepreg “Torayca 2255S-25 (manufactured by Toray Industries, Inc.)” with a thickness of 0.2 mm based on a high-strength carbon fiber with a tensile strength of 6 GPa. From this, a rectangular piece of 45 mm × 15 mm (thickness 0.2 mm) ) Was cut out. In addition, a CFRP prepreg “Pyrofil TR3523M (manufactured by Mitsubishi Rayon Co., Ltd.)” having a thickness of 0.2 mm based on carbon fiber having a tensile strength of 4.4 GPa, which is lower than the former, is prepared, and a rectangular piece (45 mm × 15 mm) A number of 0.2 mm thickness) was cut out.

図18に示す焼成治具1を用いてCFRP同士をコキュア法で接着した接合体を作成する。金型本体2及び金型底板5を組み合わせると、金型本体2の側壁と金型底板5の上面によって金型凹部が形成される。この金型凹部を覆うように、0.05mm厚の離型用フィルム17を敷いた。この離型用フィルム17の上に、「トレカ2255S−25」片を12枚積層し、さらにこの上に「パイロフィルTR3523M」片を3枚積層した。これらCFRPプリプレグ15枚の積層物が図中のCFRPプリプレグ積層物11として示されている。これらCFRPプリプレグ積層物11と金型本体2の側壁の空隙をポリテトラフルオロエチレン樹脂(以下、「PTFE」という。)製のスペーサ16で埋めた。   A bonded body in which CFRPs are bonded to each other by a co-curing method is created using the firing jig 1 shown in FIG. When the mold body 2 and the mold bottom plate 5 are combined, a mold recess is formed by the side wall of the mold body 2 and the upper surface of the mold bottom plate 5. A release film 17 having a thickness of 0.05 mm was laid so as to cover the mold recess. On this release film 17, 12 “Trekka 2255S-25” pieces were laminated, and further 3 “Pyrofil TR3523M” pieces were laminated thereon. A laminate of these 15 CFRP prepregs is shown as CFRP prepreg laminate 11 in the figure. The space between the CFRP prepreg laminate 11 and the side wall of the mold body 2 was filled with a spacer 16 made of polytetrafluoroethylene resin (hereinafter referred to as “PTFE”).

次いで、これらCFRPプリプレグ積層物11及びスペーサ16の上面に、「パイロフィルTR3523M」片を3枚積層した。更にこの「パイロフィルTR3523M」片上に「トレカ2255S−25」片12枚を積層した。これらCFRPプリプレグ15枚の積層物が図中のCFRPプリプレグ積層物12として示されている。ここで、図18に示すCFRPプリプレグ積層物12の最下層となる「パイロフィルTR3523M」片の下面の左端部分が、CFRPプリプレグ積層物11上面の「パイロフィルTR3523M」と接触している。このCFRPプリプレグ積層物12と金型本体2の側壁の空隙を埋めるためにPTFE製のスペーサ13を設置し、これらを覆うように離型用フィルム14を敷いた。   Next, three “Pyrofil TR3523M” pieces were laminated on the upper surfaces of the CFRP prepreg laminate 11 and the spacer 16. Furthermore, 12 “Treka 2255S-25” pieces were laminated on this “Pyrofil TR3523M” piece. A laminate of these 15 CFRP prepregs is shown as CFRP prepreg laminate 12 in the figure. Here, the left end portion of the lower surface of the “pyrofil TR3523M” piece that is the lowermost layer of the CFRP prepreg laminate 12 shown in FIG. 18 is in contact with the “pyrofil TR3523M” on the upper surface of the CFRP prepreg laminate 11. In order to fill the gap between the CFRP prepreg laminate 12 and the side wall of the mold body 2, a PTFE spacer 13 was installed, and a release film 14 was laid so as to cover them.

離型用フィルム14の上にPTFE製のブロック15を乗せ、ブロック15の上に鉄製の10kgの錘18を乗せて大型オートクレーブの中に置いた。オートクレーブの蓋を閉めて内温を約80℃とした後に真空ポンプで内圧を10mmHg以下とした。この温度で10分加熱し、その後温度を上げて135℃に達したときに空気を入れて常圧に戻した。その後、135℃で40分加熱し、その後で更に165℃まで温度を上げて、165℃前後を維持するように調節しつつ30分加熱した。その後、加熱を停止して30分間放冷した。オートクレーブを開き、焼成治具1を分解してCFRP(CFRPプリプレグ積層物11の硬化物)とCFRP(CFRPプリプレグ積層物12の硬化物)との接合体を得た。図19に接合体10の外観を示す。CFRP11の「パイロフィルTR3523M」片硬化物とCFRP12の「パイロフィルTR3523M」片硬化物が接合されている。このようにして接合体10を多数作成した。   A PTFE block 15 was placed on the release film 14, and a 10 kg weight 18 made of iron was placed on the block 15 and placed in a large autoclave. The lid of the autoclave was closed and the internal temperature was adjusted to about 80 ° C., and then the internal pressure was reduced to 10 mmHg or less with a vacuum pump. After heating at this temperature for 10 minutes, the temperature was raised and when it reached 135 ° C., air was introduced to return to normal pressure. Then, it heated at 135 degreeC for 40 minutes, and raised the temperature to 165 degreeC after that, and heated for 30 minutes, adjusting so that it might be around 165 degreeC. Thereafter, the heating was stopped and the mixture was allowed to cool for 30 minutes. The autoclave was opened and the firing jig 1 was disassembled to obtain a joined body of CFRP (cured product of CFRP prepreg laminate 11) and CFRP (cured product of CFRP prepreg laminate 12). FIG. 19 shows the appearance of the joined body 10. A cured product of “Pyrofil TR3523M” of CFRP11 and a cured product of “Pyrofil TR3523M” of CFRP12 are joined. In this way, a large number of joined bodies 10 were produced.

上記のようにして得られたCFRP同士の接合体について、1週間後に5対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、100℃、及び150℃において行った。その結果、せん断破断力(5対の平均)は、常温下で50.3MPa、100℃下では38.8MPa、150℃下では16.5MPaであった。実験例20と大きな差はなかった。但し、この接合体の作成においては、1液性エポキシ接着剤を使用していない。接着に供されているのはCFRPプリプレグのマトリックス樹脂による。   About the joined body of CFRP obtained as described above, 5 pairs were pulled and ruptured using a testing machine after one week, and the shear breaking strength was measured. These tests were performed at normal temperature, 100 ° C., and 150 ° C. As a result, the shear breaking strength (average of 5 pairs) was 50.3 MPa at room temperature, 38.8 MPa at 100 ° C., and 16.5 MPa at 150 ° C. There was no significant difference from Experimental Example 20. However, a one-component epoxy adhesive is not used in the production of this joined body. It is the matrix resin of CFRP prepreg that is used for adhesion.

[実験例23〜33](CFRP片と各種金属合金のコボンド接着)
実験例19−1に示した方法と同様の方法で、各種金属合金とCFRP片をコボンド法によって接着した複合体を作成した。実験例19−1においては、金属合金として実験例1の表面処理を施したA7075アルミニウム合金片を使用したが、実験例23〜実験例33では、それぞれ実験例2〜12の表面処理を施した金属合金片を使用した。即ち、A5052アルミニウム合金(実験例23)、AZ31Bマグネシウム合金(実験例24)、C1100銅合金(実験例25)、C5191リン青銅合金(実験例26)、KFC銅合金(実験例27)、KLF5銅合金(実験例28)、「KS40」純チタン系チタン合金(実験例29)、「KSTi−9」α−β系チタン合金(実験例30)、SUS304ステンレス鋼(実験例31)、SPCC冷間圧延鋼板(実験例32)、及び、SPHC熱間圧延鋼板(実験例33)である。これらの複合体において、CFRP片は、「パイロフィルTR3523M」片を3枚積層し、その上に「トレカ2255S−25」片12枚を積層したものであり、最下層の「パイロフィルTR3523M」片の端部が各種金属合金片の表面と1液性エポキシ接着剤を介して接着されている。
[Experimental Examples 23 to 33] (Co-bond adhesion of CFRP pieces and various metal alloys)
A composite in which various metal alloys and CFRP pieces were bonded by a cobond method was prepared in the same manner as shown in Experimental Example 19-1. In Experimental Example 19-1, an A7075 aluminum alloy piece subjected to the surface treatment of Experimental Example 1 was used as the metal alloy, but in Experimental Examples 23 to 33, the surface treatments of Experimental Examples 2 to 12 were performed, respectively. Metal alloy pieces were used. That is, A5052 aluminum alloy (Experimental example 23), AZ31B magnesium alloy (Experimental example 24), C1100 copper alloy (Experimental example 25), C5191 phosphor bronze alloy (Experimental example 26), KFC copper alloy (Experimental example 27), KLF5 copper Alloy (Experiment 28), “KS40” pure titanium-based titanium alloy (Experiment 29), “KSTi-9” α-β titanium alloy (Experiment 30), SUS304 stainless steel (Experiment 31), SPCC cold They are a rolled steel plate (Experimental Example 32) and an SPHC hot-rolled steel plate (Experimental Example 33). In these composites, the CFRP piece is formed by laminating three “Pyrofil TR3523M” pieces and 12 pieces of “Trekka 2255S-25” pieces thereon, and the end of the bottom “Pyrofil TR3523M” piece. The part is bonded to the surface of various metal alloy pieces via a one-component epoxy adhesive.

ここで金属合金片の厚さが薄い場合、引っ張り破断試験の際に、曲げ応力に起因して、本来破断する時点(例えば金属合金片の厚さがA7075アルミニウム合金片の様に3mmあるときの破断時点)より前にせん断破断することになる。従って、金属合金片の厚さが薄いA5052アルミニウム合金、AZ31Bマグネシウム合金、C1100銅合金、C5191リン青銅合金、KFC銅合金、「KS40」純チタン系チタン合金、「KSTi−9」α−β系チタン合金、及びSUS304ステンレス鋼に関しては、接着面と反対側の面に、1.6mm厚のSPCC冷間圧延鋼板片を1液性エポキシ接着剤により接着して補強した。特に薄いKLF5銅合金(厚さ0.4mm)に関しては、3.2mm厚のSPCC冷間圧延鋼板片で補強した。図22に複合体10の外観を示す。各種金属合金片11とCFRP12が、接着剤塗布領域13を介して接合されている。上記金属合金11の底面側が、SPCC冷間圧延鋼板片14によって補強されている。   Here, when the thickness of the metal alloy piece is thin, at the time of the tensile fracture test, due to the bending stress, when the metal alloy piece originally breaks (for example, when the thickness of the metal alloy piece is 3 mm like the A7075 aluminum alloy piece) Shear fracture occurs before the time of fracture. Therefore, A5052 aluminum alloy, AZ31B magnesium alloy, C1100 copper alloy, C5191 phosphor bronze alloy, KFC copper alloy, “KS40” pure titanium-based titanium alloy, “KSTi-9” α-β-based titanium with thin metal alloy pieces Regarding the alloy and SUS304 stainless steel, a 1.6 mm thick SPCC cold-rolled steel sheet piece was bonded to the surface opposite to the bonding surface with a one-component epoxy adhesive for reinforcement. In particular, a thin KLF5 copper alloy (thickness 0.4 mm) was reinforced with a 3.2 mm thick SPCC cold-rolled steel sheet piece. FIG. 22 shows the appearance of the composite 10. Various metal alloy pieces 11 and CFRP 12 are joined via an adhesive application region 13. The bottom side of the metal alloy 11 is reinforced by SPCC cold-rolled steel plate pieces 14.

上記のようにして得られた各種複合体について、それぞれ5対を試験機を使用して引っ張り破断して、せん断破断力を測定した。これらの試験は常温、及び100℃において行った。その結果(5対の平均値)を表4に示す(実験例23〜33)。   About the various composites obtained as described above, 5 pairs were each pulled and broken using a testing machine, and the shear breaking strength was measured. These tests were performed at normal temperature and 100 ° C. The results (average values of 5 pairs) are shown in Table 4 (Experimental Examples 23 to 33).

表4の結果から、チタン合金(「KS40」純チタン系チタン合金、「KSTi−9」α−β系チタン合金)を除く、全ての金属合金に関して、常温下で概ね50〜60MPa、100℃下で40〜50MPaという極めて高いせん断破断力を示した。NATの3条件に適合する金属合金同士を1液性エポキシ接着剤で接着した場合、通常、常温下で60〜70MPa、100℃下で50〜55MPa、150℃下で35〜40MPaのせん断破断力を示す。CFRPの接着に供される範囲に、引っ張り強度の低いCFRPプリプレグを使用することで、この数値に近づけることができた。なお、チタン合金とCFRPとの複合体に関しても、常温下で40〜45MPa、100℃下で38〜40MPaのせん断破断力を示した。これは、従来技術と比較した場合に明確に高い接着力であり、極めて高い耐熱性を示した。   From the results of Table 4, for all metal alloys except titanium alloys (“KS40” pure titanium-based titanium alloy, “KSTi-9” α-β-based titanium alloy), approximately 50 to 60 MPa at room temperature and 100 ° C. It showed an extremely high shear breaking force of 40-50 MPa. When metal alloys conforming to the three conditions of NAT are bonded with a one-component epoxy adhesive, the shear breaking strength is usually 60 to 70 MPa at room temperature, 50 to 55 MPa at 100 ° C., and 35 to 40 MPa at 150 ° C. Indicates. By using a CFRP prepreg having a low tensile strength in the range used for bonding CFRP, it was possible to approach this value. The composite of titanium alloy and CFRP also showed a shear breaking force of 40 to 45 MPa at room temperature and 38 to 40 MPa at 100 ° C. This is a clearly high adhesive force when compared with the prior art, and showed extremely high heat resistance.

11…金属合金
12…CFRPプリプレグ積層物
13…接着範囲
22…CFRP板
40…金属合金
41…セラミック質層
42…接着剤硬化物層
DESCRIPTION OF SYMBOLS 11 ... Metal alloy 12 ... CFRP prepreg laminate 13 ... Adhesion range 22 ... CFRP board 40 ... Metal alloy 41 ... Ceramic layer 42 ... Adhesive hardened material layer

Claims (15)

引っ張り強度5GPa以下の第1PAN系炭素繊維をベースとした第1CFRPプリプレグと、引っ張り強度が5GPaより高い第2PAN系炭素繊維をベースとした第2CFRPプリプレグとを積層したCFRP部材と、
CFRP又は金属合金である被着材との接合体であって、
前記CFRP部材中の前記第1CFRPプリプレグが主として前記被着材との接合に供されていることを特徴とする前記接合体。
A CFRP member in which a first CFRP prepreg based on a first PAN-based carbon fiber having a tensile strength of 5 GPa or less and a second CFRP prepreg based on a second PAN-based carbon fiber having a tensile strength higher than 5 GPa are laminated;
A bonded body with an adherend that is CFRP or a metal alloy,
The joined body, wherein the first CFRP prepreg in the CFRP member is mainly used for joining with the adherend.
請求項1に記載した接合体であって、
前記第1PAN系炭素繊維の引っ張り強度は、4.4GPa以下であることを特徴とする前記接合体。
The joined body according to claim 1,
The bonded body according to claim 1, wherein the first PAN-based carbon fiber has a tensile strength of 4.4 GPa or less.
請求項2に記載した接合体であって、
前記第1PAN系炭素繊維の表面には、当該炭素繊維方向の長さ20μm内又は当該表面の表面積5×10−4mm内に、高低差50nm以上の溝が1以上存在することを特徴とする前記接合体。
A joined body according to claim 2,
The surface of the first PAN-based carbon fiber has one or more grooves with a height difference of 50 nm or more within a length of 20 μm in the carbon fiber direction or within a surface area of 5 × 10 −4 mm 2 of the surface. The joined body.
請求項1ないし3から選択される1項に記載した接合体であって、
前記被着材はCFRPプリプレグの積層物であるCFRP被着材であり、
当該CFRP被着材は、引っ張り強度5GPa以下の第3PAN系炭素繊維をベースとした第3CFRPプリプレグと、引っ張り強度が5GPaより高い第4PAN系炭素繊維をベースとした第4CFRPプリプレグとを積層したものであり、
前記第1CFRPプリプレグと前記第3CFRPプリプレグが、当該第1CFRPプリプレグのマトリックス樹脂と当該第3CFRPプリプレグのマトリックス樹脂の硬化反応によって接合されていることを特徴とする前記接合体。
The joined body according to claim 1 selected from claims 1 to 3,
The adherend is a CFRP adherend that is a laminate of CFRP prepregs,
The CFRP adherend is a laminate of a third CFRP prepreg based on a third PAN-based carbon fiber having a tensile strength of 5 GPa or less and a fourth CFRP prepreg based on a fourth PAN-based carbon fiber having a tensile strength higher than 5 GPa. Yes,
The joined body, wherein the first CFRP prepreg and the third CFRP prepreg are joined by a curing reaction of a matrix resin of the first CFRP prepreg and a matrix resin of the third CFRP prepreg.
請求項1ないし3から選択される1項に記載した接合体であって、
前記被着材はCFRPプリプレグの積層物であるCFRP被着材であり、
当該CFRP被着材は、引っ張り強度5GPa以下の第3PAN系炭素繊維をベースとした第3CFRPプリプレグと、引っ張り強度が5GPaより高い第4PAN系炭素繊維をベースとした第4CFRPプリプレグとを積層したものであり、
前記第1CFRPプリプレグと前記第3CFRPプリプレグが、1液性エポキシ接着剤を介して接合されていることを特徴とする前記接合体。
The joined body according to claim 1 selected from claims 1 to 3,
The adherend is a CFRP adherend that is a laminate of CFRP prepregs,
The CFRP adherend is a laminate of a third CFRP prepreg based on a third PAN-based carbon fiber having a tensile strength of 5 GPa or less and a fourth CFRP prepreg based on a fourth PAN-based carbon fiber having a tensile strength higher than 5 GPa. Yes,
The joined body, wherein the first CFRP prepreg and the third CFRP prepreg are joined together via a one-component epoxy adhesive.
請求項1ないし3から選択される1項に記載した接合体であって、
前記被着材は金属合金であり、
当該金属合金は、アルミニウム合金、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、及び鉄鋼材から選択されるいずれか1種であって、
当該金属合金表面は、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記第1CFRPプリプレグと前記金属合金が、前記超微細凹凸に侵入した1液性エポキシ接着剤を介して接合されていることを特徴とする前記接合体。
The joined body according to claim 1 selected from claims 1 to 3,
The adherend is a metal alloy,
The metal alloy is any one selected from an aluminum alloy, a magnesium alloy, a copper alloy, a titanium alloy, stainless steel, and a steel material,
The surface of the metal alloy has a roughness on the order of microns in which the average length (RSm) of the contour curve element is 0.8 to 10 μm and the maximum height (Rz) is 0.2 to 5 μm, and the roughness In the plane having a degree, ultrafine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
The joined body, wherein the first CFRP prepreg and the metal alloy are joined together via a one-component epoxy adhesive that has penetrated into the ultra-fine irregularities.
請求項6に記載した接合体であって、
前記1液性エポキシ接着剤は、当該1液性エポキシ接着剤を構成する全エポキシ樹脂混合物を100質量部としたときに、ビスフェノールA型エポキシ樹脂単量体を主体とするビスフェノールA型エポキシ樹脂を60〜75質量部、エポキシ基を3個以上有する多官能型であって且つ芳香環を有するエポキシ樹脂を25〜40質量部混合したものであり、
かつ、硬化剤としてジシアンジアミド粉体を3〜6質量部添加し、硬化助剤として3−(3,4−ジクロルフェニル)−1,1−ジメチルウレア粉体を1〜3質量部添加したものであることを特徴とする前記接合体。
The joined body according to claim 6,
The one-component epoxy adhesive is a bisphenol A-type epoxy resin mainly composed of a bisphenol A-type epoxy resin monomer when the total epoxy resin mixture constituting the one-component epoxy adhesive is 100 parts by mass. 60 to 75 parts by mass, a polyfunctional type having 3 or more epoxy groups and 25 to 40 parts by mass of an epoxy resin having an aromatic ring,
In addition, 3 to 6 parts by mass of dicyandiamide powder is added as a curing agent, and 1 to 3 parts by mass of 3- (3,4-dichlorophenyl) -1,1-dimethylurea powder is added as a curing aid. Said joined body characterized by the above-mentioned.
請求項7に記載した接合体であって、
前記1液性エポキシ接着剤は、当該1液性エポキシ接着剤を構成する全エポキシ樹脂混合物を100質量部としたときに、(1)ビスフェノールA型エポキシ樹脂単量体を60〜75質量部、(2)ビスフェノールA型エポキシ樹脂オリゴマーを0〜15質量部、(3)エポキシ基を3個以上有する多官能型であって且つ芳香環を有するエポキシ樹脂を25〜40質量部混合したものであることを特徴とする前記接合体。
The joined body according to claim 7,
The one-component epoxy adhesive is (1) 60 to 75 parts by mass of a bisphenol A type epoxy resin monomer when the total epoxy resin mixture constituting the one-component epoxy adhesive is 100 parts by mass. (2) 0 to 15 parts by mass of a bisphenol A type epoxy resin oligomer, (3) 25 to 40 parts by mass of an epoxy resin having a polyfunctional type having 3 or more epoxy groups and having an aromatic ring Said joined body characterized by the above-mentioned.
請求項4に記載した接合体の製造方法であって、
一方で前記第1CFRPプリプレグ及び前記第2CFRPプリプレグを積層し、
他方で前記第3CFRPプリプレグ及び前記第4CFRPプリプレグを積層し、
かつ、前記第1CFRPプリプレグと前記第3CFRPプリプレグの所定範囲を密着させた状態とする全体積層工程と、
前記全体積層工程後に、前記第1CFRPプリプレグ、前記第2CFRPプリプレグ、前記第3CFRPプリプレグ、及び前記第4CFRPプリプレグを同時に加熱することにより、それぞれのマトリックス樹脂を一時に硬化させることで、前記CFRP部材と前記CFRP被着材とを一体化する全体硬化工程と、
を含むことを特徴とする接合体の製造方法。
It is a manufacturing method of the joined object according to claim 4,
Meanwhile, the first CFRP prepreg and the second CFRP prepreg are laminated,
On the other hand, the third CFRP prepreg and the fourth CFRP prepreg are laminated,
And an overall laminating step for bringing a predetermined range of the first CFRP prepreg and the third CFRP prepreg into close contact with each other;
By heating the first CFRP prepreg, the second CFRP prepreg, the third CFRP prepreg, and the fourth CFRP prepreg at the same time after the entire laminating step, the respective matrix resins are cured at a time, whereby the CFRP member and the An overall curing step to integrate the CFRP adherend;
The manufacturing method of the conjugate | zygote characterized by including.
請求項5に記載した接合体の製造方法であって、
前記第1CFRPプリプレグ及び前記第2CFRPプリプレグを積層して加熱することにより、それぞれのマトリックス樹脂を硬化させて前記CFRP部材を作成する第1硬化工程と、
前記第3CFRPプリプレグ及び前記第4CFRPプリプレグを積層して加熱することにより、それぞれのマトリックス樹脂を硬化させて前記CFRP被着材を作成する第2硬化工程と、
前記第1硬化工程を経たCFRP部材の第1CFRPプリプレグ表面を粗面化する第1粗面化工程と、
前記第2硬化工程を経たCFRP被着材の第3CFRPプリプレグ表面を粗面化する第2粗面化工程と、
前記第1粗面化工程を経たCFRP部材の粗面化した範囲に1液性エポキシ接着剤を塗布する第1塗布工程と、
前記第2粗面化工程を経たCFRP被着材の粗面化した範囲に1液性エポキシ接着剤を塗布する第2塗布工程と、
前記第1塗布工程を経たCFRP部材及び前記第2塗布工程を経たCFRP被着材の、それぞれの接着剤塗布領域同士を密着させて加熱することによって、当該CFRP部材と当該CFRP被着材を接着させる接着工程と、
を含むことを特徴とする前記製造方法。
It is a manufacturing method of the joined object according to claim 5,
A first curing step in which the first CFRP prepreg and the second CFRP prepreg are laminated and heated to cure the respective matrix resins to create the CFRP member;
A second curing step in which the third CFRP prepreg and the fourth CFRP prepreg are laminated and heated to cure the respective matrix resins to create the CFRP adherend;
A first roughening step of roughening the surface of the first CFRP prepreg of the CFRP member that has undergone the first curing step;
A second roughening step of roughening the third CFRP prepreg surface of the CFRP adherend that has undergone the second curing step;
A first application step of applying a one-component epoxy adhesive to the roughened range of the CFRP member that has undergone the first roughening step;
A second coating step of applying a one-component epoxy adhesive to the roughened range of the CFRP adherend that has undergone the second roughening step;
The CFRP member and the CFRP adherend are bonded to each other by heating the adhesive application regions of the CFRP member that has undergone the first application step and the CFRP adherend that has undergone the second application step. An adhesion process,
The manufacturing method characterized by including.
請求項10に記載した接合体の製造方法であって、
前記第1塗布工程を経たCFRP部材を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第1染み込まし工程をさらに含み、
前記第2塗布工程を経たCFRP被着材を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第2染み込まし工程をさらに含み、
前記第1染み込まし工程及び前記第2染み込まし工程後に前記接着工程を行うことを特徴とする前記製造方法。
It is a manufacturing method of the joined object according to claim 10,
The CFRP member that has undergone the first application step is sealed in a sealed container, and further includes a first soaking step that pressurizes the inside of the sealed container once after depressurization,
Sealing the CFRP adherend that has undergone the second application step in a sealed container, and further includes a second soaking step that pressurizes the sealed container after depressurization.
The said manufacturing method characterized by performing the said adhesion process after the said 1st soaking process and the said 2nd soaking process.
請求項6に記載した接合体の製造方法であって、
金属合金の表面に、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、その粗度を有する面内に、5〜500nm周期の超微細凹凸を形成し、且つ、表層を金属酸化物又は金属リン酸化物の薄層とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た金属合金の表面に、1液性エポキシ接着剤を塗布する塗布工程と、
前記第1CFRPプリプレグ及び前記第2CFRPプリプレグを積層し、かつ、前記第1CFRPプリプレグと前記塗布工程を経た金属合金の接着剤塗布領域を密着させた状態とする積層工程と、
前記積層工程後に、前記第1CFRPプリプレグ、前記第2CFRPプリプレグ、及び前記1液性エポキシ接着剤を同時に加熱することにより、前記CFRP部材と前記金属合金とを一体化する硬化工程と、
を含むことを特徴とする接合体の製造方法。
It is a manufacturing method of the joined object according to claim 6,
On the surface of the metal alloy, a roughness on the order of microns having an average length (RSm) of the contour curve element of 0.8 to 10 μm and a maximum height (Rz) of 0.2 to 5 μm is generated, and the roughness A surface treatment step of performing surface treatment for forming ultrafine irregularities with a period of 5 to 500 nm in a plane having a degree and forming a surface layer as a thin layer of metal oxide or metal phosphate;
An application step of applying a one-component epoxy adhesive to the surface of the metal alloy that has undergone the surface treatment step;
A laminating step of laminating the first CFRP prepreg and the second CFRP prepreg and bringing the first CFRP prepreg and the adhesive application region of the metal alloy that has undergone the applying step into close contact with each other;
A curing step of integrating the CFRP member and the metal alloy by simultaneously heating the first CFRP prepreg, the second CFRP prepreg, and the one-component epoxy adhesive after the lamination step;
The manufacturing method of the conjugate | zygote characterized by including.
請求項12に記載した接合体の製造方法であって、
前記塗布工程を経た金属合金を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する染み込まし工程をさらに含み、
前記染み込まし工程後に前記積層工程を行うことを特徴とする前記製造方法。
It is a manufacturing method of the joined object according to claim 12,
The metal alloy that has undergone the coating step is sealed in a sealed container, and further includes a soaking step in which the inside of the sealed container is once pressurized after being decompressed,
The said manufacturing method characterized by performing the said lamination process after the said impregnation process.
請求項6に記載した接合体の製造方法であって、
前記第1CFRPプリプレグ及び前記第2CFRPプリプレグを積層して加熱することにより、それぞれのマトリックス樹脂を硬化させて前記CFRP部材を作成する第1硬化工程と、
前記第1硬化工程を経たCFRP部材の第1CFRPプリプレグ表面を粗面化する第1粗面化工程と、
前記第1粗面化工程を経たCFRP部材の粗面化した範囲に1液性エポキシ接着剤を塗布する第1塗布工程と、
金属合金の表面に、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、その粗度を有する面内に、5〜500nm周期の超微細凹凸を形成し、且つ、表層を金属酸化物又は金属リン酸化物の薄層とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た金属合金の表面に、1液性エポキシ接着剤を塗布する第2塗布工程と、
前記第1塗布工程を経たCFRP部材及び前記第2塗布工程を経た金属合金の、それぞれの接着剤塗布領域同士を密着させて加熱することによって、当該CFRP部材と当該金属合金を接着させる接着工程と、
を含むことを特徴とする前記製造方法。
It is a manufacturing method of the joined object according to claim 6,
A first curing step in which the first CFRP prepreg and the second CFRP prepreg are laminated and heated to cure the respective matrix resins to create the CFRP member;
A first roughening step of roughening the surface of the first CFRP prepreg of the CFRP member that has undergone the first curing step;
A first application step of applying a one-component epoxy adhesive to the roughened range of the CFRP member that has undergone the first roughening step;
On the surface of the metal alloy, a roughness on the order of microns having an average length (RSm) of the contour curve element of 0.8 to 10 μm and a maximum height (Rz) of 0.2 to 5 μm is generated, and the roughness A surface treatment step of performing surface treatment for forming ultrafine irregularities with a period of 5 to 500 nm in a plane having a degree and forming a surface layer as a thin layer of metal oxide or metal phosphate;
A second application step of applying a one-component epoxy adhesive to the surface of the metal alloy that has undergone the surface treatment step;
An adhesion step of bonding the CFRP member and the metal alloy by closely contacting and heating the adhesive application regions of the CFRP member having undergone the first application step and the metal alloy having undergone the second application step; ,
The manufacturing method characterized by including.
請求項14に記載した接合体の製造方法であって、
前記第1塗布工程を経たCFRP部材を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第1染み込まし工程をさらに含み、
前記第2塗布工程を経た金属合金を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第2染み込まし工程をさらに含み、
前記第1染み込まし工程及び前記第2染み込まし工程後に前記接着工程を行うことを特徴とする前記製造方法。
It is a manufacturing method of the joined object according to claim 14,
The CFRP member that has undergone the first application step is sealed in a sealed container, and further includes a first soaking step that pressurizes the inside of the sealed container once after depressurization,
The metal alloy that has undergone the second application step is further sealed in a sealed container, and further includes a second soaking step in which the inside of the sealed container is once pressurized after being decompressed,
The said manufacturing method characterized by performing the said adhesion process after the said 1st soaking process and the said 2nd soaking process.
JP2009225057A 2009-09-29 2009-09-29 Joined body of cfrp and adherend and method of manufacturing the same Pending JP2011073191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225057A JP2011073191A (en) 2009-09-29 2009-09-29 Joined body of cfrp and adherend and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225057A JP2011073191A (en) 2009-09-29 2009-09-29 Joined body of cfrp and adherend and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011073191A true JP2011073191A (en) 2011-04-14

Family

ID=44017717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225057A Pending JP2011073191A (en) 2009-09-29 2009-09-29 Joined body of cfrp and adherend and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011073191A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116950A (en) * 2009-11-02 2011-06-16 Taisei Plas Co Ltd Cfrp prepreg and joint body
CN103635298A (en) * 2011-07-15 2014-03-12 Mec株式会社 Method for producing aluminum-resin complex
CN104411126A (en) * 2014-11-14 2015-03-11 东莞劲胜精密组件股份有限公司 Electronic product housing and manufacturing method thereof
JP2016040114A (en) * 2014-08-13 2016-03-24 株式会社東芝 Composite and method of manufacturing the same, and composite bearing member
EP3072937A1 (en) * 2015-03-24 2016-09-28 The Boeing Company Rapidly curing adhesives using encapsulated catalyst and focused ultrasound
KR20170118903A (en) 2015-03-30 2017-10-25 신닛테츠스미킨 카부시키카이샤 Method for bonding metal, resin member and carbon fiber reinforced resin member
WO2018133732A1 (en) * 2017-01-17 2018-07-26 广东欧珀移动通信有限公司 Housing manufacturing method and mobile terminal
US10323667B2 (en) 2016-03-15 2019-06-18 Hyundai Motor Company Composite product with junction structure
CN111231375A (en) * 2020-01-14 2020-06-05 上海交通大学 Hot forming and co-curing integrated forming method for CFRP/aluminum alloy composite structure
CN111231366A (en) * 2020-01-14 2020-06-05 上海交通大学 CFRP/aluminum alloy hot forming quenching aging co-curing integrated forming method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116950A (en) * 2009-11-02 2011-06-16 Taisei Plas Co Ltd Cfrp prepreg and joint body
CN103635298A (en) * 2011-07-15 2014-03-12 Mec株式会社 Method for producing aluminum-resin complex
CN103635298B (en) * 2011-07-15 2015-09-16 Mec株式会社 The manufacture method of aluminium-resin composite body
JP2016040114A (en) * 2014-08-13 2016-03-24 株式会社東芝 Composite and method of manufacturing the same, and composite bearing member
CN104411126A (en) * 2014-11-14 2015-03-11 东莞劲胜精密组件股份有限公司 Electronic product housing and manufacturing method thereof
CN104411126B (en) * 2014-11-14 2016-08-24 东莞劲胜精密组件股份有限公司 A kind of electronic product casing and preparation method thereof
EP3072937A1 (en) * 2015-03-24 2016-09-28 The Boeing Company Rapidly curing adhesives using encapsulated catalyst and focused ultrasound
US10246565B2 (en) 2015-03-24 2019-04-02 The Boeing Company Rapidly curing adhesives using encapsulated catalyst and focused ultrasound
KR20170118903A (en) 2015-03-30 2017-10-25 신닛테츠스미킨 카부시키카이샤 Method for bonding metal, resin member and carbon fiber reinforced resin member
US10654221B2 (en) 2015-03-30 2020-05-19 Nippon Steel Corporation Method of joining metal, plastic member, and carbon fiber reinforced plastic member
US10323667B2 (en) 2016-03-15 2019-06-18 Hyundai Motor Company Composite product with junction structure
WO2018133732A1 (en) * 2017-01-17 2018-07-26 广东欧珀移动通信有限公司 Housing manufacturing method and mobile terminal
CN111231375A (en) * 2020-01-14 2020-06-05 上海交通大学 Hot forming and co-curing integrated forming method for CFRP/aluminum alloy composite structure
CN111231366A (en) * 2020-01-14 2020-06-05 上海交通大学 CFRP/aluminum alloy hot forming quenching aging co-curing integrated forming method
CN111231366B (en) * 2020-01-14 2021-06-01 上海交通大学 CFRP/aluminum alloy hot forming quenching aging co-curing integrated forming method

Similar Documents

Publication Publication Date Title
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
JP5094849B2 (en) Stainless steel composite
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP5008040B2 (en) Titanium alloy composite and its joining method
JP5372469B2 (en) Metal alloy laminate
JP5191961B2 (en) One-component epoxy adhesive and bonding method
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
JP5554483B2 (en) Metal-resin composite and method for producing the same
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
KR101216800B1 (en) Steel product composite and process for producing the steel product composite
JP5426932B2 (en) Composite of metal alloy and thermosetting resin and method for producing the same
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP2011042030A (en) Bonded structure of metal and adherend and process for producing the same
JP4903881B2 (en) Joined body of metal alloy and adherend and method for producing the same
JP2012066383A (en) Adhesive-bonded composite containing metal alloy, and manufacturing method for the same
JPWO2005031037A1 (en) Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
JP5295738B2 (en) Adhesive composite containing metal alloy and method for producing the same
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP2009241569A (en) Tubular joining composite
JP5714864B2 (en) CFRP prepreg and bonded material
JP2011148937A (en) Solvent-type epoxy adhesive and adhering method
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP2016221784A (en) Integrally assembled product of cfrp pipe and metal part, and bonding method therefor
JP5253315B2 (en) Solvent type epoxy adhesive and bonding method
JP6341880B2 (en) Method for producing metal-containing composite